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Abstract. We construct uniquely decodable codes against channels which
are computationally bounded. Our construction requires only a public-
coin (transparent) setup. All prior work for such channels either required
a setup with secret keys and states, could not achieve unique decoding,
or got worse rates (for a given bound on codeword corruptions). On
the other hand, our construction relies on a strong cryptographic hash
function with security properties that we only instantiate in the random
oracle model.

1 Introduction

Error correcting codes (ECCs) are a tool for handling errors when transmitting
messages over an unreliable communication channel. They work by first encoding
the message with additional redundant information, which is then sent over
the channel. This allows the recipient to recover the original encoded message,
even in the presence of a limited number of errors that might occur during
transmission.

Since their introduction in the 1950s, error correcting codes [Ham50] have
been a thriving research area due to their role both in practical applications
and in theoretical computer science. One of the central open questions concerns
the exact tradeoff between a code’s rate (message length divided by codeword
length) and the code’s error tolerance (the number of errors that its decoding
algorithm can tolerate). There are several known fundamental bounds (e.g. the
Hamming, Singleton, and Plotkin bounds) on the maximum rate of a code in
terms of its distance, and state of the art codes (especially over small alphabets)
often only achieve significantly lower rates.

To achieve better rates, two major relaxations of error correction have been
proposed. In the first, called list decoding [Eli57, Woz58], a decoding algorithm
is no longer required to output the originally encoded message, but may instead
output a short list of messages which is required to contain the original message.
In this work, we will focus on standard (unique) decoding, but we will use list-
decodable codes as a central building block.

In the second relaxation, the communication channel between the sender and
receiver is assumed to be restricted in some way. In other words, the code is no



longer required to handle fully worst-case errors. The most relevant model for us
is the computationally bounded channel [Lip94], which loosely speaking, models
codeword errors as generated by a polynomial-time process.

Lipton [Lip94] and Micali et al. [MPSW10] construct codes for the compu-
tationally bounded channel with better rates than are achievable by codes for
worst-case errors, but their codes require a trusted setup. Specifically, the en-
coding algorithms for their codes (and in the case of [Lip94], also the decoding
algorithm) require a secret key that, if leaked, allows an efficient channel to
thwart the decoding algorithm with a relatively small number of corruptions.
Secret randomness is much more difficult to instantiate than public randomness
(also known as transparent), which leads us to ask:

Are there “good” uniquely decodable codes for the computationally bounded
channel with transparent setup?

An additional drawback of the constructions of [Lip94] and [MPSW10] is
that they require a stateful encoder, which may render them unsuitable for use
in data storage or in applications requiring concurrent transmission of multiple
messages. In [Lip94], it is essential for security that the encoder’s state never
repeats, and essential for correctness that the decoder’s state is synchronized
with the encoder’s state. In [MPSW10], the decoder is stateless, but it is essential
for security that errors are chosen in an online fashion. In other words, there are
no guarantees if a codeword 𝑐 is corrupted after seeing a codeword 𝑐′ that was
encoded after 𝑐. This exemplifies the undesirable dependence, induced by the
encoder’s statefulness, of the code’s error tolerance on the precise environment
in which it is used. Thus we ask:

Are there “good” uniquely decodable codes for the computationally bounded
channel with a stateless encoder?

1.1 Our Contributions

We answer both questions affirmatively, constructing a code for computationally
bounded channels (with transparent setup and stateless encoding) that outper-
forms codes for worst-case errors. As a contribution that may be of independent
interest, we also construct codes with high “pseudodistance”, i.e., codes for which
it is hard to find two codewords that are close in Hamming distance.

Pseudounique Decoding. The main goal of an error correcting code 𝐶 is to fa-
cilitate the recovery of a transmitted message given a partially corrupted copy
of 𝐶(𝑚). To formalize this (in the information-theoretic setting), a polynomial-
time algorithm 𝐷 is said to be a unique decoding algorithm for 𝐶 against 𝜌 errors
if for all messages 𝑚 and all strings 𝑐′ that are 𝜌-close in Hamming distance to
𝐶(𝑚), we have 𝐷(𝑐′) = 𝑚.

In reality, messages and noise are created by nature, which can be conserva-
tively modeled as a computationally bounded adversary. We thus relax the above
for all quantification and only require efficient decoding when both 𝑚 and 𝑐′ are



chosen by a computationally bounded process. Our codes will be described by a
randomly generated seed that is used in the encoding and decoding procedures.
In other words, we will work with a seeded family of codes {𝐶pp}, where pp is
the seed, which we will also refer to as the public parameters for the code. In our
constructions, the public parameters are merely unstructured uniformly random
strings of a certain length.

More formally, we say that a polynomial-time algorithm 𝐷 is a pseudounique
decoding algorithm for {𝐶pp} against 𝜌 errors if no polynomial-time adversary 𝐴
can win the following game with noticeable probability. The public parameters
pp are first sampled uniformly at random and given to 𝐴. The adversary then
produces a message 𝑚 and a string 𝑐′, and is said to win if 𝑐′ is 𝜌-close to 𝐶pp(𝑚)
and 𝐷(pp, 𝑐′) ̸= 𝑚.

Under cryptographic assumptions (or in the random oracle model), we con-
struct codes with pseudounique decoding algorithms for a larger fraction of errors
than is possible in the standard setting. Our main theorem requires a “good”
cryptographic hash function (which is used as a black box), where we defer the
formalization of the necessary security requirements to Section 3. For now, we
simply mention that it is a multi-input generalization of correlation intractability,
and in Section 3 we show that it can be instantiated by a (non-programmable)
random oracle. The precise statement and details about the construction appear
in Section 4.

Informal Theorem 1 For any 𝑟 ∈ (0, 1) and any 𝜌 < min(1 − 𝑟, 1
2 ) there

exist rate-𝑟 codes, over large (polynomial-sized) alphabets, that are efficiently
pseudouniquely decodable against up to a 𝜌 fraction of errors, assuming good
hash functions exist (or in the random oracle model).

This should be contrasted with the Singleton bound, which rules out (standard)
unique decoding for more than min( 1−𝑟

2 , 1
2 ) errors. Our positive result is a corol-

lary of a more general connection to efficient list-decodability, which we prove
in Section 4. This connection also implies results over binary alphabets, albeit
with bounds that are harder to state (see Corollary 3) because known binary
codes do not achieve list-decoding capacity and instead have messy rate vs. error
correction tradeoffs.

Pseudodistance. Our second notion is an analogue of distance. Recall that a code
𝐶 is said to have distance 𝑑 if for all pairs of distinct messages 𝑚0, 𝑚1, their
encodings 𝐶(𝑚0) and 𝐶(𝑚1) have Hamming distance 𝑑. We can similarly replace
this for all quantifier and only require 𝐶pp(𝑚0) and 𝐶pp(𝑚1) to be far for pairs
𝑚0, 𝑚1 that are computed from pp by a computationally bounded adversary.

We note that a code’s pseudodistance may be arbitrarily high without im-
plying anything about its decodability, even by an inefficient algorithm. It is
instructive to imagine a rate-1 code whose encoding algorithm is given by a
(sufficiently obfuscated) random permutation mapping {0, 1}𝑛 → {0, 1}𝑛. The
pseudodistance of this code will be roughly 𝑛/2, but it is information theoreti-
cally impossible to decode in the presence of even a single error.



Still, pseudodistance is a useful intermediate notion for us in the construc-
tion of pseudouniquely decodable codes, and the notion may be of independent
interest.

1.2 Main Definitions and Main Theorem Statement

The preceding discussion is formalized in the following definitions.

Definition 1. A seeded code with alphabet size 𝑞(·) is a pair 𝒞 = (Setup,Enc)
of polynomial-time algorithms with the following syntax:

– Setup is probabilistic, takes a domain length 𝑘 ∈ Z+ (in unary), and outputs
public parameters pp.

– Enc is deterministic, takes parameters pp and a message 𝑚 ∈ {0, 1}𝑘, and
outputs a codeword 𝑐 ∈ [𝑞(𝑘)]𝑛(𝑘), where 𝑛(·) is called the length of 𝒞.

When lim𝑘→∞
𝑘

𝑛(𝑘) log2 𝑞(𝑘) ∈ [0, 1] is well-defined it is called the rate of 𝒞. If

Setup simply outputs a uniformly random binary string of some length that de-
pends on 𝑘, then we say that 𝒞 is public-coin.

Definition 2. A seeded code 𝒞 = (Setup,Enc) is said to have
(︀
𝑠(·), 𝜖(·)

)︀
- pseu-

dodistance 𝑑(·) if for all size-𝑠(·) circuit ensembles {𝒜𝑘}𝑘∈Z+ , we have

Pr
pp←Setup(1𝑘)

(𝑚0,𝑚1)←𝒜𝑘(pp)

[︀
𝛥
(︀
Enc(pp,𝑚0),Enc(pp,𝑚1)

)︀
< 𝑑

]︀
≤ 𝜖(𝑘),

where 𝛥(·, ·) denotes the (absolute) Hamming distance.
𝒞 is said simply to have pseudodistance 𝑑(·) if for all 𝑠(𝑘) ≤ 𝑘𝑂(1), there

exists 𝜖(𝑘) ≤ 𝑘−𝜔(1) such that 𝒞 has (𝑠, 𝜖)-pseudodistance 𝑑.

Definition 3. An algorithm Dec is said to be an
(︀
𝑠(·), 𝜖(·)

)︀
-pseudounique de-

coder for 𝒞 = (Setup,Enc) against 𝑑(·) errors if for all size-𝑠(·) circuit ensembles
{𝒜𝑘}𝑘∈Z+

Pr
pp←Setup(1𝑘)
(𝑚,𝑐)←𝒜𝑘(pp)

[︀
𝛥
(︀
𝑐,Enc(pp,𝑚)

)︀
≤ 𝑑(𝑘) ∧ Dec(pp, 𝑐) ̸= 𝑚

]︀
≤ 𝜖(𝑘).

We say that 𝒞 is efficiently
(︀
𝑠(·), 𝜖(·)

)︀
-pseudouniquely decodable against 𝑑(·) errors

if there is a polynomial-time algorithm Dec that is an
(︀
𝑠(·), 𝜖(·)

)︀
-pseudounique

decoder for 𝒞. We omit 𝑠 and 𝜖 in usage of the above definitions when for all
𝑠(𝑘) ≤ 𝑘𝑂(1), there exists 𝜖(𝑘) ≤ 𝑘−𝜔(1) such that the definition is satisfied.

We sometimes say a “ 𝜌 fraction of errors” to refer to some 𝑑(𝑘) such that

lim𝑘→∞
𝑑(𝑘)
𝑛(𝑘) = 𝜌, where 𝑛(·) is the length of 𝒞.

As in the previous theorem, we assume the existence of random-like hash
functions to obtain our result. These hash functions can be instantiated in the
random oracle model.



Informal Theorem 2 If {𝐶 : {0, 1}𝑘 → [𝑞]𝑛𝑘} is a rate-𝑟 ensemble of codes
that is efficiently list-decodable against a 𝜌 fraction of errors, and if good hash
functions exist, then there exists a rate-𝑟 seeded code that is efficiently pseu-

douniquely decodable against a min

(︂
𝜌,

𝐻−1
𝑞

(︀
𝑟+𝐻𝑞(𝜌)

)︀
2

)︂
fraction of errors.

The above bound has a nice interpretation when 𝐶 approaches capacity, i.e.

when 𝑟 + 𝐻𝑞(𝜌) ≈ 1. Then
𝐻−1

𝑞 (𝑟+𝐻𝑞(𝜌))

2 ≈ 1
2 ·

(︀
1− 1

𝑞

)︀
, which upper bounds the

pseudo-unique decodability of any positive-rate code (implied by the proof of
the Plotkin bound, and made explicit in [MPSW10]). So if 𝐶 achieves capacity,
Theorem 2 says that one can uniquely decode up to the (efficient) list-decoding
radius of 𝐶, as long as that doesn’t exceed 1

2 ·
(︀
1− 1

𝑞

)︀
.

1.3 Related Work

The notion of a computationally bounded channel was first studied by Lip-
ton [Lip94], and has subsequently been studied in a variety of coding the-
ory settings including local decodability, local correctability, and list decoding,
with channels that are bounded either in time complexity or space complex-
ity [DGL04, GS16, BGGZ19, MPSW10, SS16, HOSW11, HO08, OPS07]. We
compare some of these works in Table 1. Focusing on unique decoding against
polynomial-time computationally bounded errors, the work most relevant to us
is [MPSW10], improving on [Lip94].

Lipton [Lip94] showed that assuming one-way functions, any code that is
(efficiently) uniquely decodable against 𝜌 random errors can be upgraded to a
“secret-key, stateful code” that is (efficiently) uniquely decodable against any
𝜌 errors that are computed in polynomial time. Using known results on codes
for random errors, this gives rate-𝑟 (large alphabet) codes that are uniquely
decodable against a 1 − 𝑟 fraction of errors. However, these codes require the
sender and receiver to share a secret key, and to be stateful (incrementing a
counter for each message sent / received).

Micali et al. [MPSW10] improve on this result, obtaining a coding scheme
where only the sender needs a secret key (the receiver only needs a corresponding
public key), and only the sender needs to maintain a counter. They show that
these limitations are inherent in the high-error regime; namely, it is impossible
to uniquely decode beyond error rates 1/4 (in the binary case) and more gen-
erally 1

2 · (1 −
1
𝑞 ) over 𝑞-ary alphabets, even if the errors are computationally

bounded. Compared to [Lip94], [MPSW10] starts with codes that are efficiently
list decodable, rather than codes that are uniquely decodable against random
errors. The crux of their technique is using cryptographic signatures to “sieve”
out all but one of the candidate messages returned by a list-decoding algorithm.
Our construction also uses list decodability in a similar way. The key difference
is that we use a different sieving mechanism that is stateless and transparent
(i.e., the only setup is a public uniformly random string), but is only applicable
for error rates below 1

2 · (1−
1
𝑞 ).



Our work improves over [MPSW10] in the amount of setup required for the
code. In [MPSW10], the sender must initially create a secret key and share the
corresponding public key with the receiver (and the adversarial channel is also
allowed to depend on the public key). In contrast, our code allows anyone to send
messages—no secret key is needed. This property may be useful in applications
such as Wi-Fi and cellular networks, where many parties need to communicate.

Another important difference between [MPSW10] and our work is that in
[MPSW10], the sender is stateful. That is, whenever the sender sends a message,
he updates some internal state which affects the way the next message will be en-
coded. We do not make such an assumption. Note that in some situations, main-
taining a state may not be possible. For example, if there are multiple senders
(or a single sender who is operating several servers in different locations), it is
unclear how to collectively maintain state. Whenever one of the senders sends
a message, he must inform all the other senders so they can update their state
accordingly, which may not be possible, or significantly slow down communi-
cation. Moreover, the guarantees of [MPSW10] only apply to adversaries that
operate in a totally “online” fashion. The error tolerance guarantees break down
if an adversary is able to corrupt a codeword after seeing a subsequently encoded
message. In our construction, the sender and receiver are both stateless, so these
issues do not arise.

One drawback of our construction compared to [MPSW10] is that our con-
struction is not applicable in the high-error regime (error rates above 1/4 for
binary codes or 1/2 for large alphabet codes). However, over large alphabets we
match the performance of [MPSW10] for all error rates below 1/2.

2 Preliminaries

2.1 Combinatorics

Definition 4. The 𝑖𝑡ℎ falling factorial of 𝑛 ∈ R is (𝑛)𝑖
def
= 𝑛 ·(𝑛−1) · · · (𝑛−𝑖+1).

Definition 5. The 𝑞-ary entropy function 𝐻𝑞 : [0, 1]→ [0, 1] is defined as

𝐻𝑞(𝑥)
def
= 𝑥 log𝑞(𝑞 − 1)− 𝑥 log𝑞 𝑥− (1− 𝑥) log𝑞(1− 𝑥).

We write 𝐻∞(𝑥) to denote lim𝑞→∞𝐻𝑞(𝑥), which is equal to 𝑥. If we write 𝐻(𝑥),
omitting the subscript, we mean 𝐻2(𝑥) by default.

Definition 6. For any alphabet 𝛴, any 𝑛, and any 𝑢, 𝑣 ∈ 𝛴𝑛, the Hamming
distance between 𝑢 and 𝑣, denoted 𝛥(𝑢, 𝑣), is

𝛥(𝑢, 𝑣)
def
=

⃒⃒⃒{︀
𝑖 ∈ [𝑛] : 𝑢𝑖 ̸= 𝑣𝑖

}︀⃒⃒⃒
.

When 𝛥(𝑢, 𝑣) ≤ 𝛿𝑛, we write 𝑢 ≈𝛿 𝑣. If 𝑆 is a set, we write 𝛥(𝑢, 𝑆) to denote
min𝑣∈𝑆 𝛥(𝑢, 𝑣).



work setup noise decoding rate assumptions

This paper URS P/poly unique arbitrarily close to
1− 𝑝 for large alpha-
bets

two-input
correlation
intractablility

[GS16] URS SIZE(𝑛𝑐) list arbitrarily close to
1−𝐻(𝑝)

no assumptions

[SS16] none SIZE(𝑛𝑐) list arbitrarily close to
1−𝐻(𝑝)

PRGs for small
circuits

[SS20] none SPACE(𝑛𝛿)unique arbitrarily close to
1−𝐻(𝑝)

none

[MPSW10] public key P/poly unique matches list decoding
radius

stateful sender
and one-way
functions

[OPS07] private
shared ran-
domness

P/poly local 𝛺(1) (for error rate
𝛺(1))

one-way func-
tions

[HOSW11] public key P/poly local 𝛺(1) (for error rate
𝛺(1))

public-key en-
cryption

[BGGZ19] URS P/poly local correc-
tion

𝛺(1) (for error rate
𝛺(1))

collision-
resistant hash
function

[Lip94] private
shared ran-
domness

P/poly unique matches BSC chan-
nel

stateful sender
and one-way
functions

Table 1. Summary of related work. The column “message” refers to how the message
are generated. The column “noise” describes the computational power of the adversary
adding noise. URS stands for uniform random string (shared publicly between the
sender, receiver, and adversary), BSC for binary symmetric channel, and PRG for
pseudorandom generator.

2.2 Codes

Definition 7. A deterministic 𝑞-ary code is a function 𝐶 : [𝐾]→ [𝑞]𝑛, where 𝑛 is
called the block length of 𝐶, [𝐾] is called the message space, and [𝑞] is called the
alphabet. The distance of 𝐶 is the minimum Hamming distance between 𝐶(𝑚)
and 𝐶(𝑚′) for distinct 𝑚,𝑚′ ∈ [𝐾]. A probabilistic 𝑞-ary code of block length 𝑛

and message space [𝐾] is a randomized function 𝒞 : [𝐾]
$→ [𝑞]𝑛.

When discussing the asymptotic performance of (deterministic or probabilis-
tic) codes, it makes sense to consider ensembles of codes {𝐶𝑖 : [𝐾𝑖]→ [𝑞𝑖]

𝑛𝑖} with
varying message spaces, block lengths, and alphabet sizes. We will assume sev-
eral restrictions on 𝐾𝑖, 𝑛𝑖, and 𝑞𝑖 that rule out various pathologies. Specifically,
we will assume that:



– 𝐾𝑖, 𝑞𝑖, and 𝑛𝑖 increase weakly monotonically with 𝑖 and are computable from
𝑖 in polynomial time (i.e. in time polylog(𝑖)).

– 𝑞𝑖 is at most polylog(𝐾𝑖).
– There is a polynomial-time algorithm 𝐸 that given (𝑖, 𝑥) for 𝑥 ∈ [𝐾𝑖] outputs

𝐶𝑖(𝑥).
– The limit 𝑟 = lim𝑖→∞

log𝐾𝑖

𝑛𝑖·log 𝑞𝑖
exists with 𝑟 ∈ (0, 1). We call 𝑟 the rate of the

ensemble.
– lim sup𝑖→∞

log𝐾𝑖+1

log𝐾𝑖
= 1. This is important so that the cost of padding (to

encode arbitrary-length messages) is insignificant.

One implication of these restrictions is that without loss of generality we can
assume that {𝐾𝑖}𝑖∈Z+ =

{︀
2𝑘
}︀
𝑘∈Z+ and we can index our codes by 𝑘 rather than

by 𝑖.

Definition 8. We say that an ensemble of codes
{︀
𝐶𝑘 : {0, 1}𝑘 → [𝑞𝑘]𝑛𝑘

}︀
𝑘∈Z+

is combinatorially 𝜌-list decodable if for any 𝑦 ∈ [𝑞𝑘]𝑛𝑘 , there are at most poly(𝑘)
values of 𝑚 ∈ {0, 1}𝑘 for which 𝐶𝑘(𝑚) ≈𝜌 𝑦. If there is a polynomial-time
algorithm that outputs all such 𝑚 given 𝑦 (and 1𝑘), we say that {𝐶𝑘} is efficiently
𝜌-list decodable.

2.3 Pseudorandomness

Definition 9. Random variables 𝑋1, . . . , 𝑋𝑛 are said to be 𝑡-wise independent if
for any set 𝑆 ⊆ [𝑛] with size |𝑆| = 𝑡, the random variables {𝑋𝑖}𝑖∈𝑆 are mutually
independent.

Definition 10. Discrete random variables 𝑋1, . . . , 𝑋𝑛 are said to be 𝑡-wise 𝛽-
dependent in Rényi∞-divergence if for all sets 𝑆 ⊆ [𝑛] of size |𝑆| = 𝑡, it holds
for all (𝑥𝑖)𝑖∈𝑆 that

Pr

[︃⋀︁
𝑖∈𝑆

𝑋𝑖 = 𝑥𝑖

]︃
≤ 𝛽 ·

∏︁
𝑖∈𝑆

Pr[𝑋𝑖 = 𝑥𝑖].

Permutations If 𝑋 is a finite set, we write 𝑆𝑋 to denote the set of all permu-
tations of 𝑋.

Definition 11. A family of permutations 𝛱 ⊆ 𝑆𝑋 is said to be 𝑡-wise 𝜖-dependent
if for all distinct 𝑥1, . . . , 𝑥𝑡 ∈ 𝑋, the distribution of

(︀
𝜋(𝑥1), . . . , 𝜋(𝑥𝑡)

)︀
for uni-

formly random 𝜋 ← 𝛱 is 𝜖-close in statistical distance to uniform on {(𝑦1, . . . , 𝑦𝑡) :
𝑦1, . . . , 𝑦𝑡 are distinct.}

To avoid pathological issues regarding the domains of permutation families
(e.g. their sampleability, decidability, and compressability), we will restrict our
attention to permutations on sets of the form {0, 1}𝑘 for 𝑘 ∈ Z+.

Definition 12. We say that an ensemble {𝛱𝑘 ⊆ 𝑆{0,1}𝑘}𝑘∈Z+ of permutation
families is fully explicit if there are poly(𝑘)-time algorithms for:



– sampling a description of 𝜋 ← 𝛱𝑘; and
– computing 𝜋(𝑥) and 𝜋−1(𝑥) given 𝑥 and a description of 𝜋 ∈ 𝛱𝑘.

Imported Theorem 3 ([KNR09]) For any 𝑡 = 𝑡(𝑘) ≤ 𝑘𝑂(1), and any 𝜖 =

𝜖(𝑘) ≥ 2−𝑘
𝑂(1)

, there is a fully explicit 𝑡-wise 𝜖-dependent ensemble {𝛱𝑘 ⊆
𝑆{0,1}𝑘}𝑘∈Z+ of permutation families.

The following non-standard variation on the notion of 𝑡-wise almost-independence
will prove to be more convenient for us.

Definition 13. A probability distribution 𝑃 is said to be 𝛽-close in Rényi∞-
divergence to a distribution 𝑄 if for all 𝑥, 𝑃 (𝑥) ≤ 𝛽 ·𝑄(𝑥).

Definition 14. We say that a family 𝛱 ⊆ 𝑆𝑋 is 𝑡-wise 𝛽-dependent in Rényi∞-
divergence if for all distinct 𝑥1, . . . , 𝑥𝑡 ∈ 𝑋, the distribution of

(︀
𝜋(𝑥1), . . . , 𝜋(𝑥𝑡)

)︀
is 𝛽-close in Rényi∞-divergence to the uniform distribution on 𝑋𝑡.

It is easily verified that any family of permutations 𝛱 ⊆ 𝑆[𝐾] that is 𝑡-wise
𝜖-dependent as in Definition 11 is also 𝑡-wise 𝛽-dependent in Rényi∞-divergence
with 𝛽 = 𝜖 ·𝐾𝑡 + 𝐾𝑡

(𝐾)𝑡
. Thus Theorem 3 gives us the following.

Corollary 1. For any 𝑡 = 𝑡(𝑘) ≤ 𝑘𝑂(1), there is a fully explicit 𝑡-wise 𝑂(1)-
dependent (in Rényi∞-divergence) ensemble {𝛱𝑘 ⊆ 𝑆{0,1}𝑘}𝑘∈Z+ of permutation
families.

3 Multi-input Correlation Intractability

Correlation intractability was introduced by Canetti Goldreich and Halevi [CGH04]
as a way to model a large class of random oracle-like security properties of
hash functions. Roughly speaking, 𝐻 is said to be correlation intractable if for
any sparse relation 𝑅 it is hard to find 𝑥 such that (𝑥,𝐻(𝑥)) ∈ 𝑅. In recent
years, CI hash functions have been under the spotlight with surprising results
on instantiating CI hash families from concrete computational assumptions (e.g.,
[CCR16, KRR17, CCRR18, CCH+18, PS19]).

In this work, we need a stronger multi-input variant of correlation intractabil-
ity. We formulate a notion of multi-input sparsity such that a hash function can
plausibly be correlation intractable for all sparse multi-input relations. Indeed,
we prove that a random oracle has this property.

Definition 15 (Multi-Input Relations). For sets 𝒳 and 𝒴, an ℓ-input re-
lation on (𝒳 ,𝒴) is a subset 𝑅 ⊆ 𝒳 ℓ × 𝒴ℓ.

We say that 𝑅 is 𝑝-sparse if for all 𝑖 ∈ [ℓ], all distinct 𝑥1, . . . , 𝑥ℓ ∈ 𝒳 , and
all 𝑦1, . . . , 𝑦𝑖−1, 𝑦𝑖+1, . . . , 𝑦ℓ ∈ 𝒴, we have

Pr
𝑦𝑖←𝒴

[(𝑥1, . . . , 𝑥ℓ, 𝑦1, . . . , 𝑦ℓ) ∈ 𝑅] ≤ 𝑝.

An ensemble of ℓ-input relations {𝑅𝜆}𝜆∈Z+ is said simply to be sparse if there
is a negligible function 𝑝 : Z+ → R such that each 𝑅𝜆 is 𝑝(𝜆)-sparse.



Remark 1. A natural but flawed generalization of single-input sparsity for an
ℓ-input relation 𝑅 might instead require that for all 𝑥1, . . . , 𝑥ℓ, it holds with over-
whelming probability over a uniform choice of 𝑦1, . . . , 𝑦ℓ that (𝑥1, . . . , 𝑥ℓ, 𝑦1, . . . , 𝑦ℓ)
/∈ 𝑅. Unfortunately this definition does not account for an adversary’s ability to
choose some 𝑥𝑖 adaptively. Indeed, even a random oracle would not be 2-input
correlation intractable under this definition for the relation {(𝑥1, 𝑥2, 𝑦1, 𝑦2) :
𝑥2 = 𝑦1}, which does satisfy the aforementioned “sparsity” property.

Definition 16 (Multi-Input Correlation Intractability). An ensemble
ℋ = {ℋ𝜆}𝜆∈Z+ of function families ℋ𝜆 = {𝐻𝑘 : 𝒳𝜆 → 𝒴𝜆}𝑘∈𝒦𝜆

is ℓ-input(︀
𝑠(·), 𝜖(·)

)︀
-correlation intractable for a relation ensemble {𝑅𝜆 ⊆ 𝒳 ℓ

𝜆 × 𝒴ℓ
𝜆} if for

every size-𝑠(𝜆) adversary 𝒜:

Pr
𝑘←𝒦𝜆

(𝑥1,...,𝑥ℓ)←𝒜(𝑘)

[︁(︀
𝑥1, . . . , 𝑥ℓ, 𝐻𝑘(𝑥1), . . . ,𝐻𝑘(𝑥ℓ)

)︀
∈ 𝑅𝜆

]︁
≤ 𝜖(𝜆).

3.1 Multi-Input Correlation Intractability of Random Oracles

We show that a random oracle is ℓ-input correlation intractable as in Defini-
tion 16.

Theorem 4. Let 𝐹 be a uniformly random function mapping 𝒳 → 𝒴, and let
ℓ ∈ Z+ be a constant. Then, for any 𝑝-sparse ℓ-distinct-input relation 𝑅 on
(𝒳 ,𝒴), and any 𝑇 -query oracle algorithm 𝒜(·), we have

Pr
[︀
𝒜𝐹 outputs (𝑥1, . . . , 𝑥ℓ) ∈ 𝒳 ℓ s.t.

(︀
𝑥1, . . . , 𝑥ℓ, 𝐹 (𝑥1), . . . , 𝐹 (𝑥ℓ)

)︀
∈ 𝑅

]︀
≤ 𝑝 · (𝑇 )ℓ ≤ 𝑝 · 𝑇 ℓ.

Proof overview. We give an overview of the proof which should give some intu-
ition as to why get the expression 𝑝 · 𝑇 ℓ. Fix a set of elements 𝑥1, . . . , 𝑥ℓ then
the probability, over the random oracle, that these elements will be in the rela-
tion with respect with the random oracle is at most 𝑝, which follows from the
definition of sparsity. However, for a longer list of elements of length, we would
need to take into account all the possible tuples of size ℓ in that list, and apply
a union bound. Since the number of queries is bounded by 𝑇 , we get that the
probability is at most 𝑝 · 𝑇 ℓ.

The above arguments work for a fixed list of elements, and gives intuition for
the probability expression achieved in the theorem. However, an oracle algorithm
is allowed to perform adaptive queries where the next query might depend on
the result of the random oracle for previous queries. This makes the proof more
challenging and, in particular, much more technical.

Proof. We begin the proof by stating a few assumptions about the algorithm 𝒜,
and observe that these assumption hold without loss of generality:

– 𝒜 is deterministic;



– 𝒜 never makes repeated queries to 𝐹 nor does𝒜 output non-distinct 𝑥1, . . . , 𝑥ℓ;
and

– If at any point 𝒜 has made queries 𝑞1, . . . , 𝑞𝑗 and received answers 𝑎1, . . . , 𝑎𝑗
such that for some 𝑖1, . . . , 𝑖𝑘 ∈ [𝑗]ℓ the tuple (𝑞𝑖1 , . . . , 𝑞𝑖ℓ , 𝑎𝑖1,, . . . , 𝑎𝑖ℓ) is in
𝑅, then 𝒜 immediately outputs one such tuple (without making any further
queries).

We denote the random variables representing the various queries of the algorithm
𝒜, and their responses from the oracle. Let 𝑀 be a random variable denoting
the number of queries made by 𝒜, let 𝑄1, . . . , 𝑄𝑀 denote the queries made by
𝒜 to 𝐹 , let 𝐴1, . . . , 𝐴𝑀 denote the corresponding evaluations of 𝐹 , let 𝒬 denote
{𝑄1, . . . , 𝑄𝑀}, let 𝑋1, . . . , 𝑋ℓ denote the output of 𝒜𝐹 , and let 𝑌1, . . . , 𝑌ℓ denote
the corresponding evaluations of 𝐹 .

We split our analysis into two cases: either (𝑋1, . . . , 𝑋ℓ) ∈ 𝒬𝑘, or not, mean-
ing that the algorithm did not query all of the ℓ elements it outputs. We argue
about each case separately and at the end combine to the two to a single argu-
ment. We begin with the second case.

Claim. For any algorithm 𝒜 it holds that

Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ

]︀
≤ 𝑝 · ℓ .

where the probability is over the random oracle.

Proof sketch. There exists some component of 𝒜’s output whose image under 𝐹
is independent of 𝒜’s view, and thus is uniformly random. Since 𝑅 is 𝑝-sparse,
this ensures that (𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) is in 𝑅 with probability at most 𝑝.

Proof. Fix any 𝑖 ∈ [ℓ] and any (𝑞1, . . . , 𝑞ℓ, 𝑎1, . . . , 𝑎𝑖−1, 𝑎𝑖+1, . . . , 𝑎ℓ). Since the
relation is 𝑝-sparse, we know that

Pr[(𝑞1, . . . , 𝑞ℓ, 𝑎1, . . . , 𝑎𝑖−1, 𝑌𝑖, 𝑎𝑖+1, . . . , 𝑎ℓ) ∈ 𝑅] ≤ 𝑝 .

Thus, we can write:

Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ

]︀
≤

∑︁
𝑖∈[ℓ]

Pr [(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | 𝑋𝑖 ∈ 𝒬] · Pr[𝑋𝑖 /∈ 𝒬]

≤
∑︁
𝑖∈[ℓ]

∑︁
𝑞1,...,𝑞ℓ

𝑎1,...,𝑎𝑖−1,𝑎𝑖+1,...,𝑎ℓ

Pr [(𝑞1, . . . , 𝑞ℓ, 𝑎1, . . . , 𝑎𝑖−1, 𝑌𝑖, 𝑎𝑖+1, . . . , 𝑎ℓ) ∈ 𝑅] ·

Pr[∀𝑗 ̸= 𝑖 : 𝑋𝑗 = 𝑞𝑗 , 𝑌𝑗 = 𝑎𝑗 , 𝑋𝑖 = 𝑎𝑖] · Pr[𝑋𝑖 /∈ 𝒬]

≤ 𝑝 ·
∑︁
𝑖∈[ℓ]

Pr[𝑋𝑖 /∈ 𝒬] ·
∑︁

𝑞1,...,𝑞ℓ
𝑎1,...,𝑎𝑖−1,𝑎𝑖+1,...,𝑎ℓ

Pr[∀𝑗 ̸= 𝑖 : 𝑋𝑗 = 𝑞𝑗 , 𝑌𝑗 = 𝑎𝑗 , 𝑋𝑖 = 𝑎𝑖]

≤ 𝑝 ·
∑︁
𝑖∈[ℓ]

Pr[𝑋𝑖 /∈ 𝒬] ≤ 𝑝 · ℓ .



We turn to prove the first case, where all the elements in the algorithm’s
output where queried. This case is where we pay the 𝑝 · 𝑇 𝑘 in the probability.

Claim. For any 𝑇 -query algorithm 𝒜 it holds that:

Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ

]︀
≤ 𝑝 · 𝑇 𝑘.

Proof. For any 𝑚 ∈ [𝑇 ], let 𝑍𝑚 be an indicator random variable to the event
that the 𝑚𝑡ℎ query of the algorithm 𝒜 along with some ℓ − 1 previous queries
form an instance in the relation. Formally, we define:

𝑍𝑚 ={︂
1 if ∃𝑖1, . . . , 𝑖ℓ ∈ [𝑚] s.t. (𝑄𝑖1 , . . . , 𝑄𝑖ℓ , 𝐴𝑖1 , . . . , 𝐴𝑖ℓ−1

, 𝐴𝑚) ∈ 𝑅 and 𝑚 ∈ {𝑖1, . . . , 𝑖ℓ}
0 otherwise

.

Observe that using this notation, we have that if the event (𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈
𝑅 implies that there exist an 𝑚 ∈ [𝑇 ] such that 𝑍𝑚 = 1. Using the fact that 𝑅
is 𝑝-sparse, we bound Pr[𝑍𝑚 = 1], for any 𝑚 ∈ [𝑇 ] as follows:

Pr[𝑍𝑚] = 1

Pr[∃𝑖1, . . . , 𝑖ℓ ∈ [𝑚] such that (𝑄𝑖1 , . . . , 𝑄𝑖ℓ , 𝐴𝑖1 , . . . , 𝐴𝑖ℓ) ∈ 𝑅 and 𝑚 ∈ {𝑖1, . . . , 𝑖ℓ}]

≤
∑︁

𝑖1,...,𝑖ℓ∈[𝑚], 𝑚∈{𝑖1,...,𝑖ℓ}

Pr[(𝑄𝑖1 , . . . , 𝑄𝑖ℓ , 𝐴𝑖1 , . . . , 𝐴𝑖ℓ) ∈ 𝑅]

≤
∑︁

𝑖1,...,𝑖ℓ∈[𝑚], 𝑚∈{𝑖1,...,𝑖ℓ}

𝑝 ≤ 𝑝 · ℓ · (𝑚− 1)ℓ−1 .

Then, we union bound over all 𝑧𝑚 for 𝑚 ∈ [𝑇 ] and get that

Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ

]︀
≤ Pr[∃𝑚 ∈ [𝑇 ] : 𝑍𝑚 = 1]

≤
𝑇∑︁

𝑚=1

Pr[𝑍𝑚 = 1] ≤
𝑇∑︁

𝑚=1

𝑝 · ℓ · (𝑚− 1)ℓ−1 ≤ 𝑝 · (𝑇 )ℓ .

Finally, using the two claims we get that

Pr [(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅]

= Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ

]︀
· Pr[(𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ]

+ Pr
[︀
(𝑋1, . . . , 𝑋ℓ, 𝑌1, . . . , 𝑌ℓ) ∈ 𝑅 | (𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ

]︀
· Pr[(𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ]

≤ 𝑝 · (𝑇 )ℓ · Pr[(𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ] + 𝑝 · ℓ · Pr[(𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ]

≤ 𝑝 · (𝑇 )ℓ · Pr[(𝑋1, . . . , 𝑋ℓ) ∈ 𝒬ℓ] + 𝑝 · (𝑇 )ℓ · Pr[(𝑋1, . . . , 𝑋ℓ) /∈ 𝒬ℓ]

= 𝑝 · (𝑇 )ℓ ≤ 𝑝 · 𝑇 ℓ .

4 Our Construction

We have defined the notion of a multi-input correlation intractable hash, and
showed that they can be constructed in the random oracle model. We now con-
struct a seeded family of codes that is pseudouniquely decodable against a large



fraction of errors, using 2-input correlation intractable hash functions as a cen-
tral tool (in a black-box way). Loosely speaking, our construction starts with
any efficiently list-decodable code 𝒞 : {0, 1}𝑘 → [𝑞]𝑛, and modifies it in several
steps.

1. We first apply a decodability- and rate-preserving seeded transformation to
𝒞 to obtain (a seeded family of) stochastic codes in which with all pairs of
messages are mapped to far apart codewords with overwhelmingly probabil-
ity.
Specifically, the seed is (loosely speaking) a pseudorandom permutation
𝜋 : {0, 1}𝑘 → {0, 1}𝑘, and the stochastic code maps 𝑚′ ∈ {0, 1}𝑘−ℓ to

𝒞
(︁
𝜋
(︀
𝑚′‖𝑟

)︀)︁
for uniformly random 𝑟 ← {0, 1}ℓ, where ℓ satisfies 𝜔(𝑘) ≤

ℓ ≤ 𝑜(𝑘).
2. We derandomize these codes by generating randomness deterministically as

a hash of the message.

More formally, we will consider the following parameterized construction of
a seeded code family.

Construction 5 Suppose that

– 𝒞 = {𝐶𝑘 : {0, 1}𝑘 → [𝑞𝑘]𝑛𝑘}𝑘∈Z+ is a fully explicit ensemble of codes,
– 𝛱 = {𝛱𝑘 ⊆ 𝑆{0,1}𝑘}𝑘∈Z+ is a fully explicit ensemble of permutation families,

and
– ℋ = {ℋ𝑘} is a fully explicit ensemble of hash function families, where func-

tions in ℋ𝑘 map {0, 1}𝑘−ℓ𝑘 to {0, 1}ℓ𝑘 for some ℓ = ℓ𝑘 satisfying 𝜔(log 𝑘) ≤
ℓ𝑘 ≤ 𝑜(𝑘).

Then we define a seeded family of codes 𝒮𝒞[𝒞, 𝛱,ℋ] by the following algorithms
(Setup,Enc):

– Setup takes 1𝑘 as input, samples 𝜋 ← 𝛱𝑘 and ℎ← ℋ𝑘, and outputs (𝜋, ℎ).
– Enc takes (𝜋, ℎ) as input, as well as a message 𝑚 ∈ {0, 1}𝑘−ℓ, and outputs

𝐶𝑘

(︁
𝜋
(︀
𝑚,ℎ(𝑚)

)︀)︁
.

𝒮𝒞[𝒞, 𝛱,ℋ] inherits several basic properties from 𝒞, including alphabet size
and block length. We only consider hash family ensembles {ℋ𝑘} in which the
output length ℓ𝑘 of functions in ℋ𝑘 satisfies ℓ𝑘 ≤ 𝑜(𝑘). With such parameters,
the resulting coding scheme 𝒮𝒞[𝒞, 𝛱,ℋ] has the same rate as 𝒞.

4.1 From 2-Input Correlation Intractability to Pseudodistance

In this section, we show that if 𝒞 is a sufficiently good ensemble of codes, ℋ is
a two-input correlation intractable hash with an appropriate output length, and
𝛱 is pseudorandom, then 𝒮𝒞[𝒞, 𝛱,ℋ] has high pseudodistance.

Proposition 1. For any:



– rate-𝑟 (combinatorially) 𝜌-list decodable ensemble of codes {𝐶𝑘 : {0, 1}𝑘 →
[𝑞𝑘]𝑛𝑘}𝑘∈Z+ ;

– ensemble 𝛱 = {𝛱𝑘 ⊆ 𝑆{0,1}𝑘}𝑘∈Z+ of 𝜔(1)-wise 𝑂(1)-dependent (in Rényi∞-
divergence) permutation families;

– 𝛿 ∈ (0, 1) satisfying 𝐻𝑞(𝛿)−𝐻𝑞(𝜌) < 𝑟, where 𝑞 = lim𝑘→∞ 𝑞𝑘

𝒮𝒞[𝒞, 𝛱,ℋ] has relative pseudodistance 𝛿 as long as ℋ is 2-input correlation
intractable for a specific family of sparse relations.

Proof. By construction, 𝒮𝒞[𝒞, 𝛱,ℋ] has relative pseudodistance 𝛿 if and only if
given 𝜋 ← 𝛱𝑘 and ℎ ← ℋ𝑘, it is hard to find 𝑚0,𝑚1 ∈ {0, 1}𝑘−ℓ𝑘 such that

𝐶𝑘

(︁
𝜋
(︀
𝑚0, ℎ(𝑚0)

)︀)︁
≈𝛿 𝐶𝑘

(︁
𝜋
(︀
𝑚1, ℎ(𝑚1)

)︀)︁
, i.e. if

(︀
𝑚0,𝑚1, ℎ(𝑚0), ℎ(𝑚1)

)︀
is in

the relation:

ℛclose
𝒞,𝜋,𝛿,ℓ𝑘 ⊆

(︀
{0, 1}𝑘−ℓ𝑘

)︀2 × (︀
{0, 1}ℓ𝑘

)︀2
ℛclose
𝒞,𝜋,𝛿,ℓ𝑘

def
=

{︁
(𝑚0,𝑚1, 𝑟0, 𝑟1) : 𝐶𝑘

(︁
𝜋
(︀
𝑚0, 𝑟0

)︀)︁
≈𝛿 𝐶𝑘

(︁
𝜋
(︀
𝑚1, 𝑟1

)︀)︁}︁
.

To finish the proof of Proposition 1, it suffices to show that this relation is
sparse with high probability (over the choice of 𝜋 ← 𝛱𝑘), which is established
by the following claim.

Claim. For any:

– rate-𝑟 combinatorially 𝜌-list decodable ensemble of codes {𝐶𝑘 : {0, 1}𝑘 →
[𝑞𝑘]𝑛𝑘}𝑘∈Z+ ;

– 𝛿 ∈ (0, 1) satisfying lim𝑘

(︀
𝐻𝑞𝑘(𝛿)−𝐻𝑞𝑘(𝜌)

)︀
< 𝑟;

for 𝑡𝑘 ≥ 𝜔(1) and all 𝑡𝑘-wise 𝑂(1)-dependent (in Rényi∞-divergence) permuta-
tion families {𝛱𝑘 ⊆ 𝑆{0,1}𝑘} and all ℓ𝑘 ≤ 𝑜(𝑘), it holds for random 𝜋 ← 𝛱𝑘 that

the relation ℛclose
𝐶𝑘,𝜋,𝛿,ℓ𝑘

is 𝑡𝑘 · 2−ℓ𝑘 -sparse with all but 2−𝛺(𝑘·𝑡𝑘) probability.

Proof (Proof of Section 4.1). For simplicity of presentation, we omit the explicit
dependencies of 𝐶𝑘, 𝛱𝑘, 𝑞𝑘, 𝑛𝑘, 𝑡𝑘, and ℓ𝑘 on 𝑘, simply writing 𝐶, 𝑞, 𝑛, 𝑡, and ℓ
respectively in statements that are to be interpreted as holding for all sufficiently
large 𝑘.

Fix any (𝑥1, 𝑦1) ∈ {0, 1}𝑘−ℓ×{0, 1}ℓ and consider the Hamming ball 𝐵 ⊆ [𝑞]𝑛

of relative radius 𝛿 around 𝐶(𝑥1, 𝑦1). Using Theorem 12, we get that 𝐵 can be
covered by 𝑞𝑛·(𝐻𝑞(𝛿)−𝐻𝑞(𝜌)) · poly(𝑛) balls of relative radius 𝜌. By 𝐶’s combina-
torial 𝜌-list decodability, each such ball contains at most poly(𝑘) codewords of
𝐶. The total number of codewords in 𝐶 is at most 2𝑘 ≈ 𝑞𝑟𝑛 which lets us write:

Pr
𝑐←𝐶

[𝑐 ≈𝛿 𝐶(𝑥1, 𝑦1)] ≤ poly(𝑘)·poly(𝑛)·𝑞𝑛·
(︀
𝐻𝑞(𝛿)−𝐻𝑞(𝜌)

)︀
·𝑞−𝑛𝑟 ≤ 𝑞−𝛺(𝑛) ≤ 2−𝛺(𝑘).

Now, observe that as long as 𝑡 ≥ 2, by the 𝑡-wise 𝑂(1)-dependence of 𝛱, there
exists a constant 𝑐 such that for any 𝑥1, 𝑥2, 𝑦1, 𝑦2 with 𝑥1 ̸= 𝑥2 it holds that:

Pr
𝜋

[(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ ℛclose
𝒞,𝜋,𝛿,ℓ] ≤ 𝑐 · Pr

𝑐←𝐶
[𝑐 ≈𝛿 𝐶(𝑥1, 𝑦1)] ≤ 2−𝛺(𝑘) .



Thus, the expected number 𝜇 of 𝑦′2 for which (𝑥1, 𝑥2, 𝑦1, 𝑦
′
2) ∈ ℛclose

𝒞,𝜋,𝛿,ℓ satisfies

𝜇 ≤ 2ℓ−𝛺(𝑘). Applying a concentration bound for 𝑡-wise almost-dependent ran-
dom variables (Theorem 10), we see that for any fixed 𝑥1, 𝑥2, 𝑦1 with 𝑥1 ̸= 𝑥2 it
holds that

Pr
𝜋

[︂
Pr

𝑦2←{0,1}ℓ

[︀
(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ ℛclose

𝒞,𝜋,𝛿,ℓ
]︀
≥ 𝑡 + 1

2ℓ

]︂
≤ 𝑂

(︂
𝜇𝑡

(𝑡 + 1)!

)︂
≤ 𝑂

(︀
𝜇𝑡
)︀
.

Thus, by a union bound over 𝑥1, 𝑥2, 𝑦1, it holds that, with all but 𝑂
(︀
22𝑘−ℓ · 𝜇𝑡

)︀
probability, for all 𝑥1, 𝑥2, 𝑦1,

Pr
𝑦2←{0,1}ℓ

[︀
(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ ℛclose

𝒞,𝜋,𝛿,ℓ
]︀
≤ 𝑡

2ℓ
. (1)

By a symmetric argument, it holds with all but 𝑂
(︀
22𝑘−ℓ · 𝜇𝑡

)︀
probability that

for all 𝑥1, 𝑥2, 𝑦2,

Pr
𝑦1←{0,1}ℓ

[︀
(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ ℛclose

𝒞,𝜋,𝛿,ℓ
]︀
≤ 𝑡

2ℓ
. (2)

Applying one last union bound, Eqs. (1) and (2) hold simultaneously with prob-
ability all but

𝑂
(︀
22𝑘−ℓ · 𝜇𝑡

)︀
≤ 22𝑘−ℓ · 2𝑡

(︀
ℓ−𝛺(𝑘)

)︀
≤ 2−𝛺(𝑡𝑘),

where the last inequality is because ℓ ≤ 𝑜(𝑘) and 𝑡 ≥ 𝜔(1).

This concludes the proof of Proposition 1

4.2 From Efficient List Decodability to Pseudounique Decodability

We next observe that if 𝒞 is efficiently 𝜌-list decodable then so is 𝒞′ = 𝒮𝒞[𝒞, 𝛱,ℋ]
(as long as 𝛱 and ℋ are fully explicit). We show that this, combined with the
high pseudodistance that we have already established, implies that 𝒞′ has a
pseudounique decoding algorithm against a large fraction of errors.

We first define the straight-forward adaptation of list decoding for seeded
families of codes.

Definition 17. We say that Dec is an
(︀
𝐿(·), 𝜌

)︀
-list decoding algorithm for a

seeded family of codes (Setup,Enc) if for all pp in the support of Setup(1𝑘),
all 𝑚 ∈ {0, 1}𝑘, and all 𝑦 ≈𝜌 Enc(pp,𝑚), Dec(pp, 𝑦) is an 𝐿(𝑘)-sized set that
contains 𝑚. We say that Dec is simply a 𝜌-list decoding algorithm if it is an(︀
𝐿(·), 𝜌

)︀
-list decoding algorithm for some 𝐿(𝑘) ≤ 𝑘𝑂(1).

We say that 𝒞 = (Setup,Enc) is efficiently 𝜌-list decodable if there exists a
polynomial-time 𝜌-list decoding algorithm for 𝒞.

Proposition 2. If 𝒞 = {𝐶𝑘} is efficiently 𝜌-list decodable and 𝛱 and ℋ are
fully explicit, then so is 𝒮𝒞[𝒞, 𝛱,ℋ].



Proof. Given public parameters (𝜋, ℎ)← Setup(1𝑘) and a noisy codeword 𝑐′, we
can list-decode by:

1. Running the list-decoding algorithm for 𝐶𝑘 to obtain strings 𝑦1, . . . , 𝑦𝐿 ∈
{0, 1}𝑘,

2. Inverting each 𝑦𝑖 under 𝜋 to obtain pairs (𝑚1, 𝑟1), . . . , (𝑚𝐿, 𝑟𝐿),
3. Outputting the set {𝑚𝑖 : 𝑟𝑖 = ℎ(𝑚𝑖) ∧ 𝐶𝑘(𝜋(𝑚𝑖, 𝑟𝑖)) ≈𝜌 𝑐′}.

Proposition 3. If 𝒞 = (Setup,Enc) is a seeded family of codes that:

– is efficiently list-decodable against a 𝜌 fraction of errors; and
– has relative pseudodistance 𝛿,

then 𝒞 is efficiently pseudouniquely decodable against a 𝜌′ fraction of errors for

any 𝜌′ < min(𝜌, 𝛿
2 ).

Proof. Let 𝑞 = 𝑞(𝑘) and 𝑛 = 𝑛(𝑘) denote the alphabet and block length of
𝒞, respectively. The efficient pseudounique decoding algorithm Dec operates as
follows, given public parameters pp and corrupted codeword 𝑦 ∈ [𝑞]𝑛 as input:

1. Run the list-decoding algorithm for 𝒞 on (pp, 𝑦) to obtain a list of messages
𝑚1, . . . ,𝑚𝐿 (and corresponding codewords 𝑐1, . . . , 𝑐𝐿).

2. Output 𝑚𝑖 for the 𝑖 ∈ [𝐿] minimizing 𝛥(𝑐𝑖, 𝑦).

This algorithm clearly runs in polynomial-time, so it suffices to analyze cor-
rectness. Suppose we have (𝑚, 𝑦) ← 𝒜(pp), where 𝒜 is a polynomial-size ad-
versary and 𝛥

(︀
𝑦,Enc(pp,𝑚)

)︀
≤ 𝜌′𝑛. We first observe that some 𝑚𝑖 = 𝑚 by

the list-decodability of 𝒞. No other 𝑚𝑗 can also have 𝛥
(︀
𝑦,Enc(pp,𝑚)

)︀
≤ 𝜌′𝑛,

because otherwise we would have 𝛥(𝑚𝑖,𝑚𝑗) ≤ 2𝜌′𝑛 < 𝛿𝑛 by the triangle in-
equality. This contradicts the 𝒞’s pseudodistance since the above process for
generating {𝑚1, . . . ,𝑚𝐿} is efficient.

In other words, 𝑐𝑖 is the closest codeword to 𝑦, and the decoding algorithm
outputs 𝑚𝑖 = 𝑚 as desired.

4.3 Main Theorem

We are now ready to state our main theorem:

Theorem 6. For any:

– rate-𝑟 (efficiently) 𝜌-list decodable fully explicit ensemble 𝒞 of codes {𝐶𝑘 :
{0, 1}𝑘 → [𝑞𝑘]𝑛𝑘}𝑘∈Z+ ;

– ensemble 𝛱 = {𝛱𝑘 ⊆ 𝑆{0,1}𝑘}𝑘∈Z+ of 𝜔(1)-wise 𝑂(1)-dependent (in Rényi∞-
divergence) permutation families;

– ensemble ℋ = {ℋ𝑘} of 2-input correlation intractable hash families, where
functions in ℋ𝑘 map {0, 1}𝑘 to {0, 1}𝑘−ℓ𝑘 for 𝜔(log 𝑘) ≤ ℓ𝑘 ≤ 𝑜(𝑘);

– 𝜌′ < min

(︂
𝜌,

𝐻−1
𝑞

(︀
𝑟+𝐻𝑞(𝜌)

)︀
2

)︂
where 𝑞 = lim𝑘→∞ 𝑞𝑘,

𝒮𝒞[𝒞, 𝛱,ℋ] is efficiently pseudouniquely decodable against a 𝜌′ fraction of errors.

Proof. Follows immediately by combining Propositions 1 to 3.



4.4 Instantiations with Known Codes

Finally, we apply Theorem 6 with some known codes, first recalling applicable
results from coding theory. We focus on large alphabets (𝑞𝑘 → ∞) and binary
alphabets (𝑞𝑘 = 2).

Imported Theorem 7 ([GR08]) For all 𝑟, 𝜌 ∈ (0, 1) satisfying 𝑟 + 𝜌 < 1,
there is a rate-𝑟, efficiently 𝜌-list decodable, fully explicit ensemble of codes {𝐶𝑘 :
{0, 1}𝑘 → [𝑞𝑘]𝑛𝑘}𝑘∈Z+ with 𝑞𝑘 ≤ poly(𝑘).

Imported Theorem 8 ([GR09]) For all 𝑟, 𝜌 satisfying 0 < 𝜌 < 1/2 and

0 < 𝑟 < 𝑅BZ(𝜌)
def
= 1−𝐻(𝜌)− 𝜌 ·

∫︁ 1−𝐻(𝜌)

0

𝑑𝑥

𝐻−1(1− 𝑥)
, (3)

there is a rate-𝑟, efficiently 𝜌-list decodable, fully explicit ensemble of codes {𝐶𝑘 :
{0, 1}𝑘 → {0, 1}𝑛𝑘}𝑘∈Z+ . The bound of Eq. (3) is called the Blokh-Zyablov bound.

Plugging these codes into Theorem 6, we get

Corollary 2. For all 𝑟, 𝜌 with 𝑟+𝜌 < 1, there is a rate-𝑟 seeded family of codes
(with alphabet size 𝑞𝑘 ≤ poly(𝑘)), that is efficiently pseudouniquely decodable
against a 𝜌 fraction of errors.

This result should be contrasted with the Singleton bound, which states that if
rate-𝑟 code is uniquely decodable against a 𝜌 fraction of errors, then 𝑟 + 2𝜌 ≤ 1.

Corollary 3. For all 0 < 𝜌 < 1/2 and all 0 < 𝑟 < 𝑅BZ(𝜌), there is a rate-𝑟
seeded family of binary codes that is efficiently pseudouniquely decodable against

a min
(︁
𝜌,

𝐻−1
(︀
𝑟+𝐻(𝜌)

)︀
2

)︁
fraction of errors.
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A Limited Independence Tail Bound

We rely on the following:

Imported Theorem 9 ([LL14]) Let 𝑋1, . . . , 𝑋𝑁 be {0, 1}-valued random vari-
ables, let 𝑡, 𝜏 ∈ Z+ satisfy 0 < 𝑡 < 𝜏 < 𝑁 . Then

Pr

[︃
𝑁∑︁
𝑖=1

𝑋𝑖 ≥ 𝜏

]︃
≤ 1(︀

𝜏
𝑡

)︀ · ∑︁
𝐴∈([𝑁]

𝑡 )

E

[︃∏︁
𝑖∈𝐴

𝑋𝑖

]︃
.



We apply this theorem to obtain a concentration bound on 𝑡-wise almost-dependent
random variables.

Theorem 10. Let 𝑋1, . . . , 𝑋𝑛 be {0, 1}-valued random variables that are 𝑡-wise
𝛽-dependent in Rényi∞-divergence with E [

∑︀
𝑖 𝑋𝑖] = 𝜇.

Then for any 𝜏 ∈ Z+ with 𝜏 > 𝜇,

Pr

[︃∑︁
𝑖

𝑋𝑖 ≥ 𝜏

]︃
≤ 𝛽 · 𝜇𝑘

(𝜏)𝑘
,

where 𝑘 = min(𝑡, ⌊𝜏 − 𝜇⌋) and (𝜏)𝑘 = 𝜏 · (𝜏 − 1) · · · (𝜏 − 𝑘 + 1) denotes the 𝑘𝑡ℎ

falling factorial of 𝜏 .

Proof. We invoke Theorem 9. For any 𝑘 < 𝜏 and 𝑘 ≤ 𝑡, we have

Pr

[︃
𝑁∑︁
𝑖=1

𝑋𝑖 ≥ 𝜏

]︃
≤

(︂
𝜏

𝑘

)︂−1
·

∑︁
𝐴∈([𝑛]

𝑘 )

E

[︃∏︁
𝑖∈𝐴

𝑋𝑖

]︃

≤ 𝛽 ·
(︂
𝜏

𝑘

)︂−1
·

∑︁
𝐴∈([𝑛]

𝑘 )

∏︁
𝑖∈𝐴

E [𝑋𝑖] (by 𝑘-wise 𝛽-dependence)

= 𝛽 ·
(︂
𝜏

𝑘

)︂−1
·

∑︁
1≤𝑖1<···<𝑖𝑘≤[𝑛]

∏︁
𝑗∈[𝑘]

E
[︀
𝑋𝑖𝑗

]︀
≤ 𝛽

𝑘!
·
(︂
𝜏

𝑘

)︂−1
·

∑︁
distinct 𝑖1,...,𝑖𝑘

∏︁
𝑗∈[𝑘]

E
[︀
𝑋𝑖𝑗

]︀
≤ 𝛽

𝑘!
·
(︂
𝜏

𝑘

)︂−1
·

∑︁
𝑖1,...,𝑖𝑘

∏︁
𝑗∈[𝑘]

E
[︀
𝑋𝑖𝑗

]︀
=

𝛽

𝑘!
·
(︂
𝜏

𝑘

)︂−1
· 𝜇𝑘

= 𝛽 · 𝜇𝑘

(𝜏)𝑘
.

This is minimized by picking 𝑘 ≤ 𝑡 as large as possible subject to 𝜏 − 𝑘 + 1 ≥ 𝜇,
i.e. 𝑘 = min(𝑡, ⌊𝜏 − 𝜇 + 1⌋).

B Covering Number Bounds

Definition 18. 𝑞-ary 𝑛-dimensional Hamming space is the metric space ([𝑞]𝑛, 𝛥),
where 𝛥(𝑥, 𝑦) =

⃒⃒
{𝑖 : 𝑥𝑖 ̸= 𝑦𝑖}

⃒⃒
.

Definition 19. In a metric space (𝑋, 𝑑), the ball of radius 𝑟 centered at 𝑥, which
we denote by 𝐵𝑟(𝑥), is the set {𝑦 : 𝑑(𝑥, 𝑦) ≤ 𝑟}. The sphere of radius 𝑟 centered
at 𝑥, which we denote by 𝑆𝑟(𝑥), is {𝑦 : 𝑑(𝑥, 𝑦) = 𝑟}.



Definition 20. The 𝑞-ary entropy function is 𝐻𝑞(𝑥)
def
= 𝑥 log𝑞(𝑞−1)−𝑥 log𝑞(𝑥)−

(1− 𝑥) log𝑞(1− 𝑥).

The following bounds are well-known.

Fact 11 In 𝑞-ary 𝑛-dimensional Hamming space, we have 𝑞𝑛·𝐻𝑞(𝑟/𝑛) · 𝑛−𝑂(1) ≤
|𝐵𝑟(𝑥)| ≤ 𝑞𝑛·𝐻𝑞(𝑟/𝑛) for all 𝑟 ≤ 𝑛 · (1− 1/𝑞).

Fact 12 In 𝑞-ary 𝑛-dimensional Hamming space, any ball of radius 𝑟1 ≤ 𝑛 ·(1−
1/𝑞) can be covered by poly(𝑛) · ln(𝑞) · 𝑞𝑛·

(︀
𝐻𝑞(𝑟1/𝑛)−𝐻𝑞(𝑟0/𝑛)

)︀
balls of radius 𝑟0

for any 𝑟0 ≤ 𝑟1.
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