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Abstract. A continuous group key agreement (CGKA) protocol allows a
long-lived group of parties to agree on a continuous stream of fresh secret
key material. CGKA protocols allow parties to join and leave mid-session
but may neither rely on special group managers, trusted third parties,
nor on any assumptions about if, when, or for how long members are
online. CGKA captures the core of an emerging generation of highly
practical end-to-end secure group messaging (SGM) protocols.
In light of their practical origins, past work on CGKA protocols have
been subject to stringent engineering and efficiency constraints at the
cost of diminished security properties. In this work, we somewhat re-
lax those constraints, instead considering progressively more powerful
adversaries.
To that end, we present 3 new security notions of increasing strength.
Already the weakest of the 3 (passive security) captures attacks to which
all prior CGKA constructions are vulnerable. Moreover, the 2 stronger
(active security) notions even allow the adversary to use parties’ exposed
states combined with full network control to mount attacks. In particu-
lar, this is closely related to so-called insider attacks which involve ma-
licious group members actively deviating from the protocol. Although
insiders are of explicit interest to practical CGKA/SGM designers, our
understanding of this class of attackers is still quite nascent. Indeed, we
believe ours to be the first security notions in the literature to precisely
formulate meaningful guarantees against (a broad class of) insiders.
For each of the 3 new security notions we give a new CGKA scheme
enjoying sub-linear (potentially even logarithmic) communication com-
plexity in the number of group members (on par with the asymptotics
of state-of-the-art practical constructions). We prove each scheme opti-
mally secure, in the sense that the only security violations possible are
those necessarily implied by correctness.

1 Introduction

1.1 Overview and Motivation

A continuous group key agreement (CGKA) protocol allows a long-lived dy-
namic group to agree on a continuous stream of fresh secret group keys. In
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CGKA new parties may join and existing members may leave the group at any
point mid-session. In contrast to standard (dynamic) GKA, the CGKA protocols
are asynchronous in that they make no assumptions about if, when, or for how
long members are online.4 Moreover, unlike, say, broadcast encryption, the pro-
tocol may not rely on a (trusted) group manager or any other designated party.
Due to a session’s potentially very long life-time (e.g., years), CGKA protocols
must ensure a property called post-compromise forward security (PCFS). PCFS
strengthens the two standard notions of forward security (FS) (the keys output
must remain secure even if some party’s state is compromised in the future) and
post-compromise security (PCS) (parties recover from state compromise after
exchanging a few messages and the keys become secure again) in that it requires
them to hold simultaneously.

The first CGKA protocol was introduced by Cohn-Gordon et al. in [15] al-
though CGKA as a (term and) generic stand-alone primitive was only later
introduced by Alwen et al. in [4]. To motivate the new primitive [4] puts forth
the intuition that CGKA abstracts the cryptographic core of an “MLS-like”
approach to SGM protocol design in much the same way that CKA (the 2-
party analogue of CGKA) abstracts the asymmetric core of a double-ratchet
based 2-party secure messaging protocol [1]. Indeed, MLS’s computational and
communication complexities, support for dynamic groups, it’s asynchronous na-
ture, trust assumptions and it’s basic security guarantees are naturally inherited
from the underlying TreeKEM CGKA sub-protocol. Finally, we believe that the
fundamental nature of key agreement and the increasing focus on highly dis-
tributed practical cryptographic protocols surely allows for further interesting
applications of CGKA beyond SGM.

In [4] the authors analyzed (a version of) the TreeKEM CGKA protocol [12];
the core cryptographic component in the scalable end-to-end secure group mes-
saging (SGM) protocol MLS, currently under development by the eponymous
Messaging Layer Security working group of the IETF [10].

An SGM protocol is an asynchronous (in the above sense) protocol enabling
a dynamic group of parties to privately exchange messages over the Internet.
While such protocols initially relied on a service provider acting as a trusted
third party, nowadays end-to-end security is increasingly the norm and provider
merely act as untrusted delivery services. SGM protocols are expected to provide
PCFS for messages (defined analogously to CGKA).5 The proliferation of SGM
protocols in practice has been extensive with more than 2 billion users today.

For both CGKA and SGM, the main bottleneck in scaling to larger groups
is the communication and computational complexity of performing a group op-

4 Instead, the protocol must allow parties that come online to immediately derive
all new key material agreed upon in their absence simply by locally processing all
protocol messages sent to the group during the interim. Conversely, any operations
they wish to perform must be implemented non-interactively by producing a single
message to be broadcasted to the group.

5 As for CGKA, PCFS is strictly stronger than the “non-simultaneous” combination
of FS and PCS. That is, there are protocols that individually satisfy FS and PCS,
but not PCFS [4].
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eration (e.g. agree on a new group key, add or remove a party, etc.). Almost all
protocols, in particular all those used in practice today, have complexity Ω(n)
for groups of size n (e.g. [24, 20] for sending a message and [26] for removing a
party). This is an unfortunate side effect of them being built black-box on top of
2-party secure messaging (SM) protocols. The first (CGKA) protocol to break
this mold, thereby achieving “fair-weather” complexity of O(log(n)), is the ART
protocol of [15]. Soon to follow were the TreeKEM family of protocols includ-
ing those in [12, 4, 2] and their variations (implicit) in successive iterations of
MLS. By fair-weather complexity we informally mean that the cost of the next
operation in a session can range from Θ(log(n)) to Θ(n) depending on the exact
sequence of preceding operations. However, under quite mild assumptions about
the online/offline behaviour of participants, the complexity can be kept in the
O(log(n)) range.

The Security of CGKA. To achieve PCFS, TreeKEM (and thus MLS) allows a
party to perform an “update” operation. These refresh the parties state so as to
heal in case of past compromises but come at the price of necessitating a broad-
cast to the group. The current design of MLS (and, consequently, the analysis
by [4]) does not prevent attackers from successfully forging communication from
compromised parties in the time period a state compromise of the party and
their next update. The assumption that attackers won’t attempt such forgeries
— henceforth referred to as the cannot-inject assumption (CIA) — prevents ad-
versaries from, say, destroying the group’s state by sending maliciously crafted
broadcasts. Thus it is closely related to insider security, i.e., security against
group members who actively deviate from the prescribed protocol, which has
hitherto been a mostly open problem and remains an ongoing concern for the
MLS working group.6

A second assumption that underlies prior work on secure group messaging is
the no-splitting assumption (NSA): When multiple parties propose a change to
the group state simultaneously, the delivery service (and, hence, the attacker)
is assumed to mediate and choose the change initiated by one of the parties
and deliver the corresponding protocol message to all group members. This (ar-
tificially) bars the attacker from splitting the group into subgroups (unaware
of each other) and thereby potentially breaking protocol security. As such, the
NSA represents a serious limitation of the security model.

Contributions. At a high level, this paper makes 2 types of contributions: (1)
we introduce optimal CGKA security definitions that avoid the CIA and the
NSA, where “optimality” requires that each produced key be secure unless it
can be trivially — due to the correctness of the protocol — computed using the
information leaked to the attacker via corruption; (2) we provide protocols satis-
fying the proposed definitions. These contributions are discussed in Sections 1.2
and 1.3, respectively.

6 Note that the Signal [24] 2-party SM protocol is not secure without CIA.
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1.2 Defining Optimally Secure CGKA

Overview. This work proposes the first security definitions in the realm of secure
group messaging that do not impose any unrealistic restrictions on adversarial
capabilities. The definitions allow the adversary to control the communication
network, including the delivery service, as well as to corrupt parties by leak-
ing their states and/or controlling their randomness. Furthermore, two settings,
called the passive setting and the active setting, are considered: The passive set-
ting only makes the CIA (but not the NSA) and hence corresponds to a passive
network adversary (or authenticated channels). It should be considered a step-
ping stone to the active setting, where attackers are limited by neither CIA nor
NSA. We note that [15, 2, 3] have also considered the setting without the NSA.

While the active setting does not, per se, formally model malicious parties, it
does allow the adversary to send arbitrary messages on behalf of parties whose
states leaked.7 Thus, the new security definition goes a long way towards con-
sidering the insider attacks mentioned above.

Flexible security definitions. The security definitions in this work are flexible in
that several crucial parts of the definitions are generic. Most importantly, fol-
lowing the definitional paradigm of [3], they are parameterized by a so-called
safety predicate, encoding which keys are expected to be secure in any given ex-
ecution. Optimal security notions are obtained if the safety predicate marks as
insecure only those keys that are trivially computable by the adversary due to
the correctness of the protocol. While the constructions in this work all achieve
optimal security (in different settings), sub-optimal but meaningful security no-
tions may also be of interest (e.g., for admitting more efficient protocols) and
can be obtained by appropriately weakening the security predicate.

History Graphs. The central formal tool used to capture CGKA security are
so-called history graphs, introduced in [3]. A history graph is a symbolic rep-
resentation of the semantics of a given CGKA session’s history. It is entirely
agnostic to the details of a construction and depends only on the high-level
inputs to the CGKA protocol and the actions of the adversary.

More concretely, a history graph is an annotated tree, in which each node
represents a fixed group state (including a group key). A node v is annotated
with (the semantics of) the group operations that took place when transitioning
from the parent node to v, e.g., “Alice was added using public key epk. Bob was
removed. Charlie updated his slice of the distributed group state.” The node is
further annotated to record certain events, e.g., that bad randomness was used
in the transition or that parties’ local states leaked to the adversary while they
are in group state v. To this end, for each party the history graph maintains a
pointer indicating which group state the party is (meant) to be in.

7 For example, the adversary is allowed to “bypass” the PKI and add new members
with arbitrary keys.
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Active case: dealing with injections. Probably the greatest challenge in defining
security for the active setting is how to sensibly model injected messages in a way
that maintains consistency with a real world protocol, yet provides interesting
security guarantees. In more detail, by using the leaked protocol state of a party
and fixing their randomness, the attacker can “run ahead” to predict the exact
protocol messages a party will produce for future operations. In particular, it
may use an injection to invite new members to join the group at a future history
graph node which does not even exist yet in the experiment. Yet, an existing
member might eventually catch up to the new member at which point their real
world protocols will have consistent states (in particular, a consistent group key).

More fundamentally, the security definition can no longer rely on 2 assump-
tions which have significantly simplified past security notions (and proofs) for
CGKA. Namely, (A) that injections are never accepted by their receiver and (B)
that each new protocol message by an honest party always defines a fresh group
state (i.e. history graph node).

Hence, to begin modeling injections, we create new “adversarial” history
graph nodes for parties to transition to when they join a group by processing
an injected message. This means that, in the active setting, the history graph is
really a forest, not a tree. We restrict our security experiment to a single “Create
Group” operation so there is (at most) 1 tree rooted at a node not created by
an injection. We call this tree the honest group and it is for this group that we
want to provide security guarantees.

The above solution is incomplete, as it leaves open the question of how to
model delivery of injected protocol messages to members already in a group (hon-
est or otherwise). To this end, the functionality relies on 2 reasonable properties
of a protocol:

1. Protocol messages are unique across the whole execution and can be used to
identify nodes. This means that any pair of parties that accept a protocol
message will agree on all (security relevant) aspects of their new group states,
e.g., the group key and group membership.

2. Every protocol message w welcoming a new member to a group in state
(i.e., node) vi must uniquely identify the corresponding protocol message c
updating existing group members to vi.

The net result is that we can now reasonably model meaningful expectations
for how a protocol handles injections. In particular, suppose an existing group
member id1 at a node v1 accepts an injected protocol message c. If another
party id2 already processed c, then we simply move id1 to the same node as
id2. Otherwise, we check if c was previously assigned to a welcome message w
injected to some id3. If so, we can safely attach the node v3 created for w as
a child of v1 and transition id1 to v3. With the two properties above, we can
require that id1 and id2 (in the first case) or id1 and id3 (the second case) end
up in consistent states.

Finally, if neither c nor a matching w has appeared before then we can safely
create a fresh “adversarial” node for id1 as a child of v1. We give no guarantees
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for keys in adversarial nodes (as secrecy is anyway inherently lost). Still, we
require that they do not affect honest nodes.

Composable and simulation-based security. This work formalizes CGKA secu-
rity by considering appropriate functionalities in the UC framework [13].Since
universal composition is an extremely strong guarantee and seems to be impos-
sible for CGKA in the standard model (for reasons similar to the impossibility
of UC-secure key exchange under adaptive corruptions [18]), this work also con-
siders a weaker definition in which, similarly to [7] and [23], the environment is
constrained to not perform corruptions that would cause the so-called commit-
ment problem. In particular, the weaker statement is still (at least) as strong as
a natural game-based definition (as used by related work) that would exclude
some corruptions as “trivial wins.” In other words, restricting the environment
only impacts composition guarantees, which are not the main aspect of this
work. Nevertheless, we believe that our statements are a solid indication for
multi-group security (see th full version [5] for more discussion).

A simulation-based security notion also provides a neat solution for deciding
how adversarially injected packets should affect the history graph. That is, it
provides a clean separation of concerns, dealing with the protocol specific aspects
in the simulator, while keeping the definition protocol independent.

CGKA functionalities. As mentioned above, the approach taken in this work is
to formalize CGKA security in the UC framework via ideal CGKA functionali-
ties, which maintain the history graph as the session evolves. A reader familiar
with the use of UC security (in the context of secure multi-party computation)
might expect passive and active security to be captured by considering protocol
executions over an authenticated and an insecure network, respectively.

As we strive to treat CGKA as a primitive, however, and not directly enforce
how it is used, we design our CGKA UC functionalities as “idealized CGKA ser-
vices” (much in the way that PKE models an idealized PKE service in [13, 14])
instead. Thus, they offer the parties interfaces for performing all group opera-
tions, but then simply hand out the corresponding idealized protocol message
back to the environment. The attacker gets to choose an arbitrary string to
represent the idealized protocol message that would be created for that same
operation in the real world. This encodes that no guarantees are made about
protocol messages beyond their semantic effects as captured by the history graph.

Just as for PKE, this approach further means that it is up to the environment
to “deliver” the idealized messages from the party that initiated an operation
to all other group members. This carries the additional benefit that it allows
to formalize correctness, whereas typical UC definitions often admit “trivial”
protocols simply rejecting all messages (with the simulator not delivering them
in the ideal world).

The passive setting is then modeled by restricting the environment to only
deliver messages previously chosen to represent a group operation. Meanwhile,
in the active setting, the restriction is dropped instead allowing injections; that
is delivery of new messages.
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Relation to full insider security. We model active corruptions as leaking a party’s
state, intercepting all their communication, and injecting arbitrary messages on
there behalf. While this allows the adversary to emulate the party in essentially
every respect it does leave one last capability out of reach to the adversary;
namely interactions with the PKI. A malicious insider might, say, register mal-
formed or copied public keys as their own in the PKI. In contrast, an active
adversary may not register keys even on behalf of corrupt parties. At most they
can leak the secret components of honestly generated key pairs.

While one might conceivably implement such strong PKI in certain real world
settings we believe that closing this gap remains an important open problem for
future work.

1.3 Protocols with Optimal Security

Overview. We put forth three protocols, all with the same (fair-weather) asymp-
totic efficiency as the best CGKA protocols in the literature.

Interestingly, even in the passive case, optimal security is not achieved by any
existing protocol — not even inefficient solutions based on pairwise channels.
Instead, we adapt the “key-evolving” techniques of [21] to the group setting
to obtain Protocol P-Pas enjoying optimal security for the passive setting; i.e.,
against passive but adaptive adversaries.8

Next, we augment P-Pas to obtain two more protocols geared to the active
setting and meeting incomparable security notions. Specifically, Protocol P-Act
provides security against both active and adaptive adversaries but at the cost of
a slightly less than ideal “robustness” guarantees. More precisely, the adversary
can use leaked states of parties to inject messages that are processed correctly
by some parties, but rejected by others.

Meanwhile, the protocol P-Act-Rob uses non-interactive zero-knowledge proofs
(NIZKs) to provide the stronger guarantee that if one party accepts a message,
then all other parties do but therefore only against active but static adversaries.

For protocols P-Pas and P-Act we prove security with respect to two models.
First, in a relaxation of the UC framework with restricted environments (this
notion achieves restricted composition and is analogous to game-based notions),
we prove security in the non-programmable random oracle model. Second, we
prove full UC security in the programmable random oracle model. For the third
protocol P-Act-Rob, we consider the standard model, but only achieve semi-
static security (the environment is restricted to commit ahead of time to certain
information — but not to all inputs).

Techniques used in the protocols. Our protocol P-Pas for the passive setting
is an adaptation of the TTKEM protocol, a variant of the TreeKEM protocol
introduced in [2] which we have adapted to the propose-and-commit syntax of
MLS (draft 9). Next we use hierarchical identity based encryption (HIBE) in

8 We do place some restrictions on their adaptivity described bellow in the paragraph
on the commitment problem.
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lieu of regular public-key encryption and ensures that all keys are updated with
every operation. This helps in avoiding group-splitting attacks, as it ensures that
different subgroups use keys for different HIBE identities.

In the active setting, there are two difficulties to solve. First, to prevent
injecting messages from uncorrupted parties, we use key-updating signatures
[21] that prevent injections using state from another subgroup after a split.

Second, we have to ensure that the adversary cannot use leaked secrets (in-
cluding signing keys) to craft a message that processed by two parties makes
them transition to incompatible states. In other words, a message should prove
to a party that any other party processing it ends up in a compatible state. A nat-
ural attempt to solve this would be a generic compiler inspired by GMW [19],
where the committer provides a non-interactive zero knowledge (NIZK) proof
that it executed the protocol correctly. Unfortunately, the GMW approach re-
quires each part to commit to the whole randomness at the beginning of the
protocol.9 which is incompatible with PCS, since healing from corruption re-
quires fresh randomness.

Hence, we instead propose two non-black-box modifications of P-Pas. First,
th protocol P-Act uses a simple solution based on a hash function. The mech-
anism guarantees that all partitions that accept a message also end up with a
consistent state. However, parties may not agree on whether to accept or reject
the injection. So our second protocol P-Act-Rob implements the consistency us-
ing a NIZK proof attached to each message proving its consistency. As a price,
we can no longer model a key part of the consistency relation via a random ora-
cle which means our proof technique for adaptive adversaries no longer applies.
Thus, for P-Act-Rob, we only prove a type of static security.

1.4 Related Work

2-party ratcheting. 2-party Ratcheting is a similar primitive to CKA (the 2-party
analogue of CGKA), both originally designed with secure messaging protocols
in mind. (Indeed, the terms are sometimes used interchangeably.)

Ratcheting was first investigated as a stand-alone primitive by Bellare et
al. [11]. That work was soon followed by the works of [25] and [21] who considered
active security for Ratcheting (the later in the context of an SM protocol). In
particular, the work of Poettring and Rösler [25] can be viewed as doing for
Ratcheting what our work does for the past CGKA results. In contrast, [16, 22]
looked at strong security notions for Ratcheting achievable using practically
efficient constructions, albeit at the cost of losing message-loss resilience. In
recent work, Balli et al. [8] showed that for such strong security notions imply
a weak version of HIBE. Two-party continuous key agreement (CKA) was first
defined in [1] where it was used build a family of SM protocols generalizing
Signal’s messaging protocol [24].

9 The NIZK is with respect to th committed randomness. The randomness is sampled
jointly using an MPC protocol.
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CGKA. In comparison to the 2-party primitives, SGM and CGKA have received
less attention. In practice, SGM protocols make black-box use of 2-party SM (or
at least 2-party Ratcheting) which results in Ω(n) computational and commu-
nication complexity in the group size n for certain operations[17, 20, 24, 26].
The first CGKA with logarithmic fair-weather complexity (defined above) was
introduced ART protocol by Cohn-Gordon et al. in [15]. This was soon fol-
lowed by (several variant of) the TreeKEM CGKA [12]. The RTreeKEM (for
“re-randomized TreeKEM”) introduced and analyzed in [3] greatly improves the
FS properties of TreeKEM and ART. However, security is only proven using
both the CIA and NSA and results in a quasi-polynomial loss for adaptive secu-
rity. Meanwhile, the TTKEM construction (i.e. “Tainted TreeKEM”) in [2] has
the first adaptive security proof with polynomial loss and only uses the CIA (al-
though it does not achieve optimal security). Finally, the CGKA in the current
MLS draft [9] represents a significant evolution of the above constructions in that
it introduces the “propose and commit” paradigm used in this work and in [4].
Our construction build on TTKEM, RTreeKEM and the propose-and-commit
version of TreeKEM.

Modeling CGKA. From a definitional point of view, we build on the history
graph paradigm of [3]. That work, in turn, can be seen as a generalization of
the model introduced by Alwen et al. [4]. To avoid the commitment problem we
adopt the restrictions of environments by Backes et al. [7] to the UC framework.
A similar approach has also been used by Jost, Maurer, and Mularczyk [23] in
the realm of secure messaging.

2 Continuous Group Key Agreement

2.1 CGKA Schemes

A CGKA scheme aims at providing a steady stream of shared (symmetric) se-
cret keys for a dynamically evolving set of parties. Those two aspects are tied
together by so-called epochs: each epoch provides a (fresh) group key to a (for
this epoch) fixed set of participants. CGKA schemes are non-interactive — a
party creates a new epoch by broadcasting a single message, which can then
be processed by the other members to move along. Rather than relying on an
actual broadcast scheme, CCKA schemes however merely assume an untrusted
(or partially trusted) delivery service. As multiple parties might try to initiate
a new epoch simultaneously, the delivery service’s main job is to determine the
successful one by picking an order. As a consequence, a party trying to initiate
a new epoch itself cannot immediately move forward to it but rather has to wait
until its message is confirmed by the delivery service. For simplicity, we assume
that the party then just processes it the same way as any other member.

Evolving the member set: add and remove proposals. During each epoch, the
parties propose to add or remove members by broadcasting a corresponding
proposal. To create a new epoch, a party then selects an (ordered) list thereof
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to be applied. We say that the party commits those proposals, and thus call the
respective message the commit message and the creator thereof the committer.

Group policies. A higher-level application using a CGKA scheme may impose
various restrictions on who is allowed to perform which operations (e.g. restrict-
ing commits to administrators or restricting valid proposal vectors within a
commit). In this work, we consider a very permissive setting. It is easy to see
that any result in the permissive setting carries over to a more restrictive setting.

PKI. CGKA schemes in many aspects represent a generalization of non-interactive
key exchange (NIKE) to groups. Indeed, adding a new member must be possible
without this party participating in the protocol. Rather, the party should be
able to join the group by receiving a single welcome message that was generated
alongside the commit message. Hence, CGKA schemes rely on a PKI that pro-
vides some initial key material for new members. This work assumes a simple
PKI functionality for this purpose, described in Section 3.

State compromises and forward security. CGKA schemes are designed with ex-
posures of parties’ states in mind. In particular, they strive to provide FS: expos-
ing a party’s state in some epoch should not reveal the group keys of past epochs.
This also implies, that once removed, a party’s state should reveal nothing about
the group keys.

Post-compromise security and update proposals. In addition, CGKA schemes
should also provide PCS. For this, parties regularly send update proposals, which
roughly suggest removing the sender and immediately adding him with a fresh
key (analogous to the one from PKI). In addition, the committer always implic-
itly updates himself.

2.2 CGKA Syntax

A continuous group key-agreement scheme is a tuple of algorithms CGKA = (kg,
create, join, add, rem, upd, commit, proc, key) with the following syntax. To sim-
plify notation, we assume that all algorithms implicitly know ID of the party
running them.

– Group Creation: γ ← create() takes no input and returns a fresh protocol
state for a group containing only the user party running the algorithm. In
particular, this represents the first epoch of a new session.10

– Key Generation: (pk, sk) ← kg() samples a fresh public/secret key pair
(which will be sent to the PKI).

– Add Proposal: (γ′, p)← add(γ, idt, pkt) proposes adding a new member to
the group. On input a protocol state, identity of the new member and his
public key (generated by kg), it outputs an updated state and add proposal
message.

10 To create a group, a party adds the other members using individual add proposals.
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– Remove Proposal: (γ′, p)← rem(γ, idt) proposes removing a member from
the group. On input a protocol state and identity, it outputs an updated state
and remove proposal message.

– Update Proposal: (γ′, p) ← upd(γ) proposes updating the member’s key
material. It outputs an updated state and an update proposal message.

– Join A Group: (γ′, roster, idi)← join(sk, w) allows a party with secret key
sk (generated by kg) to join a group with a welcome message w. The outputs
are: an updated protocol state, a group roster (i.e. a set of IDs listing the
group members), and the ID of the inviter (i.e. the party that created the
welcome message).

– Commit: (γ, c, w)← commit(γ, ~p) applies (a.k.a. commits) a vector of pro-
posals to a group. The output consists of an updated protocol state, commit
message and a (potentially empty) welcome message (depending on if any
add proposal messages where included in ~p).11

– Process: (γ′, info) ← proc(γ, c, ~p) processes an incoming commit message
and the corresponding proposals to output a commit info message info and
an updated group state which represents a new epoch in the ongoing CGKA
session. The commit info message captures the semantics of the processed
commit and it has the form:

info = (id, (propSem1, . . . , propSemz))

where id is the ID sender of the commit message the vector conveys the
semantics of the committed add and remove proposals via triples of the
form propSem = (ids, op, idt). Here, ids denotes the identity of the proposal’s
sender, op ∈ {"addP", "remP"} is the proposal’s type and idt is the identity
of the proposal’s target (i.e. the partying being added or removed).

– Get Group Key: (γ′,K) ← key(γ) outputs the current group key for use
by a higher-level application, and deletes it from the state.

3 UC Security of CGKA

This section outlines the basic UC security statements of CGKA schemes we
use throughout the remaining part of this work. The concrete functionalities
Fcgka-auth and Fcgka, formalizing the guarantees in the passive and active set-
ting, are then introduced in Sections 4 and 5, respectively.

The CGKA Functionalities. This paper captures security of CGKA schemes by
comparing the UC protocol based on CGKA to an ideal functionality. Recall
that we model the functionalities as idealized “CGKA services”. For example,
when a party wishes to commit proposals, it has to input (an idealized version
of) those proposals ~p to the functionality. The functionality then outputs an
idealized control message c (and potentially a welcome message w), chosen by

11 For simplicity, we do assume a global welcome message sent to all joining parties,
rather than individual ones (which could result in lower overall communication).
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the simulator. The functionality does not concern itself with the delivery of
control messages c; this must be accomplished by a higher-level protocol.

Our functionalities encode the following basic assumptions: (1) Only group
members allowed to create proposals and commit to sequences thereof. (2) We
require that every proposal individually makes sense, i.e., a party is only allowed
to propose to remove or add a party that is currently in, respectively not in
the group. When committing to a sequence of proposals where some are no
longer applicable (e.g., due to first including a removal proposal and then one
that updates the same party) the offending one is ignored (here the update).
More restrictive policies can of course be enforced by the higher-level application
making use of the CGKA functionality.

Finally, to simplify definitions, the functionality identify epochs by the con-
trol messages c creating them.

PKI. CGKA protocols rely on a service that distributes so-called key bundles
used to add new members to the group. (Using the syntax of Section 2, a key
bundle is the public key output by kg.) In order not to distract from the main
results, this work uses a simplified PKI service that generates one key pair for
each identity, making the public keys available to all users. This guarantees to
the user proposing to add someone to the group that the new member’s key is
available, authentic, and honestly generated.

Our PKI is defined by the functionality Fpki, and our CGKA protocols are
analyzed in the Fpki-hybrid model. Concretely, Fpki securely stores key bundle
secret keys until fetched by their owner. For a formal description of Fpki is
presented in the full version [5]. We there also discuss the rationale of our PKI
model and how it relates to how comparable PKI are thought of in practice.

CGKA as a UC Protocol. In order to assess the security of CGKA scheme
as defined in Section 2 relative to an ideal functionality, the CGKA scheme is
translated into a CGKA protocol where a user id accepts the following inputs:

– Create: If the party is the designated group creator,12 then the protocol
initializes γ using create().

– (Propose, act), act ∈ {up, add-idt, rem-idt}: If id is not part of the group, the
protocol simply returns ⊥. Otherwise, it invokes the corresponding algorithm
add, rem, or upd using the currently stored state γ. For add, it first fetches
pkt for idt from Fpki. The protocol then outputs p to the environment, and
stores the updated state γ′ (deleting the old one).

– (Join, w): If id is already in the group, the protocol returns ⊥. Otherwise,
it fetches sk and fresh randomness r from Fpki, invokes join(sk, w; r), stores
γ, and outputs the remaining results (or an error ⊥).

– (Commit, ~p) and (Process, c, ~p) and Key: If id is not part of the group, the
protocol returns ⊥. Otherwise, it invokes the corresponding algorithm using
the current γ, stores γ′, and outputs the remaining results (or ⊥) to the
environment.

12 Formally, the creator is encoded as part of the SID; upon calling Create, a party
checks whether it is the designated one, and otherwise just ignores the invocation.
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Modeling Corruptions. We start with the (non-standard for UC but common for
messaging) corruption model with both continuous state leakage (in UC terms,
transient passive corruptions) and adversarially chosen randomness (this resem-
bles the semi-malicious model of [6]). Roughly, we model this in UC as follows.
The adversary repeatedly corrupts parties by sending them two types of corrup-
tion messages: (1) a message Expose causes the party to send its entire state to
the adversary (once), (2) a message (CorrRand, b) sets the party’s rand-corrupted
flag to b. If this flag is set, the party’s randomness-sampling algorithm is replaced
by asking the adversary to choose the random values. Ideal functionalities are
activated upon corruptions and can adjust their behavior accordingly. We give
a formal description of the corruption model in the full version [5].

Restricted Environments. Recall that in the passive setting we assume that the
adversary does not inject messages, which corresponds to authenticated network.
However, with the above modeling, one obviously cannot assume authenticated
channels. Instead, we consider a weakened variant of UC security, where state-
ments quantify over a restricted class of admissible environments, e.g. those that
only deliver control messages outputted by the CGKA functionality, and pro-
vide no guarantees otherwise. Whether an environment is admissible or not is
defined by the ideal functionality F. Concretely, the pseudo-code description of
F can contain statements of the form req cond and an environment is called
admissible (for F), if it has negligible probability of violating any such cond
when interacting with F. See the full version [5] for a formal definition.

Apart from modeling authenticated channels, we also use this mechanism to
avoid the so-called commitment problem (there, we restrict the environment not
to corrupt parties at certain times, roughly corresponding to “trivial wins” in
the game-based language). We always define two versions of our functionalities,
with and without this restriction.

4 Security of CGKA in the Passive Setting

The history graph. CGKA functionalities keep track of group evolution using
so-called history graphs (cf. Fig. 1), a formalism introduced in [3]. The nodes in
a history graph correspond either to group creation, to commits, or to proposals.
Nodes of the first two categories correspond to particular group states and form
a tree. The root of the tree is a (in fact, the only) group-creation node, and
each commit node is a child of the node corresponding to the group state from
which it was created. Similarly, proposal nodes point to the commit node that
corresponds to the group state from which they created.

Any commit node is created from a (ordered) subset of the proposals of the
parent node; which subset is chosen is up to the party creating the commit.
Observe that it is possible for commit nodes to “fork,” which happens when
parties simultaneously create commits from the same node.

For each party, the functionality also maintains a pointer Ptr[id] indicating
the current group state of the party. This pointer has two special states: before
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A-com

Ptr[A]

B-up

A-add-C

A-up

B-com

Ptr[B]

A-com

Fig. 1: A graphical representation of a history graph with three commit nodes
(circles) and proposal nodes (rectangles), respectively.

joining the pointer is set to fresh and after leaving the group to removed. Note
that a party’s pointer does not move upon creation of a new commit node.
Rather, the pointer is only moved once the corresponding control message is
input by the party. This models, e.g., the existence of a delivery service that
resolves forks by choosing between control messages that correspond to nodes
with the same parent.13

CGKA functionalities identify commit resp. proposal nodes by the corre-
sponding (unique) control messages c resp. proposal messages p (chosen by the
simulator). The arrays Node[·] resp. Prop[·] map control messages c resp. proposal
messages p to commit resp. proposal nodes. Moreover, for a welcome message
w, array Wel[w] stores the commit node to which joining the group via w leads.
Nodes in the history graph store the following values:

– orig: the party whose action created the node

– par: the parent commit node

– stat ∈ {good, bad}: a status flag indicating whether secret information cor-
responding to the node is known to the adversary (e.g., by having corrupted
its creator or the creator having used bad randomness).

Proposal nodes further store the following value:

– lbl ∈ {up, add-id′, rem-id′}: the proposed action

Commit nodes further store the following values:

– pro: the ordered list of committed proposals,

– mem: the group members,

– key: the group key,

– chall: a flag set to true if a random group key has been generated for this
node, and to false if the key was set by the adversary (or not generated);

– exp: a set keeping track of parties corrupted in this node, including whether
only their secret state used to process the next commit message or also the
key leaked.

13 Note, however, that such behavior is not imposed by the functionality; it is entirely
possible that group members follow different paths.
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The CGKA functionality Fcgka-auth. The remainder of this section introduces
and explains functionality Fcgka-auth, which deals with passive network adver-
saries, i.e., adversaries who do not create their own control messages (nor pro-
posals) and who deliver them in the correct order. It is described in Fig. 2 with
some bookkeeping functions outsourced to Fig. 3.

Interaction with parties. The inputs with which uncorrupted parties interact
with Fcgka-auth are described first; the boxed content in Fig. 2 is related to
corruption and described later. Initially, the history graph is empty and the only
possible action is for a designated party idcreator to create a new group with itself
in it.

The input Propose allows parties to create new proposals. Fcgka-auth ensures
that only parties that are currently in the group can create proposals (line [a]).
Recall that the proposal identifier p is chosen by the simulator (line [b]) but
guaranteed to be unique (line [c]). The identifier is returned to the calling party.

Parties create new commits using the input Commit. As part of the input,
the calling party has to provide an ordered list of proposals to commit to. All
proposals have to be well-defined, belong to the party’s current commit node,
and are valid with respect to its member set (line [d]). Moreover, a party is not
allowed to commit to a proposal that removes the party from the group (line [e]).
Once more, the simulator chooses the identifier c for the commit, and, if a new
party is added in one of the proposals, the attacker also choses the welcome
message w (line [b]). Both c and w must be unique (line [c]).

A current group member can move their pointer to a child node c of their
current state by calling (Process, c, ~p) (in case the proposals ~p in c removes the
group member, their pointer is set to ⊥ instead). The functionality ensures a
party always inputs the correct proposal array (line [d]). Moreover, it imposes
correctness: while the simulator is notified of the action (line [f]), the pointer
is moved to c and the helper get-output-process returns the proposals true
interpretations irrespective of the simulator’s actions.

A new member can join the group at node Wel[w] via (Join, w). The value
Wel[w] must exist and correspond to a commit node for which the calling party
is in the group (line [g]).

Finally, Key outputs the group key for the party’s current node. The keys
are selected via the function set-key(c), which either returns a random key or
lets the simulator pick the key if information about it has been leaked due to
corruption or the use of bad randomness (see below).

Corruptions and bad randomness. Generally, keys provided by Fcgka-auth are
always uniformly random and independent unless the information the adver-
sary has obtained via corruption would trivially allow to compute them (as a
consequence of protocol correctness). In order to stay on top of this issue, the
functionality must do some bookkeeping, which is used by the predicate safe to
determine whether a key would be known to the adversary.

First, when a party id is exposed via (Expose, id), the following from id’s
state that becomes available to the adversary:
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Functionality Fcgka-auth

The group creator idcreator is encoded as part of sid. The functionality is parameterized in:

– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, denoting whether it provides full adaptive security.

Initialization

Ptr[·]← fresh
Node[·],Prop[·],Wel[·]← ⊥
RndCor[·],RndPool[·]← good

HasKey[·]← false

Inputs from idcreator

Input Create

if Ptr[idcreator] 6= fresh then return ⊥
stat← rand-stat(idcreator)

Node[ε]← create-root(idcreator, stat )
HasKey[idcreator]← true

Ptr[idcreator]← ε

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
a: if Ptr[id] ∈ {fresh, removed} then return ⊥
b: Send (Propose, id, act) to the adversary and receive

p.
c: assert Prop[p] = ⊥

stat← good
if act = up then

stat← rand-stat(id)

Prop[p]← create-prop(Ptr[id], id, act, stat )
return p

Input (Commit, ~p)

a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req ∀p ∈ ~p : (Prop[p] 6= ⊥ ∧ valid-proposal(c, p))

mem←members(Ptr[id], ~p)
e: req id ∈ mem
b: Send (Commit, id, ~p) to the adversary and receive

(c, w).
c: assert Node[c] = ⊥

stat← rand-stat(id)

Node[c]← create-child(Ptr[id], id, ~p,mem, stat )
assert w 6= ⊥ iff (mem \ Node[Ptr[id]].mem) 6= ∅
if w 6= ⊥ then

c: assert Wel[w] = ⊥
Wel[w]← c

return (c, w)

Input Key

a: if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then
return ⊥

if Node[Ptr[id]].key = ⊥ then
set-key(Ptr[id])

HasKey[id]← false

return Node[Ptr[id]].key

Input (Process, c, ~p)

a: if Ptr[id] ∈ {fresh, removed} then return ⊥
d: req Node[c] 6= ⊥ ∧ Node[c].par = Ptr[id]

∧ Node[c].pro = ~p
f: Send (Process, id, c, ~p) to the adversary.

if ∃p ∈ ~p : Prop[p].act = rem-id then
Ptr[id]← removed

else
Ptr[id]← c

rand-stat(id)

HasKey[id]← true

return get-output-process(c)

Input (Join, w)

if Ptr[id] /∈ {fresh, removed} then return ⊥
c←Wel[w]

g: req c 6= ⊥ ∧ Node[c] 6= ⊥ ∧ id ∈ Node[c].mem
Send (Join, id, w) to the adversary

and receive ack .
if Ptr[id] = fresh ∨ ack then

Ptr[id]← c

rand-stat(id)

HasKey[id]← true

return get-output-join(c)
else

return ⊥

Corruptions

Input (Expose, id)

if Ptr[id] ∈ {fresh, removed} then
return

Node[Ptr[id]].exp← Node[Ptr[id]].exp
∪ {(id,HasKey[id])}

update-status-after-expose(id)
RndPool[id]← bad

if restrict-corruptions then
req ∀c, if Node[c].chall = true then safe(c)

else
Send to the adversary

{(c,Node[c].key) : ¬safe(c)}.

Input (CorrRand, id, b), b ∈ {good, bad}
RndCor[id]← b

Fig. 2: The ideal CGKA functionality for the passive setting. The behavior re-
lated to corruptions is marked in boxes. The helper functions are defined in
Fig. 3 and the optimal predicate safe used in this paper is defined in Fig. 4.
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Helper Functions

helper create-child(c, id, ~p,mem, stat)

return new node with par← c, orig← id, pro← ~p,
mem← mem, stat← stat.

helper create-root(id, stat)

return new node with par← ⊥, orig← id, pro← (),
mem← {id}, stat← stat.

helper create-prop(c, id, act, stat)

return new proposal with par← c, orig← id,
act← act, stat← stat.

helper members(c, ~p)

(G, ·)← apply-proposals(c, ~p)
return G

helper get-output-process(c)

(·, propSem)← apply-proposals(c,Node[c].pro)
return (Node[c].orig, propSem)

helper get-output-join(c)

return (Node[c].mem,Node[c].orig)

helper apply-proposals(c, ~p)

G← Node[c].mem; P ← ()
for p ∈ ~p do

if Prop[p].act = add-id′ ∧ id′ /∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G← G ∪ {id′}

else if Prop[p].act = rem-id′ ∧ id′ ∈ G then
P ← P ‖ (Prop[p].orig,Prop[p].act)
G← G \ {id′}

return (G,P )

helper valid-proposal(c, p)

return Prop[p].par = c ∧ Prop[p].orig ∈ Node[c].mem
∧ ¬(Prop[p].act = add-id′ ∧ id′ ∈ Node[c].mem)
∧ ¬(Prop[p].act = rem-id′ ∧ id′ /∈ Node[c].mem)

helper set-key(c)

if ¬safe(c) then
Send (Key, id) to the adversary and receive I.
Node[c].key← I
Node[c].chall← false

else
Node[c].key←$ I
Node[c].chall← true

helper rand-stat(id)

if RndPool[id] = good ∨ RndCor[id] = good then
RndPool[id]← good
return good

else
return bad

helper update-status-after-expose(id)

for each p s.t. Prop[p] 6= ⊥ and
(a) Prop[p].par = Ptr[id] and
(b) Prop[p].orig = id and
(c) Prop[p].act = up

do Prop[p].stat← bad
for each c s.t. Node[c] 6= ⊥ and

(a) Node[c].par = Ptr[id] and
(b) Node[c].orig = id

do Node[c].stat← bad

Fig. 3: The helper functions for the CGKA functionality, defined in Fig. 2. The
behavior related to corruptions is marked in boxes.

Predicate safe

helper safe(c)

return ¬∃id s.t. key-and-state-leaked(id, c)

helper key-and-state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, true) ∈ Node[c].exp or
(b) state-leaked(id,Node[c].par) ∧ ¬heals(id, c)

or
(c) Node[c].par = ⊥ or
(d) last p ∈ Node[c].pro s.t. Prop[p].act = add-id

and
(if there exists one) has Prop[p].stat = adv

helper state-leaked(id, c)

return true iff id ∈ Node[c].mem and either
(a) (id, false) ∈ Node[c].exp or
(b) key-and-state-leaked(id, c)

helper heals(id, c)

if Node[c].orig = id ∧ Node[c].stat = good then
return true

else Let p be the last element in Node[c].pro s.t.
Prop[p].orig = id ∧ Prop[p].act = up
(return false if no such p exists)
return Prop[p].stat = good

Fig. 4: The predicate safe, that determines if the key in a node c is secure. The
part in the box is only relevant in the active setting (Section 5).
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– Any key material id stored locally in order to process future control messages.
– The current group key, if id has not retrieved it yet via Key. The flag

HasKey[id] indicates if id currently holds the key.
– The key material for update proposals and commits that id has created from

its current epoch (but not processed yet).

The functionality records this symbolically as follows: the pair (id,HasKey[id])
is added to the “corrupted set” exp of id’s current node. To address the third
point, the helper function update-status-after-expose(id) sets the status of
all child nodes (update proposals and commits) created by id to stat = bad, i.e.,
they are marked as no longer healing the party.

The second avenue for the attacker to obtain information about group keys is
when the parties use bad randomness. Note that this work assumes that CGKA
schemes use their own randomness pool, which is refreshed with randomness
from the underlying operating system (OS) before every use. This guarantees
that a party uses good randomness whenever (1) the OS supplies random values
or (2) the pool is currently random (from the attacker’s perspective).

In Fcgka-auth, the flag RndCor[id] records for each party id whether id’s OS
currently supplies good randomness; the flag can be changed by the adversary
at will via CorrRand. Moreover, for each party id, the functionality stores the
status of its randomness pool in RndPool[id]. Whenever id executes a randomized
action, the functionality checks whether id uses good randomness by calling
rand-stat(id) and stores the result as the stat flag of the created history graph
node. As a side effect, rand-stat(id) updates the pool status to good if good
fresh OS randomness is used.

The safety predicate. The predicate safe(c) is defined as follows: The key cor-
responding to c is secure if and only if it has not been exposed via one of
the parties. This can happen in two situations: either if the party’s state has
been exposed in this particular state c while the party still stored the key
((id, true) ∈ Node[c].exp), or its previous state (not necessary with the key)
is known to the adversary and c did not heal the party. This can also be in-
terpreted as a reachability condition: the key is exposed if the party has been
corrupted in any ancestor of c and there is no “healing” commit in between.

The commit c is said to be healing, iff it contains an update by id with good
randomness or id is the committer and used good randomness. Observe that
this is optimal as those are the only operations, that by definition of a CGKA
scheme, are supposed to affect the party’s own key material.

Adaptive corruptions. Exposing a party’s state may trigger some keys that
were already output as secure (i.e., random) now to become insecure. Unfor-
tunately, this is a stereotypical situation of the so-called commitment problem14

of simulation-based security. Hence, we define two variants of Fcgka-auth, which

14 Roughly, the simulator, having already outputted a commit message that “binds”
him to the group key, now has to produce a secret state, such that processing this
message results in the (random) key from the functionality.
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differ in the behavior upon exposure (see the part in the dashed box) — in the
weaker notion (restrict-corruptions = true), the environment is restricted
not to corrupt a party if it would cause a challenged key to become insecure,
while in the stronger notion the adversary is simply given all now insecure keys.

5 Security of CGKA in the Active Setting

This section introduces the functionality Fcgka, which deals with active network
adversaries, i.e., it allows the environment to input arbitrary messages. It is
defined in Fig. 5, and the differences from Fcgka-auth are marked in boxes.

On a high level, the main difficulty compared to the passive setting is that
Fcgka has to account for inherent injections of valid control messages, where the
adversary uses leaked states of parties. To this end, Fcgka marks history graph
nodes created by the adversary via injections by a special status flag stat = adv.
It maintains the following history graph invariant, formally defined in Fig. 7:

1. Adversarially created nodes only occur if inherent, that is, their (claimed)
creator’s state must have leaked in the parent node. (We explain the special
case of creating orphan nodes later.)

2. The history graph is consistent.

The invariant is checked at the end of every action potentially violating it
(cf. lines [g]). We now describe the changes and additional checks in more detail.

Injected proposals and commits. First, consider the case where a party calls com-
mit with an injected proposal p (i.e., Prop[p] = ⊥). In such case, the simulator
is allowed to reject the input (if it is invalid) by sending ack = false. Other-
wise, Fcgka asks the simulator to interpret the missing proposals by providing
properties (action etc.) for new proposal nodes (line [d]) and marks them as
adversarial by setting their status to adv. (Those interpretations must be valid
with respect to the corresponding actions, cf. line [e], as otherwise the simulator
must reject the input.) The behavior of Fcgka in case a party calls process with
an injected commit or proposal message is analogous, except that the simulator
also interprets the commit message, creating a new commit node (line [h]).

While in the authentic-network setting we could enforce that each honest
propose and commit call results in a unique proposal or commit message, this
is no longer the case when taking injections into account. For example, add
proposals are deterministic, so if the adversary uses a leaked state to deliver an
add proposal p, then the next add proposal computed by the party is p as well.
The same can happen with randomized actions where the adversary controls
the randomness. Accordingly, we modify the behavior of Fcgka on propose and
commit inputs and allow outputting messages corresponding to existing nodes,
as long as this is consistent. That is, in addition to the invariant, Fcgka at this
point also needs to enforce that the values stored as part of the preexisting node
correspond to the intended action, and that this does not happen for randomized
actions with fresh randomness (see lines [a]). If all those checks succeed, the node
is treated as non-adversarial and we adjust its status accordingly (see lines [b]).
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Functionality Fcgka

The functionality expects as part of the instance’s session identifier sid the group creator’s
identity idcreator. It is parameterized in:

– the predicate safe, specifying which keys are leaked via corruptions
– the flag restrict-corruptions, indicating if it restricts the environment (avoiding the

commitment problem), or if it provides full adaptive security
– the flag robust, indicating that parties must be able to process “honest” messages.

Initialization and input Create from idcreator

This is the same as in Fcgka-auth in Fig. 2.

Inputs from a party id

Input (Propose, act), act ∈ {up, add-id′, rem-id′}
if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Propose, id, act) to the adversary; receive p.
stat← good
if act = up then

stat← rand-stat(id)
if Prop[p] = ⊥ then

Prop[p]← create-prop(Ptr[id], id, act, stat)
else

a: check-prop-consistency(p, id, act, stat)
b: Prop[p].stat← stat

return p

Input (Commit, ~p)

if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Commit, id, ~p) to the adversary

and receive ( ack , c, w).

c: if valid-comm-by-correctness(id, ~p) ∨ ack then
d: fill-proposals(id, ~p)
e: ∀p ∈ ~p : assert valid-proposal(Ptr[id], p)

stat← rand-stat(id)
mem←members(Ptr[id], ~p)
assert id ∈ mem
if Node[c] = ⊥ then

Node[c]← create-child(Ptr[id], id, ~p,mem, stat)
else

a: check-comm-consistency(c, id, ~p, stat,mem)
Node[c].stat← stat

f: if Node[c].par = ⊥ then attach(c, id, ~p)

assert w 6= ⊥ iff (mem \ Node[Ptr[id]].mem) 6= ∅
if w 6= ⊥ then

assert Wel[w] ∈ {⊥, c}
Wel[w]← c

g: assert invariant
return (c, w)

else return ⊥

Input Key

if Ptr[id] ∈ {fresh, removed} ∨ ¬HasKey[id] then
return ⊥

if Node[Ptr[id]].key = ⊥ then
set-key(Ptr[id])

HasKey[id]← false

return Node[Ptr[id]].key

Input (Process, c, ~p)

if Ptr[id] ∈ {fresh, removed} then return ⊥
Send (Process, id, c, ~p) to the adversary

and receive (ack , orig′).

c: if valid-proc-by-correctness(id, c, ~p)∨ack then

d: fill-proposals(id, ~p)
e: ∀p ∈ ~p : assert valid-proposal(Ptr[id], p)

mem←members(Ptr[id], ~p)

if Node[c] = ⊥ then
h: Node[c]← create-child(

Ptr[id], orig′, ~p,mem, adv)
else

i: check-valid-successor(c, id, ~p,mem)
f: if Node[c].par = ⊥ then attach(c, id, ~p)

if ∃p ∈ ~p : Prop[p].act = rem-id then
Ptr[id]← removed

else
Ptr[id]← c
rand-stat(id)
HasKey[id]← true

g: assert invariant
return get-output-process(c)

else return ⊥

Input (Join, w)

if Ptr[id] 6= {fresh, removed} then return ⊥
Send (Join, id, w) to the adversary

and receive (ack , c′, orig′,mem′).

c: if valid-join-by-correctness(id, w) ∨ ack then

c←Wel[w]

if c = ⊥ then
c← c′

j: Wel[w]← c
if Node[c] = ⊥ then

k: Node[c]← create-child(⊥, orig′,⊥,mem′, adv)

Ptr[id]← c
rand-stat(id)
HasKey[id]← true

g: assert invariant
return get-output-join(c)

else return ⊥

Corruptions

This is the same as in Fcgka-auth in Fig. 2.

Fig. 5: The ideal CGKA functionality for the active setting. The behavior related
to injections is marked in boxes. The corresponding helper functions are defined
in Figs. 3 and 6, the invariant in Fig. 7, and the optimal predicate safe in Fig. 4.
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Helper Functions

helper fill-proposals(id, ~p)

for p ∈ ~p s.t. Prop[p] = ⊥ do
Send (Proposal, p) to the adversary

and receive (orig, act).
Prop[p]← create-prop(Ptr[id], orig, act, adv)

helper check-prop-consistency(p, id, act, stat)

// Preexisting p valid for id proposing act?
assert Prop[p].orig = id ∧ Prop[p].act = act

∧ Prop[p].par = Ptr[id] ∧ Prop[p].stat = adv
if act = up then

assert stat 6= good

helper check-comm-consistency(c, id, ~p, stat,mem)

// Preexisting c valid for id committing ~p?
check-valid-successor(c, id, ~p,mem)
assert stat 6= good ∧ Node[c].stat = adv

∧ Node[c].orig = id

helper check-valid-successor(c, id, ~p,mem)

// Preexisting node valid for id processing (c, ~p)?
assert Node[c].mem = mem ∧ Node[c].pro ∈ {⊥, ~p}

∧ Node[c].par ∈ {⊥,Ptr[id]}

helper attach(c, id, ~p)

// Attach (detached) node c as successor of id’s current
node with proposals ~p

Node[c].par← Ptr[id]; Node[c].pro← ~p

helper valid-comm-by-correctness(id, ~p)

// Does correctness enforce the commit-call to succeed?
return ∀p ∈ ~p : Prop[p] 6= ⊥ ∧ valid-proposal(Ptr[id], p)

∧ id ∈members(Ptr[id], ~p)

helper valid-proc-by-correctness(id, c, ~p)

// Does correctness enforce the process-call to succeed?
if Node[c] = ⊥ ∨ Node[c].par 6= Ptr[id] ∨ Node[c].pro 6= ~p
then return false

else if robust then
return ¬(Node[c].orig = id ∧ Node[c].stat = adv)

∧ ¬
(
last p ∈ ~p s.t. Prop[p].orig = id∧

Prop[p].act = up exists and has Prop[p].stat = adv
)

else
return Node[c].stat 6= adv ∧ ∀p ∈ ~p : Prop[p].stat 6= adv

helper valid-join-by-correctness(id, w)

// Does correctness enforce the join-call to succeed?
c←Wel[w]
return robust ∧ Ptr[id] = fresh ∧ c 6= ⊥ ∧ Node[c] 6= ⊥

∧ Node[c].stat 6= adv
∧ id ∈ (Node[c].mem \ Node[c].par.mem)

Fig. 6: The additional helper functions for Fcgka, defined in Fig. 5.

Injected welcome messages. If a party calls join with an injected welcome mes-
sage, we again ask the simulator to interpret the injected welcome message by
providing the corresponding commit message c (line [j]), which can either refer
to an existing node or a new one the simulator is allowed to set the correspond-
ing values for (line [k]). The main difficulty compared to injected proposals and
commits, however, is that sometimes this node’s position in the history graph
cannot be determined. For example, consider an adversary who welcomes a party
id to a node at the end of a path that he created in his head, by advancing the
protocol a number of steps from a leaked state. Unless welcome messages contain
the whole conversation history (and not just e.g. a constant size transcript hash
thereof), it is impossible for any efficient simulator to determine the path.

As a result, Fcgka deals with an injected welcome message w as follows: if the
commit node to which w leads does not exist (c is provided by the simulator),
then a new detached node is created, with all values (except parent and propos-
als) determined by the simulator. The new member can call propose, commit and
process from this detached node as from any other node, creating an alternative
history graph rooted at the detached node. Moreover, new members can join the
alternative graph. The node, together with its alternative subtree, can be at-
tached to the main tree when the commit message c is generated or successfully
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Predicate invariant

Return true if all of the following are true:

– adversarial nodes created only by corrupted parties:
• ∀c, if Node[c].stat = adv then state-leaked(Node[c].par,Node[c].orig)

or Node[c].par = ⊥
• ∀p, if Prop[p].stat = adv then state-leaked(Prop[p].par,Prop[p].orig)

– the history graph’s state is consistent: ∀c s.t. Node[c].par 6= ⊥:
• Node[c].pro 6= ⊥ and ∀p ∈ Node[c].pro Prop[p].par = Node[c].par
• Node[c].mem = members(Node[c].par,Node[c].pro)

– pointers consistent: ∀id s.t. Ptr[id] /∈ {fresh, removed} : id ∈ Node[Ptr[id]].mem
– the graph contains no cycles

Fig. 7: The graph invariant. The predicate state-leaked is defined as part of the
predicate safe in Fig. 4.

processed by a party from the main tree. The function check-valid-successor,
invoked during commit and process (lines [i,a]) verifies if attaching is allowed.

Security. So far we have explained how the CGKA functionality maintains a
consistent history graph, even when allowing (inherent) injections. It remains to
consider how such adversarially generated nodes affect the secrecy of group keys.
First, obviously an adversarial commit or update does not heal the corresponding
party. Note that heals from the safe predicate (cf. Fig. 4) already handles this
by checking for stat = good. Second, for adversarial add proposals we have to
assume that the contained public-key was chosen such that the adversary knows
the corresponding secret key, implying that the adversary can read its welcome
message. Hence, both secret state of the added party and the new group key are
considered exposed (see the part (d) in Fig. 4 marked with a box ).

Finally, consider a detached node created by an injected welcome message.
Recall that new members join using a welcome message, containing all the rel-
evant information about the group. Since our model does not include any long-
term PKI, this welcome message is the only information about the group avail-
able to them and we cannot hope for a protocol that detects injected welcome
messages. Moreover, we don’t know where in the history graph a detached node
belongs, and in particular whether it is a descendant of a node where another
party is exposed or not. This means that we cannot guarantee secrecy for keys
in detached nodes or their children (the part (c) of in Fig. 4 marked with a

box ). Still, we can at least express that this does not affect the guarantees of
existing group members, and can start considering the subtree’s security once it
is attached to the main tree (e.g. by a party from the main tree moving there).

Robustness. Finally, we consider robustness, i.e., correctness guarantees with
respect to honestly generated ciphertext when parties might have processed ad-
versarially generated ones beforehand. We define two variants of Fcgka, differing
in the level of robustness. Intuitively, the stronger variant (robust = true)
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requires that honestly generated ciphertexts can always be processed by the in-
tended recipients, while in the weaker variant (robust = false) the adversary
can inject ciphertexts resulting parties to reject subsequent honest ones.

6 Construction for the Passive Setting

We now introduce the protocol P-Pas for the authenticated setting. A formal de-
scription can be found in the full version [5]. The protocol P-Pas is a modification
of the TTKEM protocol [2] when executed in a propose-and-commit manner. We
thus first briefly describe TTKEM and its vulnerability to cross-group attacks.

6.1 TTKEM

The (distributed) group state consists primarily of a labeled left-balanced binary
tree (LT) τ , where each group member is assigned one of the leafs. All nodes
(except the root that stores the group key) have labels epk and esk, denoting
the public and secret key of a PKE scheme, respectively. The public key and the
overall structure of the tree is considered public information, whereas the secret
keys are only known by the members whose leaf is in the corresponding sub-tree.

Proposals represent suggestions for modifying the current LT. More con-
cretely, a Remove proposal deletes all the labels of the specified member’s leaf,
an Add proposal adds a new leaf assigned to the new member idt where epk is
fetched from the PKI, and an Update proposal suggests replacing esk and epk in
a member’s leaf by a fresh pair, with the public key specified in the proposal.

The proposals are applied upon creating or processing a commit message, to
derive the new state of the tree. When applying the proposals, some of the keys
stored at intermediate leafs can no longer be used: to achieve PCS in case of
updatesa party all nodes (potentially) known to that party, and analogously for
removals. Moreover, for freshly added parties it cannot be assumed that they
know the keys on their direct path (to the root). TreeKEM deals with those
issues by blanking all those nodes. TTKEM, on the other hand, simply lets the
committer choose fresh keys for all those nodes and marks them as tainted (i.e.,
sampled) by the committer via an additional public taintedby label. In particular,
those keys now in turn must be assumed to be known to that party15, and thus
when committing one of his updates, also needs to be replaced in turn.

The commit message must allows all other group members to compute their
respective views of the new LT, i.e., to learn all new public keys but also all
replaced secret keys on their direct path. To simplify this, the commit algorithm
generates the keys by first partitioning the to be re-keyed nodes into a number of
path segments from a start node u to one of its ancestors v. Each of this segment
is then re-keyed by “hashing up the path”. Namely, it chooses a random secret
s and iterates over the nodes in (u v). At each step it derives a new key pair

15 While the party does not need to store any secret keys off his direct path, they might
still have leaked to the adversary e.g. when using adversarially chosen randomness.
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for the node using random coins H2(s) and updates the secret for use with the
next node on the path by setting s← H1(s).

Hence, each user only needs to learn one ciphertext for each segment: the
seed for where the path first meets the user’s direct path. Thus, the protocol
simply encrypts each fresh key it to all its children’s secrets that are not replaced
as well. Care has to be taken where two different segments meet, i.e., where a
one’s segment’s node is the parent of another segment’s node. There, we still
have to encrypt the node to the child, yet ensure that the child node’s new key
is used (for PCS). This can be done by processing the segments from “lower” to
“higher”, according to the depth of their end point.

Most users then process the above commit message in the obvious way. The
only exception is the committer himself, which for PCS cannot decrypt the
commit using any of his state. He can, however, simply stores the new ratchet
tree at the time of creating it.

A welcome message prepared by the committer contains the public part of the
(new) LT τ ′. Additionally, for each freshly added member, the welcome message
contains the secret labels of all nodes on the new member’s direct path (except
the leaf) encrypted under a second public key epk′ stored as part of the add
proposal. (An add proposal in TTKEM contains two public keys epk and epk′.)

Cross-Group Attacks. The TTKEM protocol is vulnerable against so-called
cross-group attacks. Intuitively, those attacks are possible against protocols where
commits affect only part of the group state. Consider the following example:

1. Create a group with A,B and C. Move all parties to the same node Node[c0].
2. Make A send a commit c1 and B send a commit c2, neither containing an

update for C.
3. Move C to Node[c1], and A and B to Node[c2].
4. Expose C’s secret state.

In an optimally secure protocol, the two sub-groups should evolve independently,
without the exposure of C in the one branch affecting the security of the other
branch. In case of TTKEM, however, the group states in epochs c0, c1 and c2 all
share the same key pair for C’s leaf. Moreover, if C is added last, then his node
in the tree will be the direct right child of the root. Thus, when generating c1
and c2, both A and B encrypt the new root secret under C’s leaf public key. 16

Hence, the adversary can derive the group key of Node[c2] by using C’s leaked
secret key to decrypt the corresponding ciphertext in c2.

We note that this cannot be easily fixed by just mixing the old group key
into the new one. For this, we modify the above attack and corrupt B after Step
1. This leaks the old group key. Still, by PCS the key in c2 should be secure.

6.2 The Protocol P-Pas

To avoid cross-group attacks, we modify TTKEM so that a commit evolves all
key pairs in the LT. For this, we first replace the standard encryption scheme

16 This attack can be easily extended to C’s leaf not being a direct child of the root.
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by HIBE. That is, each node, instead of labels epk and esk, has two public mpk
and ~id, as well as one private label hsk. In the order listed, these labels contain
a (master) HIBE public key, and a HIBE identity vector and the corresponding

HIBE secret key for identity ~id. Encryption for a node is done with mpk and ~id.
Whenever a new key pair is created for an internal node (e.g. during rekeying),

the node’s ~id is initialized to the empty string. For leaf nodes, the first ID in the
vector ~id is set to the ID of the user assigned to that leaf.

Second, we can now evolve all keys with every commit: For nodes whose keys
does not get replaced with the commit, we simply append the the hash of the
commit message H3(c) to the HIBE ID vectors, and update all secret keys on
the processor’s direct path accordingly.

Intuitively, this provides forward secrecy for individual HIBE keys in the LT.
First, HIBE schemes ensure that secret keys for an ID vector can not be used
to derive secrets for prefixes of that ID vector. So, the HIBE key of a node can
not be used to derive its keys from previous epochs. Second, this guarantees in
the event the group is split into parallel epochs (by delivering different commit
messages to different group members) that the keys of a node in one epoch can
not be used to derive the keys for that node in any parallel epochs. That is
because, more generally, HIBE schemes ensure that secret keys for an ID vector
~id can not be used to derive keys for any other ID vector ~id

′
unless ~id is a prefix

of ~id
′
. But as soon as parallel epochs are created, the resulting ID vectors of any

given node in both LTs have different commit messages in them at the same
coordinate ensuring that no such vector is a prefix of another.

We prove two statements about P-Pas. First, if the hash functions are mod-
eled as non-programmable random oracles, then the protocol realizes the relaxed
functionality that restricts the environment not to perform certain corruptions.
Second, for programmable random oracles it achieves full UC security. Formally,
we obtain the following theorems, proven in the full version [5].

Theorem 1. Assuming that HIBE and PKE are IND-CPA secure, the protocol
P-Pas realizes Fcgka-auth with restrict-corruptions = true in the (Fpki, GRO)-
hybrid model, where GRO denotes the global random oracle, calls to hash functions
Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced
by calls to GRO with prefix PRG.

Theorem 2. Assuming that HIBE and PKE are IND-CPA secure, the proto-
colP-Pas realizes Fcgka-auth with restrict-corruptions = false in the (Fpki,
FRO)-hybrid model, where FRO denotes the (local) random oracle, calls to hash
functions Hi are replaced by calls to GRO with prefix Hi and calls to PRG.eval
are replaced by calls to GRO with prefix PRG.

7 Constructions for the Active Setting

This section explains how to gradually enhance our protocol with passive security
from Section 6 to deal with active network adversaries.
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7.1 Basic Modifications of the Passive Protocol

Authentication. The goal of the first modification is to prevent injections when-
ever they are not inherent given correctness, i.e., the adversary should be able
to make some party accept a message as coming from id in epoch c only if id’s
state in c is exposed (in the sense of the safe predicate). We achieve this using
key-updatable signatures (KUS) [21], a signature analogon of HIBE, where ver-
ification additionally takes an identity vector and signing keys can be updated
to lower-level ones, for longer identity vectors.

To this end, we modify the group state with each leaf in the LT getting two
additional labels: a KUS verification key spk and a corresponding signing key ssk
for the leafs identity vector ~id (the same one as for HIBE). The leaf’s KUS keys
live alongside its HIBE keys: each update and commit of the user id assigned
to the leaf contains a fresh spk, and whenever id processes a commit message c,
he updates ssk using the identity c. All messages sent by id are signed with his
current signing key and verified by receiving parties respectively. Accordingly,
the PKI key generation outputs an additional KUS key pair for the new member.

Binding control messages to epochs. The actively secure protocols have to ensure
that control messages are not used of context, e.g., trying to process a commit
message that does not originate from the current state, or using a proposal be-
longing to a different epoch in a commit message. This is achieved by each control
message (commit or proposal) contains an epoch id epid, which is simply a hash
of the last commit message, and additionally each commit message containing a
hash of the list of committed proposals.

Proposal validation. For active security, the commit and proc algorithms have to
check that all proposals being committed to were created by a current member
of the group, that add- and remove-proposals only add and remove parties that
are currently not yet in the group, respectively already in the group, and that
the proposals don’t remove the party executing commit from the group (as this
party chooses the next group key).

Validating the public state in welcome messages. Recall that Fcgka allows the
environment to inject a welcome message, making a party join a detached node.
If afterwards the environment makes a different party process the corresponding
commit message, the node is attached to its parent. Fcgka requires that in such
case the joining and the processing party end up in a consistent state (e.g. they
agree on the member set). Our protocol guarantees this by 1) including in a
commit message a hash H5(τpub), where τpub is the public part of the LT in the
new epoch, and 2) including the whole commit c in the welcome message.

If after processing a commit c the resulting LT doesn’t match the hash, the
protocol returns ⊥. The joining party verifies that τpub in the welcome message
matches the hash in the commit c and computes epid as hash of c.17

17 Recall that the functionality identifies epochs by c, so in order for the simulator to
determine the epoch for injected welcome messages, it has to contain the whole c.
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7.2 The Non-Robust Protocol

Well-formedness via hashing. The next goal is to prevent the adversary from
successfully injecting (using leaked states) malformed control messages. This is
not a problem for our proposal messages, since they only contain public infor-
mation, which can be easily verified.18 However, commit and welcome messages
both contain a number of ciphertexts of (supposedly) related data, only part of
which can be decrypted by a given party. The following simple solution to this
problem provides security, but not robustness.

Consider first commit messages, which contain a number of public keys and
a number of ciphertexts, used by a party to derive his slice of corresponding
secret keys and the new group key. While validity of derived secret keys can be
verified against the public keys, this is not the case for the group key. Hence, we
add to the message an analogue of a public-key for the group key — we use hash
functions H6 and H7 and whenever a party is ready to send a commit c creating
an LT τ , it attaches to c a confirmation key H6(c, τ.grpkey) (recall that grpkey is
the label in the root of τ) with which grpkey can be validated. The actual group
key for the new epoch is then defined to be H7(τ.grpkey).

Second, a welcome message contains the public part of the LT τpub, encryp-
tion of the new member’s slice of the secret part and the commit message c.
The join algorithm performs the same checks as proc: it verifies the decrypted
secret keys against the public keys in τpub and the decrypted τ.grpkey against
the confirmation key in c.

Putting it all together. Combining the above techniques results in our first pro-
tocol, P-Act. In particular, a commit in P-Act is computed as follows: (1) Gen-
erate the message c as in the protocol with passive security (taking into account
the additional KUS labels). (2) Add the hash of the public state and epoch
id: c ← (c, epid,H5(τpub)). (3) Compute the confirmation key as conf-key =
H6(c, τ.grpkey). (4) Output (c, conf-key), signed with the current KUS secret
key. (We note that we use KUS with unique signatures).

Security. We note that the confirmation key has in fact two functions. Apart
from guaranteeing that parties end up with the same group keys, in the random
oracle model, it also constitutes a proof of knowledge of the group key with
respect to the commit message. This prevents the adversary from copying parts
of commits sent by honest parties, where he does not know the secrets, into
his injected commits (he cannot copy the honest committer’s confirmation key,
because the control message c no longer matches).

As in the case of protocols with passive security, we prove two statements: if
the hash functions are modeled as non-programmable random oracles, then we
achieve security with respect to a restricted class of environments, while if the
random oracles are programmable, we achieve full UC security. Both theorems
are proven in the full version [5].

18 Note that the validity of the public-key contained in add-proposals cannot be verified
as our model does not consider an identity PKI.
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Theorem 3. Assuming that HIBE and PKE are IND-CCA secure, and KUS is
EUF-CMA secure the non-robust protocol P-Act realizes Fcgka with robust =
false and restrict-corruptions = true in the (Fpki, GRO)-hybrid model, where
GRO denotes the global random oracle, calls to hash functions Hi are replaced by
calls to GRO with prefix Hi and calls to PRG.eval are replaced by calls to GRO

with prefix PRG.

Theorem 4. Assuming that HIBE and PKE are IND-CCA secure, and KUS is
EUF-CMA secure the non-robust protocol P-Act realizes Fcgka with robust =
false and restrict-corruptions = true in the (Fpki, FRO)-hybrid model,
where FRO denotes the (local) random oracle, calls to hash functions Hi are
replaced by calls to GRO with prefix Hi and calls to PRG.eval are replaced by calls
to GRO with prefix PRG.

7.3 The Robust Protocol using NIZKs

Unfortunately, the solution with the confirmation key not provide robustness,
since a party cannot verify all ciphertexts, and so it may accept a commit message
that will be rejected by another party. In order to provide robustness, we need
a mechanism that allows parties to verify well-formedness of all ciphertexts in
a commit message. For this, we replace the simple method of well-formedness
verification via hashing by a non-interactive zero-knowledge argument (NIZK).
In particular, in our robust protocol P-Act-Rob a commit message contains a
NIZK of knowledge of randomness r and secret state γ such that (1) running th
commit of P-Pas with r and γ results in the given message and (2) secret keys in
γ match the public keys in the receiver’s ratchet tree. Intuitively, this is secure
since P-Pas is already secure against adversarial randomness, and since r and γ
can be extracted from the NIZK of knowledge.

For lack of space, we leave details and the security proof to the full version [5].
The statement we prove is that P-Act-Rob realizes in the standard model a static
version of Fcgka, where, whenever an id commits, the environment must specify
if the key in the new node should be secure, in which case certain corruptions
are disabled, or not. The reason for using a different type of statement than for
other protocols is that P-Act-Rob uses a NIZK for a statement involving hash
evaluations. On the other hand, our proofs of adaptive security require modeling
the hash as a random oracle.
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