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Abstract. We present a reusable two-round multi-party computation
(MPC) protocol from the Decisional Diffie Hellman assumption (DDH).
In particular, we show how to upgrade any secure two-round MPC proto-
col to allow reusability of its first message across multiple computations,
using Homomorphic Secret Sharing (HSS) and pseudorandom functions
in NC1— each of which can be instantiated from DDH.

In our construction, if the underlying two-round MPC protocol is se-
cure against semi-honest adversaries (in the plain model) then so is our
reusable two-round MPC protocol. Similarly, if the underlying two-round
MPC protocol is secure against malicious adversaries (in the common
random/reference string model) then so is our reusable two-round MPC
protocol. Previously, such reusable two-round MPC protocols were only
known under assumptions on lattices.

At a technical level, we show how to upgrade any two-round MPC pro-
tocol to a first message succinct two-round MPC protocol, where the
first message of the protocol is generated independently of the computed
circuit (though it is not reusable). This step uses homomorphic secret
sharing (HSS) and low-depth pseudorandom functions. Next, we show
a generic transformation that upgrades any first message succinct two-
round MPC to allow for reusability of its first message.

1 Introduction

Motivating Scenario. Consider the following setting: a set of n hospitals pub-
lish encryptions of their sensitive patient information x1, . . . , xn. At a later stage,
for the purposes of medical research, they wish to securely evaluate a circuit C1

on their joint data by publishing just one additional message - that is, they wish
to jointly compute C1(x1, . . . , xn) by each broadcasting a single message, with-
out revealing anything more than the output of the computation. Can they do
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so? Furthermore, what if they want to additionally compute circuits C2,C3 . . .
at a later point on the same set of inputs?

Seminal results on secure multi-party computation (MPC) left quite a bit to
be desired when considering the above potential application. In particular, the
initial construction of secure multi-party computation by Goldreich, Micali and
Wigderson [GMW87] required parties to interact over a large number of rounds.
Even though the round complexity was soon reduced to a constant by Beaver,
Micali and Rogaway [BMR90], these protocols fall short of achieving the above
vision, where interaction is reduced to the absolute minimum.

Making progress towards this goal, Garg et al. [GGHR14] gave the first
constructions of two-round MPC protocols, assuming indistinguishability ob-
fuscation [GGH+13] (or, witness encryption [GLS15,GGSW13]) and one-way
functions.3 A very nice feature of the Garg et al. construction is that the first
round message is indeed reusable across multiple executions, thereby achieving
the above vision. Follow up works realized two-round MPC protocols based on
significantly weaker computational assumptions. In particular, two-round MPC
protocols based on LWE were obtained [MW16,BP16,PS16], followed by a pro-
tocol based on bilinear maps [GS17,BF01,Jou04]. Finally, this line of work cul-
minated with the recent works of Benmahouda and Lin [BL18] and Garg and
Srinivasan [GS18], who gave constructions based on the minimal assumption
that two-round oblivious transfer (OT) exists.

However, in these efforts targeting two-round MPC protocols with security
based on weaker computational assumptions, compromises were made in terms
of reusability. In particular, among the above mentioned results only the ob-
fuscation based protocol of Garg et al. [GGHR14] and the lattice based pro-
tocols [MW16,BP16,PS16] offer reusability of the first message across multi-
ple executions. Reusability of the first round message is quite desirable. In
fact, even in the two-party setting, this problem has received significant at-
tention and has been studied under the notion of non-interactive secure com-
putation [IKO+11,AMPR14,MR17,BJOV18,CDI+19]. In this setting, a receiver
first publishes an encryption of its input and later, any sender may send a single
message (based on an arbitrary circuit) allowing the receiver to learn the output
of the circuit on its input. The multiparty case, which we study in this work,
can be seen as a natural generalization of the problem of non-interactive secure
computation. In this work we ask:

Can we obtain reusable two-round MPC protocols from assumptions not based
on lattices?

1.1 Our Result

In this work, we answer the above question by presenting a general compiler
that obtains reusable two-round MPC, starting from any two-round MPC and

3 The Garg et al. paper required other assumptions. However, since then they have all
been shown to be implied by indistinguishability obfuscation and one-way functions.
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using homomorphic secret sharing (HSS) [BGI16] and pseudorandom functions
in NC1. In a bit more detail, our main theorem is:

Theorem 1 (Main Theorem). Let X ∈ {semi-honest in plain model, mali-
cious in common random/reference sting model}. Assuming the existence of a
two-round X -MPC protocol, an HSS scheme, and pseudorandom functions in
NC1, there exists a reusable two-round X -MPC protocol.

We consider the setting where an adversary can corrupt an arbitrary number of
parties. We assume that parties have access to a broadcast channel.

Benmahouda and Lin [BL18] and Garg and Srinivasan [GS18] showed how to
build a two-round MPC protocol from the DDH assumption. The works of Boyle
et al. [BGI16,BGI17] constructed an HSS scheme assuming DDH. Instantiating
the primitives in the above theorem, we get the following corollary:

Corollary 2. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming DDH, there exists a reusable two-round
X -MPC protocol.

Previously, constructions of reusable two-round MPC were only known as-
suming indistinguishability obfuscation [GGHR14,GS17] (or, witness encryp-
tion [GLS15,GGSW13]) or were based on multi-key fully-homomorphic encryp-
tion (FHE) [MW16,PS16,BP16]. Furthermore, one limitation of the FHE-based
protocols is that they are in the CRS model even for the setting of semi-honest
adversaries.

We note that the two-round MPC protocols cited above additionally achieve
overall communication independent of the computed circuit. This is not the
focus of this work. Instead, the aim of this work is to realize two-round MPC
with reusability, without relying on lattices. As per our current understanding,
MPC protocols with communication independent of the computed circuit are
only known using lattice techniques (i.e., FHE [Gen09]). Interestingly, we use
HSS, which was originally developed to improve communication efficiency in
two-party secure computation protocols, to obtain reusability.

First Message Succinct Two-Round MPC. At the heart of this work is a
construction of a first message succinct (FMS) two-round MPC protocol— that
is, a two-round MPC protocol where the first message of the protocol is computed
independently of the circuit being evaluated. In particular, the parties do not
need to know the description of the circuit that will eventually be computed over
their inputs in the second round. Furthermore, parties do not even need to know
the size of the circuit to be computed in the second round.4 This allows parties
to publish their first round messages and later compute any arbitrary circuit on
their inputs. Formally, we show the following:

4 Note that this requirement is more stringent than just requiring that the size of the
first round message is independent of the computed circuit, which can be achieved
using laconic OT [CDG+17] for any two-round MPC protocol.
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Theorem 3. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming DDH, there exists a first message succinct
two-round X -MPC protocol.

Such protocols were previously only known based on iO [GGHR14,DHRW16]
or assumptions currently needed to realize FHE [MW16,BP16,PS16,ABJ+19].
Note that for the learning-with-errors (LWE) based versions of these protocols,
the first message can only be computed knowing the depth (or, an upper bound
on the maximum depth) of the circuit to be computed. We find the notion of
first message succinct two-round MPC quite natural and expect it be relevant
for several other applications. In addition to using HSS in a novel manner, our
construction benefits from the powerful garbling techniques realized in recent
works [LO13,GHL+14,GLOS15,GLO15,CDG+17,DG17b].

From First Message Succinctness to Reusability. On first thought, the
notion of first message succinctness might seem like a minor enhancement. How-
ever, we show that this “minor looking” enhancement is sufficient to enable
reusable two-round MPC (supporting arbitrary number of computations) gener-
ically. More formally:

Theorem 4. Let X ∈ {semi-honest in plain model, malicious in common ran-
dom/reference sting model}. Assuming a first message succinct two-round MPC
protocol, there exists a reusable two-round X -MPC protocol.

Concurrent and Independent Work. Two recent independent works have
also explicitly studied reusable two-round MPC, obtaining a variety of results.
First, Benhamouda and Lin [BL20] construct reusable two-round MPC from
assumptions on bilinear maps. Their techniques are quite different than those
used in this paper and, while they need stronger assumptions than us, their
protocol does have the advantage that the number of parties participating in
the second round need not be known when generating first round messages.
In our protocol, the number of parties in the system is a parameter used to
generate the first round messages. Second, Ananth et al. [AJJ20] construct semi-
honest reusable two-round MPC from lattices in the plain model. Prior work from
lattices [MW16] required a CRS even in the semi-honest setting. The work of
Ananth et al. [AJJ20] includes essentially the same transformation from “first
message succinct” MPC to reusable MPC that constitutes the third step of our
construction (see Section 2.3).

2 Technical Overview

In this section, we highlight our main ideas for obtaining reusability in two-
round MPC. Our construction is achieved in three steps. Our starting point is
the recently developed primitive of Homomorphic Secret Sharing (HSS), which
realizes the following scenario. A secret s is shared among two parties, who can
then non-interactively evaluate a function f over their respective shares, and
finally combine the results to learn f(s), but nothing more.
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2.1 Step 1: Overview of the scHSS Construction

First, we show how to use a “standard” HSS (for only two parties, and where
the reconstruction algorithm is simply addition) to obtain a new kind of HSS,
which we call sharing compact HSS (scHSS). The main property we achieve with
scHSS is the ability to share a secret among n parties, for any n, while main-
tainting compactness of the share size. In particular, as in standard HSS, the
sharing algorithm will be independent of the circuit that will be computed on the
shares. We actually obtain a few other advantages over constructions of standard
HSS [BGI16,BGI17], namely, we get negligible rather than inverse polynomial
evaluation error, and we can support computations of any polynomial-size cir-
cuit. To achieve this, we sacrifice compactness of the evaluated shares, simplicity
of the reconstruction algorithm, and security for multiple evaluations. However,
it will only be crucial for us that multiple parties can participate, and that the
sharing algorithm is compact.

The approach: A sharing-compact HSS scheme consists of three algorithms,
Share,Eval, and Dec. Our construction follows the compiler of [GS18] that takes
an arbitrary MPC protocol and squishes it to two rounds. At a high level, to
share a secret x among n parties, we have the Share algorithm first compute an
n-party additive secret sharing x1, . . . , xn of x. Then, it runs the first round of
the squished n-party protocol on behalf of each party j with input xj .

5 Finally,
it sets the j’th share to be all of the first round messages, plus the secret state
of the j’th party. The Eval algorithm run by party j will simply run the second
round of the MPC, and output the resulting message. The Dec algorithm takes
all second round messages and reconstructs the output.

Recall that we aim for a sharing-compact HSS, which in particular means that
the Share algorithm must be independent of the computation supported during
the Eval phase. Thus, the first observation that makes the above approach viable
is that the first round of the two-round protocol that results from the [GS18]
compiler is independent of the particular circuit being computed. Unfortunately,
it is not generated independently of the size of the circuit to be computed, so
we must introduce new ideas to remove this size dependence.

The [GS18] compiler: Before further discussing the size dependence issue,
we recall the [GS18] compiler. The compiler is applied to any conforming MPC
protocol, a notion defined in [GS18].6 Roughly, a conforming protocol operates
via a sequence of actions φ1, . . . , φT . At the beginning of the protocol, each
party j broadcasts a one-time pad of their input, and additionally generates
some secret state vj . The encrypted inputs are arranged into a global public
state st, which will be updated throughout the protocol. At each step t, the
action φt = (j, f, g, h) is carried out by having party j broadcast the bit γt :=

5 Actually, we use an nλ-party MPC protocol, for reasons that will become clear later
in this overview.

6 We tweak the notion slightly here, so readers familiar with [GS18] may notice some
differences in this overview.
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NAND(stf ⊕ vj,f , stg ⊕ vj,g) ⊕ vj,h. Everybody then updates the global state
by setting sth := γt. We require that the transcript of the protocol is publicly
decodable, so that after the T actions are performed, anybody can learn the
(shared) output by inspecting st.

Now, the [GS18] compiler works as follows. In the first round of the compiled
protocol, each party runs the first round of the conforming protocol and broad-
casts a one-time pad of their input. In the second round, each party generates a
set of garbled circuits that non-interactively implement the computation phase
of the conforming protocol. In particular, this means that an evaluator can use
the garbled circuits output by each party to carry out each action φ1, . . . , φT ,
learn the resulting final st, and recover the output. The garbled circuits operate
as follows. Each garbled circuit for party j takes as input the public state st,
and outputs information that allows recovery of input labels for party j’s next
garbled circuit, corresponding to an updated version of the public state. To fa-
cilitate this, the initial private state of each party must be hard-coded into each
of their garbled circuits.

In more detail, consider a particular round t and action φt = (j∗, f, g, h).
Each party will output a garbled circuit for this round. We refer to party j∗ as
the “speaking” party for this round. Party j∗’s garbled circuit will simply use its
private state to compute the appropriate NAND gate and update the public state
accordingly, outputting the correct labels for party j∗’s next garbled circuit, and
the bit γt to be broadcast. It remains to show how the garbled circuit of each
party j 6= j∗ can incorporate this bit γt, revealing the correct input label for their
next garbled circuit. We refer to party j as the “listening” party. In [GS18], this
was facilitated by the use of a two-round oblivious transfer (OT). In the first
round, each pair of parties (j, j∗) engages in the first round of multiple OT
protocols with j acting as the sender and j∗ acting as the receiver. Specifically,
j∗ sends a set of receiver messages to party j. Then during action t, party j’s
garbled circuit responds with j’s sender message, where the sender’s two strings
are garbled input labels lab0, lab1 of party j’s next garbled circuit. Party j∗’s
garbled circuit reveals the randomness used to produce the receiver’s message
with the appropriate receiver bit γt. This allows for public recovery of the label
labγt .

However, note that each of the T actions requires its own set of OTs to be
generated in the first round. Each is then “used up” in the second round, as the
receiver’s randomness is revealed in the clear. This is precisely what makes the
first round of the resulting MPC protocol depend on the size of the circuit to be
computed: the parties must engage in the first round of Ω(T ) oblivious transfers
during the first round of the MPC protocol.

Pair-wise correlations: As observed also in [GIS18], the point of the first
round OT messages was to set up pair-wise correlations between parties that
were then exploited in the second round to facilitate the transfer of a bit from
party j∗’s garbled circuit to party j’s garbled circuit. For simplicity, assume for
now that when generating the first round, the parties j and j∗ already know
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the bit γt that is to be communicated during action t. This is clearly not the
case, but this issue is addressed in [GS18,GIS18] (and here) by generating four
sets of correlations, corresponding to each of the four possible settings of the
two bits of the public state (α, β) at the indices (f, g) corresponding to action
φt = (j∗, f, g, h).

Now observe that the following correlated randomness suffices for this task.
Party j receives uniformly random strings z(0), z(1) ∈ {0, 1}λ, and party j∗

receives the string z(∗) := z(γt). Recall that party j has in mind garbled input
labels lab0, lab1 for its next garbled circuit, and wants to reveal labγt in the clear,
while keeping lab1−γt hidden. Thus, party j’s garbled circuit will simply output
(lab0⊕z(0), lab1⊕z(1)), and party j∗’s garbled circuit outputs z(∗). Now, instead
of generating first round OT messages, the Share algorithm could simply generate
all of the pair-wise correlations and include them as part of the shares. Of course,
the number of correlations necessary still depends on T , so we will need the Share
algorithm to produce compact representations of these correlations.

Compressing using constrained PRFs: Consider a pair of parties (j, j∗),
and let Tj∗ be the set of actions where j∗ is the speaking party. We need the

output of Share to (implicitly) include random strings {z(0)t , z
(1)
t }t∈Tj∗ in j’s

share and {z(γt)t }t∈Tj∗ in j∗’s share. The first set of strings would be easy to

represent compactly with a PRF key kj , letting z
(b)
t := PRF(kj , (t, b)). However,

giving the key kj to party j∗ would reveal too much, as it is imperative that we

keep {z(1−γt)t }t∈Tj∗ hidden from party j∗’s view. We could instead give party
j∗ a constrained version of the key kj that only allows j∗ to evaluate PRF(kj , ·)
on points (t, γt). We expect that this idea can be made to work, and one could
hope to present a construction based on the security of (single-key) constrained
PRFs for constraints in NC1 (plus a standard PRF computable in NC1). Such
a primitive was achieved in [AMN+18] based on assumptions in a traditional
group, however, we aim for a construction from weaker assumptions.

Utilizing HSS: Inspired by [BCGI18,BCG+19], we take a different approach
based on HSS. Consider sharing the PRF key kj between parties j and j∗,
producing shares shj and shj∗ , and additionally giving party j the key kj in the
clear. During action t, we have parties j and j∗ (rather, their garbled circuits)
evaluate the following function on their respective shares: if γt = 0, output 0λ

and otherwise, output PRF(kj , t). Assuming that the HSS evaluation is correct,
and using the fact that HSS reconstruction is additive (over Z2), this produces
a pair of outputs (yj , yj∗) such that if γt = 0, yj ⊕ yj∗ = 0λ, and if γt = 1,

yj ⊕ yj∗ = PRF(kj , t). Now party j sets z
(0)
t := yj and z

(1)
t := yj ⊕ PRF(kj , t),

and party j∗ sets z
(∗)
t := yj∗ . This guarantees that z

(∗)
t = z

(γt)
t and that z

(1−γt)
t =

z
(∗)
t ⊕ PRF(kj , t), which should be indistinguishable from random to party j∗,

who doesn’t have kj in the clear.

Tying loose ends: This approach works, except that, as alluded to before,
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party j’s garbled circuit will not necessarily know the bit γt when evaluating its
HSS share. This is handled by deriving γt based on public information (some bits
α, β of the public shared state), and the private state of party j∗. Since party j∗’s
private state cannot be public information, this derivation must happen within
the HSS evaluation, and in particular, the secret randomness that generates j∗’s
private state must be part of the secret shared via HSS. In our construction,
we compile a conforming protocol where each party j∗’s randomness can be
generated by a PRF with key sj∗ . Thus, we can share the keys (kj , sj∗) between
parties j and j∗, allowing them to compute output shares with respect to the
correct γt. Finally, note that the computation performed by HSS essentially only
consists of PRF evaluations. Thus, assuming a PRF in NC1 (which follows from
DDH [NR97]), we only need to make use of HSS that supports evaluating circuits
in NC1, which also follows from DDH [BGI16,BGI17].

Dealing with the 1−1/poly correctness of HSS: We are not quite done, since
the [BGI16,BGI17] constructions of HSS only achieve correctness with 1−1/poly
probability. At first glance, this appears to be straightforward to fix. To complete
action φt = (j∗, f, g, h), simply repeat the above λ times, now generating sets

{z(0)t,p , z
(1)
t,p }p∈[λ] and {z(∗)t,p }p∈[λ], using the values {PRF(kj , (t, p))}p∈[λ]. Party j

now masks the same labels lab0, lab1 with λ different masks, and to recover labγt ,
one can unmask each value and take the most frequently occurring string to be
the correct label. This does ensure that our scHSS scheme is correct except with
negligible probability.

Unfortunately, the 1/poly correctness actually translates to a security issue
with the resulting scHSS scheme. In particular, it implies that an honest party’s
evaluated share is indistiguishable from a simulated evaluated share with proba-
bility only 1−1/poly. To remedy this, we actually use an nλ-party MPC protocol,
and refer to each of the nλ parties as a “virtual” party. The Share algorithm now
additively secret shares the secret x into nλ parts, and each of the n real parties
participating in the scHSS receives the share of λ virtual parties. We are then
able to show that for any set of honest parties, with overwhelming probability,
there will exist at least one corresponding virtual party that is “simulatable”.
The existence of a single simulatable virtual party is enough to prove the security
of our construction.

At this point it is important to point out that, while the above strategy
suffices to prove our construction secure for a single evaluation (where the circuit
evaluated can be of any arbitrary polynomial size), it does not imply that our
construction achieves reusability, in the sense that the shares output by Share
may be used to evaluate any unbounded polynomial number of circuits. Despite
the fact that the PRF keys shared via HSS should enable the parties to generate
an unbounded polynomial number of pair-wise correlations, the 1/poly evaluation
error of the HSS will eventually break simulation security. Fortunately, as alluded
to before, the property of sharing-compactness actually turns out to be enough
to bootstrap our scheme into a truly reusable MPC protocol. The key ideas that
allow for this will be discussed in Section 2.3.
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2.2 Step 2: From scHSS to FMS MPC

In the second step, we use a scHSS scheme to construct a first message succinct
two-round MPC protocol (in the rest of this overview we will call it FMS MPC).
The main feature of a scHSS scheme is that its Share algorithm is independent
of the computation that will be performed on the shares. Intuitively, this is very
similar to the main feature offered by a FMS MPC protocol, in that the first
round is independent of the circuit to be computed. Now, suppose that we have
an imaginary trusted entity that learns everyone’s input (x1, . . . , xn) and then
gives each party i a share shi computed as (sh1, . . . , shn) ← Share(x1‖ . . . ‖xn).
Note that, due to sharing-compactness this step is independent of the circuit C
to be computed by the FMS MPC protocol. After receiving their shares, each
party i runs the scHSS evaluation circuit Eval(i,C, shi) to obtain their own out-
put share yi, and then broadcasts yi . Finally, on receiving all the output shares
(y1, . . . , yn), everyone computes y := C(x1, . . . xn) by running the decoding pro-
cedure of scHSS: y := Dec(y1, . . . , yn).

A straightforward three-round protocol. Unfortunately, we do not have
such a trusted entity available in the setting of FMS MPC. A natural approach
to resolve this would be to use any standard two-round MPC protocol (from now
on we refer to such a protocol as vanilla MPC) to realize the Share functionality
in a distributed manner. However, since the vanilla MPC protocol would require
at least two rounds to complete, this straightforward approach would incur one
additional round. This is inevitable, because the parties receive their shares only
at the end of the second round. Therefore, an additional round of communication
(for broadcasting the output shares yi) would be required to complete the final
protocol.

Garbled circuits to the rescue. Using garbled circuits, we are able to squish
the above protocol to operate in only two rounds. The main idea is to have
each party i additionally send a garbled circuit C̃i in the second round. Each C̃i
garbles a circuit that implements Eval(i,C, ·). Given the labels for shi, C̃i can
be evaluated to output yi ← Eval(i,C, shi). Note that, if it is ensured that every
party receives all the garbled circuits and all the correct labels after the second
round, they can obtain all (y1, . . . , yn), and compute the final output y without
further communication. The only question left now is how the correct labels are
communicated within two rounds.

Tweaking vanilla MPC to output labels. For communicating the correct
labels, we slightly tweak the functionality computed by the vanilla MPC proto-
col. In particular, instead of using it just to compute the shares (sh1, . . . , shn),
we have the vanilla MPC protocol compute a slightly different functionality that
first computes the shares, and rather than outputting them directly, outputs the
corresponding correct labels for everyone’s shares.7 This is enabled by having

7 It is important to note that the set of garbled labels corresponding to some input x
hides the actual string x. Hence, outputting all the labels instead of specific shares
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each party provide a random value ri, which is used to generate the labels, as
an additional input to D. Therefore, everyone’s correct labels are now available
after the completion of the second round of the vanilla MPC protocol. Recall
that parties also broadcast their garbled circuits along with the second round of
the vanilla MPC. Each party i, on receiving all C̃1, . . . C̃n and all correct labels,
evaluates to obtain (y1, . . . , yn) and then computes the final output y.8

2.3 Step 3: From FMS MPC to Reusable MPC

Finally, in this third step, we show how FMS MPC can be used to construct
reusable two-round MPC, where the first message of the protocol can be reused
across multiple computations.

We start with the observation that a two-round FMS MPC protocol allows us
to compute arbitrary sized circuits after completion of the first round. This offers
a limited form of (bounded) reusability, in that all the circuits to be computed
could be computed together as a single circuit. However, once the second round
is completed, no further computation is possible. Thus, the main challenge is how
to leverage the ability to compute a single circuit of unbounded size to achieve
unbounded reusability. Inspired by ideas from [DG17b], we address this challenge
by using the ideas explained in Step 2 (above) repeatedly. For the purposes of
this overview, we first explain a simpler version of our final protocol, in which the
second round is expanded into multiple rounds. A key property of this protocol
is that, using garbled circuits, those expanded rounds can be squished back into
just one round (just like we did in Step 2) while preserving reusability.

Towards reusability: a multi-round protocol. The fact that FMS MPC
does not already achieve reusability can be re-stated as follows: the first round
of FMS MPC (computed using an algorithm MPC1) can only be used for a
single second round execution (using an algorithm MPC2). To resolve this issue,
we build a GGM-like [GGM84] tree-based mechanism that generates a fresh
FMS first round message for each circuit to be computed, while ensuring that
no FMS first round message is reused.

The first round of our final two-round reusable protocol, as well the multi-
round simplified version, simply consists of the first round message corresponding
to the root level (of the GGM tree) instance of the FMS protocol. We now
describe the subsequent rounds (to be squished to a single second round later)
of our multi-round protocol.

Intuitively, parties iteratively use an FMS instance at a particular level of
the binary tree (starting from the root) to generate two new first-round FMS

enables everyone to obtain the desired output without any further communication,
but also does not compromise security.

8 We remark that, in the actual protocol each party i sends their labels, encrypted,
along with the garbled circuit C̃i in the second round. The vanilla MPC protocol
outputs the correct sets of decryption keys based on the shares, which allows everyone
to obtain the correct sets of labels, while the other labels remain hidden.
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messages corresponding to the next level of the tree. The leaf FMS protocol
instances will be used to compute the actual circuits. The root to leaf path
traversed to compute a circuit C is decided based on the description of the
circuit C itself.9

In more detail, parties first send the second round message of the root (0’th)
level FMS protocol instance for a fixed circuit N (independent of the circuit C
to be computed) that samples and outputs “left” and “right” MPC1 messages
using the same inputs that were used in the root level FMS. Now, depending
on the first bit of the circuit description, parties choose either the left (if the
first bit is 0) or the right (if the first bit is 1) MPC1 messages for the next (1st)
level. Now using the chosen FMS messages, parties generate the MPC2 message
for the same circuit N as above. This results in two more fresh instances of the
MPC1 messages for the next (2nd) level. As mentioned before, this procedure is
continued until the leaf node is reached. At that point the MPC2 messages are
generated for the circuit C that the parties are interested in computing.

Note that, during the evaluation of two different circuits (each associated with
a different leaf node), a certain number of FMS protocol instances might get re-
executed. However, our construction ensures that this is merely a re-execution
of a fixed circuit with the exact same input/output behavior each time. This
guarantees that no FMS message is reused (even though it might be re-executed).
Finally, observe that this process of iteratively computing more and more MPC1

messages for the FMS protocol is only possible because the generation of the
first message of an FMS protocol can be performed independently of the circuit
that gets computed in the second round. In particular, the circuit N computes
two more MPC1 messages on behalf of each party.

Squishing the multiple rounds: using ideas in Step 2 iteratively. We
take an approach similar to Step 2, but now starting with a two-round FMS
MPC (instead of a vanilla MPC). In the second round, each party will send a se-
quence of garbled circuits where each garbled circuit will complete one instance
of an FMS MPC which generates labels for the next garbled circuit. This effec-
tively emulates the execution of the same FMS MPC instance in the multi-round
protocol, but without requiring any additional round. Now, the only thing left
to address is how to communicate the correct labels.

Communicating the labels for each party’s garbled circuit. The trick
here is (again very similar to step 2) to tweak the circuit N, in that instead of
outputting the two MPC1 messages for the next level, N (with an additional

9 We actually use the string whose first λ bits are the size of C, and the remaining
bits are the description of C. This is to account for the possibility that one circuit
may be a prefix of another.
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random input ri from each party i) now outputs labels corresponding to the
messages.10

For security reasons, it is not possible to include the same randomness ri in
the input to each subsequent FMS instance. Thus, we use a carefully constructed
tree-based PRF, following the GGM [GGM84] construction and pass along not
the key of the PRF but a careful derivative that is sufficient for functionality and
does not interfere with security.

Adaptivity in the choice of circuit. Our reusable two-round MPC protocol
satisfies a strong adaptive security guarantee. In particular, the adversary may
choose any circuit to compute after seeing the first round messages (and even
after seeing the second round messages for other circuits computed on the same
inputs). This stronger security is achieved based on the structure of our con-
struction, since the first round messages of the FMS MPC used to compute the
actual circuit are only revealed when the actual execution happens in the second
round of the reusable protocol. In particular, we do not even have to rely on
“adaptive” security of the underlying FMS protocol to achieve this property.11

3 Preliminaries

For standard cryptographic preliminaries, see the full version [BGMM20].

3.1 Two-Round MPC

Throughout this work, we will focus on two-round MPC protocols. We now
define the syntax we follow for a two-round MPC protocol.

Definition 5 (Two-Round MPC Procotol). An n-party two-round MPC
protocol is described by a triplet of PPT algorithms (MPC1,MPC2,MPC3) with
the following syntax.

– MPC1(1λ,CRS,C, i, xi; ri) =: (st
(1)
i ,msg

(1)
i ): Takes as input 1λ, a common

random/reference string CRS, (the description of) a circuit C to be computed,
identity of a party i ∈ [n], input xi ∈ {0, 1}∗ and randomness ri ∈ {0, 1}λ
(we drop mentioning the randomness explicitly when it is not needed). It

outputs party i’s first message msg
(1)
i and its private state st

(1)
i .

– MPC2(C, st
(1)
i , {msg

(1)
j }j∈[n]) → (st

(2)
i ,msg

(2)
i ): Takes as input (the descrip-

tion of) a circuit12 C to be computed, the state13 of a party st
(1)
i , and the first

10 Again, the actual protocol is slightly different, in that all labels are encrypted and
sent along with the garbled circuits, and N outputs decryption keys corresponding
to the correct labels.

11 This is for reasons very similar to those in [DG17a].
12 It might seem unnatural to include C in the input of MPC2 when it was already used

as an input for MPC1. This is done to keep the notation consistent with a stronger
notion of two-round MPC where C will be dropped from the input of MPC1.

13 Without loss of generality we may assume that the MPC2 algorithm is deterministic
given the state st

(1)
i . Any randomness needed for the second round could be included
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round messages of all the parties {msg
(1)
j }j∈[n]. It outputs party i’s second

round message msg
(2)
i and its private state st

(2)
i .

– MPC3(st
(2)
i , {msg

(2)
j }j∈[n]) =: yi: Takes as input the state of a party st

(2)
i ,

and the second round messages of all the parties {msg
(2)
j }j∈[n]. It outputs

the ith party’s output yi.

Each party runs the first algorithm MPC1 to generate the first round message of
the protocol, the second algorithm MPC2 to generate the second round message
of the protocol and finally, the third algorithm MPC3 to compute the output.
The messages are broadcasted after executing the first two algorithms, whereas
the state is kept private.

The formal security definition is provided in the full version [BGMM20].

First Message Succinct Two-Round MPC We next define the notion
of a first message succinct (FMS) two-round MPC protocol. This notion is a
strengthening (in terms of efficiency) of the above described notion of (vanilla)
two-round MPC. Informally, a two-round MPC protocol is first message succinct if
the first round messages of all the parties can be computed without knowledge
of the circuit being evaluated on the inputs. This allows parties to compute their
first message independent of the circuit (in particular, independent also of its
size) that will be computed in the second round.

Definition 6 (First Message Succinct Two-Round MPC). Let π = (MPC1,
MPC2,MPC3) be a two-round MPC protocol. Protocol π is said to be first message
succinct if algorithm MPC1 does not take as input the circuit C being computed.
More specifically, it takes an input of the form (1λ,CRS, i, xi; ri).

Note that a first message succinct two-round MPC satisfies the same correctness
and security properties as the (vanilla) two-round MPC.14

Reusable Two-Round MPC We next define the notion of a reusable two-
round MPC protocol, which can be seen as a strengthening of the security of a
first message succinct two-round MPC protocol. Informally, reusability requires
that the parties should be able to reuse the same first round message to securely
evaluate an unbounded polynomially number of circuits C1, . . . ,C`, where ` is a
polynomial (in λ) that is independent of any other parameter in the protocol.
That is, for each circuit Ci, the parties can just run the second round of the
protocol each time (using exactly the same first round messages) allowing the
parties to evaluate the circuit on the same inputs. Note that each of these circuits
can be of size an arbitrary polynomial in λ.

in st
(1)
i . Even in the reusable (defined later) case, it is possible to use a PRF computed

on the input circuit to provide the needed randomness for the execution of MPC2.
14 In particular, for an FMS two-round MPC protocol, its first message is succinct but

may not be reusable.
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Very roughly, security requires that the transcript of all these executions
along with the set of outputs should not reveal anything more than the inputs
of the corrupted parties and the computed outputs.

We again formalize security (and correctness) via the real/ideal world paradigm.
Consider n parties P1, . . . , Pn with inputs x1, . . . , xn respectively. Also, consider
an adversary A corrupting a set I ⊂ [n] of parties.

The real execution. In the real execution, the n-party first message succinct two-
round MPC protocol π = (MPC1,MPC2,MPC3) is executed in the presence of
an adversary A. The adversary A takes as input the security parameter λ and
an auxiliary input z. The execution proceeds in two phases:

– Phase I: All the honest parties i /∈ I execute the first round of the pro-
tocol by running the algorithm MPC1 using their respective input xi. They

broadcast their first round message msg
(1)
i and preserve their secret state

st
(1)
i . Then the adversary A sends the first round messages on behalf of

the corrupted parties following any arbitrary (polynomial-time computable)
strategy (a semi-honest adversary follows the protocol behavior honestly and
runs the algorithm MPC1(·)).

– Phase II (Reusable): The adversary outputs a circuit C, which is provided
to all parties.
Next, each honest party computes the algorithm MPC2 using this circuit C

(and its secret state st
(1)
i generated as the output of MPC1 in Phase I). Again,

adversary A sends arbitrarily computed (in PPT) second round messages on
behalf of the corrupt parties. The honest parties return the output of MPC3

executed on their secret state and the received second round messages.
The adversary A decides whether to continue the execution of a different
computation. If yes, then the computation returns to the beginning of phase
II. In the other case, phase II ends.

The interaction of A in the above protocol π defines a random variable REALπ,A(
λ, ~x, z, I) whose distribution is determined by the coin tosses of the adversary and
the honest parties. This random variable contains the output of the adversary
(which may be an arbitrary function of its view) as well as the output recovered
by each honest party.

The ideal execution. In the ideal execution, an ideal world adversary Sim
interacts with a trusted party. The ideal execution proceeds as follows:

1. Send inputs to the trusted party: Each honest party sends its input
to the trusted party. Each corrupt party Pi, (controlled by Sim) may either
send its input xi or send some other input of the same length to the trusted
party. Let x′i denote the value sent by party Pi. Note that for a semi-honest
adversary, x′i = xi always.

2. Adversary picks circuit: Sim sends a circuit C to the ideal functionality
which is also then forwarded to the honest parties.
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3. Trusted party sends output to the adversary: The trusted party com-
putes C(x′1, . . . , x

′
n) = (y1, . . . , yn) and sends {yi}i∈I to the adversary.

4. Adversary instructs trusted party to abort or continue: This is for-
malized by having the adversary Sim send either a continue or abort message
to the trusted party. (A semi-honest adversary never aborts.) In the latter
case, the trusted party sends to each uncorrupted party Pi its output value
yi. In the former case, the trusted party sends the special symbol ⊥ to each
uncorrupted party.

5. Reuse: The adversary decides whether to continue the execution of a dif-
ferent computation. In the yes case, the ideal world returns to the start of
Step 2.

6. Outputs: Sim outputs an arbitrary function of its view, and the honest
parties output the values obtained from the trusted party.

Sim’s interaction with the trusted party defines a random variable IDEALSim(λ,
~x, z, I). Having defined the real and the ideal worlds, we now proceed to define
our notion of security.

Definition 7. Let λ be the security parameter. Let π be an n-party two-round
protocol, for n ∈ N. We say that π is a reusable two-round MPC protocol in
the presence of malicious (resp., semi-honest) adversaries if for every PPT real
world adversary (resp., semi-honest adversary) A there exists a PPT ideal world
adversary (resp., semi-honest adversary) Sim such that for any ~x = {xi}i∈[n] ∈
({0, 1}∗)n, any z ∈ {0, 1}∗, any I ⊂ [n] and any PPT distinguisher D, we have
that

|Pr[D(REALπ,A(λ, ~x, z, I)) = 1]− Pr[D(IDEALSim(λ, ~x, z, I)) = 1]|

is negligible in λ.

4 Step 1: Constructing Sharing-Compact HSS from HSS

In this section, we start by recalling the notion of homomorphic secret sharing
(HSS) and defining our notion of sharing-compact HSS. We use the standard no-
tion of HSS, which supports two parties and features additive reconstruction. In
contrast, our notion of sharing compactness is for the multi-party case, but does
not come with the typical bells and whistles of a standard HSS scheme — specifi-
cally, it features compactness only of the sharing algorithm and without additive
reconstruction. For brevity, we refer to this notion of HSS as sharing-compact
HSS (scHSS). In what follows, we give a construction of sharing-compact HSS
and prove its security.

4.1 Sharing-Compact Homomorphic Secret Sharing

We continue with our definition of sharing-compact HSS, which differs from HSS
in various ways:
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– we support sharing among an arbitrary number of parties (in particular,
more than 2);

– we have a simulation-based security definition;
– we support a notion of robustness;
– we have negligible correctness error;
– our reconstruction procedure is not necessarily additive;
– we require security for only one evaluation.

We do preserve the property that the sharing algorithm, and in particular,
the size of the shares, is independent of the size of the program to be computed.

Definition 8 (Sharing-compact Homomorphic Secret Sharing (scHSS)).
A scHSS scheme for a class of programs P is a triple of PPT algorithms (Share,Eval,Dec)
with the following syntax:

Share(1λ, n, x) Takes as input a security parameter 1λ, a number of parties n,
and a secret x ∈ {0, 1}∗, and outputs shares (x1, . . . , xn).

Eval(j, P, xj): Takes as input a party index j ∈ [n], a program P , and share xj,
and outputs a string yj ∈ {0, 1}∗.

Dec(y1, . . . , yn): Takes as input all evaluated shares (y1, . . . , yn) and outputs
y ∈ {0, 1}∗.

The algorithms satisfy the following properties.

– Correctness: For any program P ∈ P and secret x,

Pr

[
Dec(y1, . . . , yn) = P (x) :

(x1, . . . , xn)← Share(1λ, x)
∀j, yj ← Eval(j, P, xj)

]
= 1− negl(λ).

– Robustness: For any non-empty set of honest parties H ⊆ [n], program
P ∈ P, secret x, and PPT adversary A,

Pr

Dec(y1, . . . , yn) ∈ {P (x),⊥} :
(x1, . . . , xn)← Share(1λ, x)
∀j ∈ H, yj ← Eval(j, P, xj)

{yj}j∈[n]\H ← A({xj}j∈[n]\H , {yj}j∈H)

 = 1−negl(λ).

– Security: There exists a PPT simulator S such that for any program P ∈ P,
any secret x, and any set of honest parties H ⊆ [n] we have that:{
{xi}i∈[n]\H , {yi}i∈H :

(x1, . . . , xn)← Share(1λ, n, x),
∀i ∈ H, yi ← Eval(i, P, xi)

}
c
≈
{
S(1λ, P, n,H, P (x))

}
.

4.2 Conforming Protocol

In our construction, we need a modification of the notion of conforming MPC
protocol from [GS18]. Consider an MPC protocol Φ between parties P1, . . . , Pn.
For each i ∈ [n], we let xi ∈ {0, 1}m denote the input of party Pi. We consider any
random coins used by a party to be part of its input (we can assume each party
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uses at most λ bits of randomness, and expands as necessary with a PRF). A
conforming protocol Φ is defined by functions inpgen, gen, post, and computation
steps or what we call actions φ1, · · ·φT . The protocol Φ proceeds in three stages:
the input sharing stage, the computation stage, and the output stage. For those
familiar with the notion of conforming protocol from [GS18,GIS18], we outline
the differences here.

– We split their function pre into (inpgen, gen), where inpgen is universal, in
the sense that it only depends on the input length m (and in particular, not
the function to be computed).

– We explicitly maintain a single public global state st that is updated one
bit at a time. Each party’s private state is maintained implicitly via their
random coins si chosen during the input sharing phase.

– We require the transcript (which is fixed by the value of st at the end of the
protocol) to be publicly decodable.

Next, we give our description of a conforming protocol.

– Input sharing phase: Each party i chooses random coins si ← {0, 1}λ,
computes (wi, ri) := inpgen(xi, si) where wi = xi ⊕ ri, and broadcasts wi.
Looking ahead to the proof of Lemma 9, we will take si to be the seed of a
PRF(si, ·) : {0, 1}∗ → {0, 1}.

– Computation phase: Let T be a parameter that depends on the circuit C
to be computed. Each party sets the global public state

st := (w1‖0T/n‖w2‖0T/n‖ · · · ‖wn‖0T/n),

and generates their secret state vi := gen(i, si).
15 Let ` be the length of st or

vi (st and vi will be of the same length). We will also use the notation that
for index f ∈ [`], vi,f := genf (i, si).

For each t ∈ {1 · · ·T} parties proceed as follows:

1. Parse action φt as (i, f, g, h) where i ∈ [n] and f, g, h ∈ [`].

2. Party Pi computes one NAND gate as

γt = NAND(stf ⊕ vi,f , stg ⊕ vi,g)⊕ vi,h

and broadcasts γt to every other party.

3. Every party updates sth to the bit value γt received from Pi.

We require that for all t, t′ ∈ [T ] such that t 6= t′, we have that if φt =
(·, ·, ·, h) and φt′ = (·, ·, ·, h′) then h 6= h′ (this ensures that no state bit is
ever overwritten).

– Output phase: Denote by Γ = (γ1, . . . , γT ) the transcipt of the protocol,
and output post(Γ ).

15 Technically, gen should also take the parameters n, T as input, but we leave these
implicit.
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Lemma 9. For any input length m, there exists a function inpgen such that any
n party MPC protocol Π (where each party has an input of length at most m)
can be written as a conforming protocol Φ = (inpgen, gen, post, {φt}t∈T ) while
inheriting the correctness and the security of the original protocol.

The proof of this lemma is very similar to the proof provided in [GS18] and
is deferred to the full version [BGMM20].

4.3 Our Construction

We describe a sharing-compact HSS scheme for sharing an input x ∈ {0, 1}m
among n parties.

Ingredients: We use the following ingredients in our construction.

– An nλ-party conforming MPC protocol Φ (for computing an arbitrary func-
tionality) with functions inpgen, gen, and post.

– A homomorphic secret sharing scheme (HSS.Share,HSS.Eval) supporting eval-
uations of circuits in NC1. To ease notation in the description of our proto-
col, we will generally leave the party index, identifier, and error parameter
δ implicit. The party index will be clear from context, the identifier can be
the description of the function to be evaluated, and the error parameter will
be fixed once and for all by the parties.

– A garbling scheme for circuits (Garble,GEval).
– A robust private-key encryption scheme (rob.enc, rob.dec).
– A PRF that can be computed in NC1.

Theorem 10. Assuming a semi-honest MPC protocol (with any number of rounds)
that can compute any polynomial-size functionality, a homomorphic secret shar-
ing scheme supporting evaluations of circuits in NC1, and a PRF that can be
computed in NC1, there exists a sharing-compact homomorphic secret sharing
scheme supporting the evaluation of any polynomial-size circuit.

Notation: As explained in Section 2, our construction at a high level follows the
template of [GS18] (which we refer to as the GS protocol). In the evaluation step
of our construction, each party generates a sequence of garbled circuits, one for
each action step of the conforming protocol. For each of these action steps, the
garbled circuit of one party speaks and the garbled circuits of the rest listen. We
start by describing three circuits that aid this process: (i) circuit F (described in
Figure 1), which includes the HSS evaluations enabling the speaking/listening
mechanism, (ii) circuit P∗ (described in Figure 2) garbled by the speaking party,
and (iii) circuit P (described in Figure 3) garbled by the listening party.

(i) Circuit F. The speaking garbled circuit and the listening garbled circuit
need shared secrets for communication. Using HSS, F provides an interface for
setting up these shared secrets. More specifically, consider a speaking party j∗
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and a listening party j 6= j∗ during action t. In our construction, the parties
j, j∗ will be provided with HSS shares of their secrets {sj , sj∗}, {kj , kj∗}. Note
that the order of sj and sj∗ in {sj , sj∗} and the order of kj and kj∗ in {kj , kj∗}
is irrelevant. All of the secret information used by party j∗ in computation of its
conforming protocol messages is based on sj∗ . Also, during action t, party j’s
garbled circuit will need to output encrypted labels for its next garbled circuit.
Secret kj is used to generate any keys needed for encrypting garbled circuit
labels. Concretely, in the circuit G (used inside F), observe that sj∗ is used to
perform the computation of γ, and kj is used to compute the “difference value”,
explained below.

F[t, α, β, p](sh)

Input: sh.
Hardcoded: The action number t ∈ [T ], bits α, β, and index p ∈ [λ].

1. Let φt = (j∗, f, g, h).
2. Let G[t, α, β, p, f, g, h] be the circuit that on input {sj , sj∗}, {kj , kj∗}:

(a) Set γ := NAND
(
α⊕ genf (j∗, sj∗), β ⊕ geng(j

∗, sj∗)
)
⊕ genh(j∗, sj∗).

(b) If γ = 0, output 0λ, else output PRF (kj , (t, α, β, p)).

Output: HSS.Eval(sh,G[t, α, β, p, f, g, h]).

Fig. 1: The Circuit F.

Both party j and party j∗ can compute F on their individual share of
{sj , sj∗}, {kj , kj∗}. They either obtain the same output value (in the case that
party j∗’s message bit for the tth action is 0) or they obtain outputs that differ
by a pseudorandom difference value known only to party j (in the case that
party j∗’s message bit for the tth action is 1). This difference value is equal
to PRF(kj , (t, α, β, p)), where t, α, β and p denote various parameters of the
protocol.

Next, we’ll see how the circuit F enables communication between garbled
circuits. In our construction the speaking party will just output the evaluation
of F on its share (for appropriate choices of t, α, β and p). On the other hand,
party j will encrypt the zero-label for its next garbled circuit using the output of
the evaluation of F on its share (for appropriate choices of t, α, β and p) and will
encrypt the one-label for its next garbled circuit using the exclusive or of this
value and the difference value. Observe that the output of the speaking circuit
will be exactly the key used to encrypt the label corresponding to the bit sent
by j∗ in the tth action.
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Finally, we need to ensure that each circuit G evaluated under the HSS can be
computed in NC1. Observe that G essentially only computes genf (j∗, sj∗) evalu-
ations and PRF(kj , ·) evaluations. The proof of Lemma 9 shows that genf (j∗, sj∗)
may be computed with a single PRF evaluation using key sj∗ . Thus, if we take
each sj , kj to be keys for a PRF computable in NC1, it follows that G will be
in NC1.

(ii) The Speaking Circuit P∗. The construction of the speaking circuit is
quite simple. The speaking circuit for the party j∗ corresponding to action t
computes the updated global state and the bit γ sent out in action t. However,
it must somehow communicate γ to the garbled circuit of each j 6= j∗. This effect
is achieved by having P∗ return the output of F (on relevant inputs as explained
above). However, technical requirements in the security proof preclude party
j∗ from hard-coding its HSS share sh into P∗, and having P∗ compute on this
share. Thus, we instead hard-code the outputs of F on all relevant inputs. More

specifically, we hard-code
{
z
(α,β)
j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, where z
(α,β)
j,p is obtained as the

output F[t, α, β, p](sh).

P∗

j∗,{z(α,β)j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

, (vf , vg, vh), lab

 (st)

Input: st.

Hardcoded: A (virtual) party index j∗, a set of strings
{
z
(α,β)
j,p

}
α,β∈{0,1},
j∈[n′]\{j∗},

p∈[λ]

,

three bits (vf , vg, vh), and a set of labels lab = {labk,0, labk,1}k∈[`].

1. Compute γ := NAND(stf ⊕ vf , stg ⊕ vg)⊕ vh.
2. Set sth := γ.

Output:

(
γ,
{
z
(stf ,stg)

j,p

}
j∈[n′]\{j∗},

p∈[λ]
, {labk,stk}k∈[`]

)
.

Fig. 2: The Speaking Circuit P∗.

(iii) The Listening Circuit P. The construction of the listening circuit mirrors
that of the speaking circuit. The listening circuit outputs the labels for all wires
except the hth wire that it is listening on. For the hth wire, the listening circuit
outputs encryptions of the two labels under two distinct keys, where one of
them will be output by the speaking circuit during this action. As in the case of
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speaking circuits, for technical reasons in the proof, we cannot have the listening
circuit compute these value but must instead hard-code them. More specifically,

we hard code
{
z
(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

where z
(α,β)
p,0 is obtained as F[t, α, β, p](sh)

and z
(α,β)
p,1 is obtained as z

(α,β)
p,0 ⊕ PRF (kj , (t, α, β, p)).

P

[
j,
{
z
(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

, (f, g, h), lab

]
(st)

Input: st.

Hardcoded. A (virtual) party index j, set of strings
{
z
(α,β)
p,0 , z

(α,β)
p,1

}
α,β∈{0,1},
p∈[λ]

,

three indices (f, g, h), and a set of labels lab = {labk,0, labk,1}k∈[`].

Output:

({
rob.enc

(
z
(stf ,stg)

p,b , labh,b
)
,
}
b∈{0,1},p∈[λ]

, {labk,stk}k∈[`]\{h}

)
.

Fig. 3: The Listening Circuit P.

The Construction Itself: The foundation of a sharing-compact HSS for eval-
uating circuit C is a conforming protocol Φ (as described earlier in Section 4.2)
computing the circuit C. Very roughly (and the details will become clear as we
go along), in our construction, the Share algorithm will generate secret shares
of the input x for the n parties. Additionally, the share algorithm generates the
first round GS MPC messages on behalf of each party. The Eval algorithm will
roughly correspond to the generation of the second round messages of the GS
MPC protocol. Finally, the Dec algorithm will perform the reconstruction, which
corresponds to the output computation step in GS after all the second round
messages have been sent out.

The Sharing Algorithm: Because of the inverse polynomial error probability
in HSS (hinted at in Section 2 and explained in the proof), we need to use an
n′ = nλ (virtual) party protocol rather than just an n party protocol. Each of the
n parties actually messages for λ virtual parties. Barring this technicality and
given our understanding of what needs to be shared to enable the communication
between garbled circuits, the sharing is quite natural.

On input x, the share algorithm generates a secret sharing of x (along with
the randomness needed for the execution of Φ) to obtain a share xj for each
virtual party j ∈ [n′]. In addition, two PRF keys sj , kj for each virtual party
j ∈ [n′] are sampled. Now, the heart of the sharing algorithm is the generation
of HSS shares of {sj , sj′}, {kj , kj′} for every pair of j 6= j′ ∈ [n′], which are then
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provided to parties j and j′. Specifically, the algorithm computes shares sh
{j,j′}
j

and sh
{j,j′}
j′ as the output of HSS.Share

(
1λ, ({sj , sj′}, {kj , kj′})

)
. Note that we

generate only one set of shares for each j, j′ and the ordering of j and j′ is
irrelevant (we use the set notation to signify this).

Share(1λ, n, x) :

1. Let n′ = nλ, m′ = m + λ, and x1 := (z1‖ρ1) ∈ {0, 1}m′ , . . . , xn′ :=
(zn′‖ρn′) ∈ {0, 1}m

′
, where z1, . . . , zn′ is an additive secret sharing of x, and

each ρi ∈ {0, 1}λ is uniformly random. The ρi are the random coins used by
each party in the MPC protocol Π underlying the conforming protocol Φ.

2. For each j ∈ [n′]:
(a) Draw PRF keys sj , kj ← {0, 1}λ, so that PRF(sj , ·) : {0, 1}∗ → {0, 1}

and PRF(kj , ·) : {0, 1}∗ → {0, 1}λ, where both of these pseudorandom
functions can be computed by NC1 circuits.

(b) Compute (wj , rj) := inpgen(xj , sj).

3. For each j 6= j′ ∈ [n′], compute
(
sh
{j,j′}
j , sh

{j,j′}
j′

)
← HSS.Share

(
1λ, ({sj , sj′}, {kj , kj′})

)
.

4. Let shj =

(
xj , sj , kj ,

{
sh
{j,j′}
j

}
j′∈[n′]\{j}

)
.

5. For each i ∈ [n], output party i’s share shi :=
(
{wj}j∈[n′],

{
shj
}
j∈[(i−1)λ+1,··· ,iλ]

)
.

The Evaluation Algorithm: Observe that the sharing algorithm is indepen-
dent of the conforming protocol Φ (and the circuit C to be computed), thus
achieving sharing compactness. This is due to the fact that the function inpgen
is universal for conforming protocols Φ (as explained in Section 4.2).

In contrast, the evaluation algorithm will emulate the entire protocol Φ. First,
it will set the error parameter δ for HSS, depending on the protocol Φ. Then,
each virtual party j (where each party controls λ virtual parties) generates a
garbled circuit for each action of the conforming protocol. For each action, the
speaking party uses the speaking circuit P∗ and the rest of the parties use the
listening circuit P.

Eval(i,C, shi):

1. Parse shi as
(
{wj}j∈[n′],

{
shj
}
j∈[(i−1)λ+1,··· ,iλ]

)
, let T be a parameter16 of

the conforming protocol Φ computing C, and set the HSS error parameter
δ = 1/8λ2T .

2. Set st := (w1‖0T/n
′‖w2‖0T/n

′‖ · · · ‖wn′‖0T/n
′
).

3. For each j ∈ [(i− 1)λ+ 1, · · · , iλ], run the following procedure.

VirtualEval(j,C, shj):

(a) Parse shj as

(
xj , sj , kj ,

{
sh
{j,j′}
j

}
j′∈[n′]\{j}

)
.

16 Recall that T is the number of actions to be taken.
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(b) Compute vj := gen(j, sj).

(c) Set lab
j,T+1

:=
{
labj,T+1

k,0 , labj,T+1
k,1

}
k∈[`]

where for each k ∈ [`] and b ∈

{0, 1}, labj,T+1
k,b := 0λ.

(d) For each t from T down to 1:
i. Parse φt as (j∗, f, g, h).
ii. If j = j∗, compute (where P∗ is described in Figure 2 and F is

described in Figure 1)

arg1 :=
{
F[t, α, β, p]

(
sh
{j∗,j}
j∗

)}
j∈[n′]\{j∗},
α,β∈{0,1},
p∈[λ]

arg2 := (vj∗,f , vj∗,g, vj∗,h)(
P̃j
∗,t, lab

j∗,t
)
← Garble

(
1λ,P∗

[
j∗, arg1, arg2, lab

j∗,t+1
])
.

iii. If j 6= j∗, compute (where P is described in Figure 3 and F is de-
scribed in Figure 1)

arg1 :=

 F[t, α, β, p]
(
sh
{j∗,j}
j

)
,

F[t, α, β, p]
(
sh
{j∗,j}
j

)
⊕ PRF (kj , (t, α, β, p))


α,β∈{0,1},
p∈[λ]

arg2 := (f, g, h)(
P̃j,t, lab

j,t
)
← Garble

(
1λ,P

[
j, arg1, arg2, lab

j,t+1
])
.

(e) Set yj :=

({
P̃j,t
}
t∈[T ]

,
{
labj,1k,stk

}
k∈[`]

)
. Recall st was defined in step 2.

4. Output yi :=
{
yj
}
j∈[(i−1)λ+1,··· ,iλ].

The Decoding Algorithm: The decoding algorithm is quite natural given
what we have seen so far. Garbled circuits from each virtual party are executed
sequentially, communicating among themselves. This results in an evaluation of
the conforming protocol Φ and the final output can be computed using the post
algorithm.

Dec(y1, . . . , yn):

1. For each i ∈ [n], parse yi as

{({
P̃j,t
}
t∈[T ]

,
{
labj,1k

}
k∈[`]

)}
j∈[(i−1)λ+1,··· ,iλ]

.

2. For each j ∈ [n′], let l̃ab
j,1

:=
{
labj,1k

}
k∈[`]

.

3. For each t from 1 to T ,
(a) Parse φt as (j∗, f, g, h).

(b) Compute

(
γt,
{
z∗j,p
}
j∈[n′]\{j∗},

p∈[λ]
, l̃ab

j∗,t+1

)
:= GEval

(
P̃j
∗,t, l̃ab

j∗,t
)

.
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(c) For each j 6= j∗:

i. Compute

(
{elabp,0, elabp,1}p∈[λ] ,

{
labj,t+1

k

}
k∈[`]\{h}

)
:= GEval

(
P̃j,t, l̃ab

j,t)
.

ii. If there exists p ∈ [λ], such that rob.dec
(
z∗j,p, elabp,γt

)
6= ⊥, then set

the result to labj,t+1
h . If all λ decryptions give ⊥, then output ⊥ and

abort.

iii. Set l̃ab
j,t+1

:=
{
labj,t+1

k

}
k∈[`]

.

4. Set Γ = (γ1, . . . , γT ) and output post(Γ ).

The proof of correctness, security and robustness can be found in the full
version [BGMM20].

5 Step 2: FMS MPC from Sharing-Compact HSS

In this section, we use a sharing-compact HSS scheme to construct a first message
succinct two-round MPC protocol that securely computes any polynomial-size
circuit. We refer to Section 2.2 for a high-level overview of the construction. For
modularity of presentation, we begin by defining a label encryption scheme.

Label Encryption. This is an encryption scheme designed specifically for en-
crypting a grid of 2 × ` garbled input labels corresponding to a garbled circuit
with input length `. The encryption algorithm takes as input a 2 × ` grid of
strings (labels) along with a 2 × ` grid of keys. It encrypts each label using
each corresponding key, making use of a robust private-key encryption scheme
(rob.enc, rob.dec). It then randomly permutes each pair (column) of ciphertexts,
and outputs the resulting 2×` grid. On the other hand, decryption only takes as
input a set of ` keys, that presumably correspond to exactly one ciphertext per
column, or, exactly one input to the garbled circuit. The decryption algorithm
uses the keys to decrypt exactly one label per column, with the robustness of
(rob.enc, rob.dec) ensuring that indeed only one ciphertext per column is able to
be decrypted. The random permutations that occur during encryption ensure
that a decryptor will recover a valid set of input labels without knowing which
input they actually correspond to. This will be crucial in our construction.

LabEnc(K, lab) : On input a keyK = {Ki,b}i∈[`],b∈{0,1} and lab = {labi,b}i∈[`],b∈{0,1}
(where Ki,b, labi,b ∈ {0, 1}λ), LabEnc draws n random bits b′i ← {0, 1} and
outputs elab = {elabi,b}i∈[`],b∈{0,1}, where elabi,b := rob.enc(Ki,b⊕b′i , labi,b⊕b′i).

LabDec(K̂, elab): On input a key K̂ = {Ki}i∈[`] and elab = {elabi,b}i∈[`],b∈{0,1},
for each i ∈ [`] output rob.dec(Ki, elabi,0) if it is not⊥ and rob.dec(Ki, elabi,1)
otherwise.

We present the formal construction in Figure 4. It is given for functionalities
C where every party receives the same output, which is without loss of generality.
Throughout, we will denote by ` the length of each party’s scHSS share. Note that
the circuit D used by the construction is defined immediately after in Figure 5.
Finally, p[t] denotes the t’th bit of a string p ∈ {0, 1}∗.
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A first message succinct MPC protocol (FMS.MPC1,FMS.MPC2,FMS.MPC3)

Main Ingredients:
– A (vanilla) two-round MPC protocol (MPC1,MPC2,MPC3).
– A scHSS scheme (Share,Eval,Dec).
– A garbled circuit scheme (Garble,GEval).
– A label encryption scheme (LabEnc, LabDec).

FMS.MPC1(1λ,CRS, i, xi):

1. Draw ri ← {0, 1}λ, and compute (st
(1)
i ,msg

(1)
i )← MPC1(1λ,CRS,D, i, (xi, ri)).

2. Output FMS.st
(1)
i := (st

(1)
i , ri) and FMS.msg

(1)
i := msg

(1)
i .

FMS.MPC2(C,FMS.st
(1)
i , {FMS.msg

(1)
j }j∈[n]):

1. Compute (st
(2)
i ,msg

(2)
i )← MPC2(D, st

(1)
i , {msg

(1)
j }j∈[n]).

2. Compute (C̃, lab)← Garble(1λ,Eval(i,C, ·)).
3. Compute elab← LabEnc(K, lab) where K = {PRF(ri, (t, b))}t∈[`],b∈{0,1}.
4. Output FMS.st

(2)
i := st

(2)
i and FMS.msg

(2)
i := (msg

(2)
i , C̃, elab).

FMS.MPC3(FMS.st
(2)
i , {FMS.msg

(2)
j }j∈[n]):

1. Compute {K̂j}j∈[n] := MPC3(st
(2)
i , {msg

(2)
j }j∈[n]).

2. For each j ∈ [n]:

(a) Compute l̂abj := LabDec(K̂j , elabj).

(b) Compute Yj := GEval(C̃j , l̂abj).
3. Output y := Dec(Y1, . . . , Yn).

Fig. 4: A first message succinct MPC protocol
(FMS.MPC1,FMS.MPC2,FMS.MPC3)

Circuit D

Input: (x1, r1), . . . , (xn, rn)

1. (csh1, . . . , cshn)← Share(1λ, n, (x1|| . . . ||xn)).
2. For each i ∈ [n]:

(a) For each t ∈ [`], set Ki,t := PRF(ri, (t, cshi[t])).

(b) Set K̂i := {Ki,t}t∈[`].

Output: (K̂1 . . . K̂n)

Fig. 5: The (randomized) circuit D

Theorem 11. Let X ∈ {semi-honest in the plain model, semi-honest in the
common random/reference string model, malicious in the common random/reference
string model}. Assuming a (vanilla) X two-round MPC protocol and a scHSS
scheme for polynomial-size circuits, there exists an X first message succinct
two-round MPC protocol.

The proof of Theorem 11 can be found in the full version [BGMM20].

25



6 Step 3: Two-Round Reusable MPC from FMS MPC

We start by giving a high-level overview of the reusable MPC, which we call
r.MPC. Recall from Section 2.3 that round one of r.MPC essentially just consists
of round one of an FMS.MPC instance computing the circuit N. We refer to this
as the 0’th (instance of) MPC. Now fix a circuit C to be computed in round
two, and its representative string p := 〈C〉, which we’ll take to be length m. This
string p fixes a root-to-leaf path in a binary tree of MPCs that the parties will
compute. In round two, the parties compute round two of the 0’th MPC, plus
m (garbled circuit, encrypted labels) pairs. Each of these is used to compute an
MPC in the output phase of r.MPC. The first m− 1 of these MPCs compute N,
and the m’th MPC computes C.

In the first round of r.MPC, each party i also chooses randomness ri, which
will serve as the root for a binary tree of random values generated as in [GGM84]
by a PRG (G0,G1). Below, we set ri,0 := ri, where the 0 refers to the fact that the
0’th MPC will be computing the circuit N on input that includes {ri,0}i∈[n]. The
string p then generates a sequence of values ri,1, . . . , ri,m by ri,d := Gp[d](ri,d−1).
The d’th MPC will be computing the circuit N on input that includes {ri,d}i∈[n].

Now, it remains to show how the m (garbled circuit, encrypted labels) pairs
output by each party in round two can be used to reconstruct each of the m
MPC outputs, culminating in C. We use a repeated application of the mecha-
nism developed in the last section. In particular, the d’th garbled circuit output
by party i computes their second round message of the d’th MPC. The input
labels are encrypted using randomness derived from party i’s root randomness
ri. Specifically, as in last section, we use a PRF to compute a 2× ` grid of keys,
which will be used to LabEnc the 2× ` grid of input labels. The key to this PRF
will be generated by a PRG (H0,H1) applied to ri,d−1. Since we are branching
based on the bit p[d], the key will be set to Hp[d](ri,d−1).

Likewise, the d’th MPC (for d < m), using inputs {ri,d}i∈[n], computes two
instances of the first round of the d + 1’st MPC, the “left child” using inputs
{G0(ri,d)}i∈[n] and the “right child” using inputs {G1(ri,d)}i∈[n]. It then uses the
PRF key H0(ri,d) to output the ` keys corresponding to party i’s left child first
round message, and the key H1(ri,d) to output the ` keys corresponding to party
i’s right child first round message.

Finally, in the output phase of r.MPC, all parties can recover party i’s second
round message of the d’th MPC, by first using the output of the d− 1’st MPC
to decrypt party i’s input labels corresponding to its first round message of
the d’th MPC, and then using those labels to evaluate its d’th garbled circuit,
finally recovering the second round message. Once all of the d’th second round
messages have been recovered, the output may be reconstructed. Note that this
output is exactly the set of keys necessary to repeat the process for the d+ 1’st
MPC. Eventually, the parties will arrive at the m’th MPC, which allows them to
recover the final output C(x1, . . . , xn). One final technicality is that each party’s
second round message for each MPC may be generated along with a secret state.
We cannot leak this state to other parties in the output phase, so in the second
round of r.MPC, parties will actually garble circuits that compute their second
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round (state, message) pair, encrypt the state with their own secret key, and
then output the encrypted state plus the message in the clear. In the output
phase, each party i can decrypt their own state, (but not anyone else’s) and use
their state to reconstruct the output of each MPC.

The formal construction and the proof of the following theorem are deferred
to the full version [BGMM20].

Theorem 12. Let X ∈ {semi-honest in the plain or CRS model, malicious in
the CRS model}. Assuming a first message succinct X two-round MPC protocol,
there exists an X reusable two-round MPC protocol.
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