
Asynchronous Byzantine Agreement with
Subquadratic Communication

Erica Blum1, Jonathan Katz1⋆, Chen-Da Liu-Zhang2, and Julian Loss1

1 University of Maryland
erblum@cs.umd.edu

{jkatz2,lossjulian}@gmail.com
2 ETH Zurich

lichen@inf.ethz.ch

Abstract. Understanding the communication complexity of Byzantine
agreement (BA) is a fundamental problem in distributed computing. In
particular, for protocols involving a large number of parties (as in, e.g.,
the context of blockchain protocols), it is important to understand the
dependence of the communication on the number of parties n. Although
adaptively secure BA protocols with o(n2) communication are known in
the synchronous and partially synchronous settings, no such protocols
are known in the fully asynchronous case.
We show asynchronous BA protocols with (expected) subquadratic com-
munication complexity tolerating an adaptive adversary who can corrupt
f < (1− ϵ)n/3 of the parties (for any ϵ > 0). One protocol assumes ini-
tial setup done by a trusted dealer, after which an unbounded number
of BA executions can be run; alternately, we can achieve subquadratic
amortized communication with no prior setup. We also show that some
form of setup is needed for (non-amortized) subquadratic BA tolerating
Θ(n) corrupted parties.
As a contribution of independent interest, we show a secure-computation
protocol in the same threat model that has o(n2) communication when
computing no-input functionalities with short output (e.g., coin tossing).

1 Introduction

Byzantine agreement (BA) [31] is a fundamental problem in distributed comput-
ing. In this context, n parties wish to agree on a common output even when f
of those parties might be adaptively corrupted. Although BA is a well-studied
problem, it has recently received increased attention due to its application to
blockchain (aka state machine replication) protocols. Such applications typically
involve a large number of parties, and it is therefore critical to understand how
the communication complexity of BA scales with n. While protocols with adap-
tive security and o(n2) communication complexity have been obtained in both
the synchronous [29] and partially synchronous [1] settings, there are currently
no such solutions for the asynchronous model.1 This leads us to ask:
⋆ Portions of this work were done while at George Mason University.
1 Tolerating f < n/3 static corruptions is easy; see Section 1.1.

Is it possible to design an asynchronous BA protocol with subquadratic
communication complexity that tolerates Θ(n) adaptive corruptions?

We give both positive and negative answers to this question.
Positive results. We show asynchronous BA protocols with (expected) sub-
quadratic communication complexity that can tolerate adaptive corruption of
any f < (1 − ϵ)n/3 of the parties, for arbitrary ϵ > 0. (This corruption thresh-
old is almost optimal, as it is known [7] that asynchronous BA is impossible
altogether for f ≥ n/3, even assuming prior setup and static corruptions.) Our
solutions rely on two building blocks, each of independent interest:
1. We show a BA protocol ΠBA tolerating f adaptive corruptions and having

subquadratic communication complexity. This protocol assumes prior setup
by a trusted dealer for each BA execution, but the size of the setup is inde-
pendent of n.

2. We construct a secure-computation protocol ΠMPC tolerating f adaptive
corruptions, and relying on a subquadratic BA protocol as a subroutine. For
the special case of no-input functionalities, the number of BA executions
depends only on the security parameter, and the communication complexity
is subquadratic when the output length is independent of n.

We can combine these results to give an affirmative answer to the original ques-
tion. Specifically, using a trusted dealer, we can achieve an unbounded number
of BA executions with o(n2) communication per execution. The idea is as fol-
lows. Let L be the number of BA executions required by ΠMPC for computing a
no-input functionality. The dealer provides the parties with the setup needed for
L+ 1 executions of ΠBA; the total size of this setup is linear in L but indepen-
dent of n. Then, each time the parties wish to carry out Byzantine agreement,
they will use one instance of their setup to run ΠBA, and use the remaining L
instances to refresh their initial setup by running ΠMPC to simulate the dealer.
Since the size of the setup for ΠBA is independent of n, the total communication
complexity is subquadratic in n.

Alternately, we can avoid a trusted dealer (though we do still need to assume
a PKI) by having the parties run an arbitrary adaptively secure protocol to gen-
erate the initial setup. This protocol may not have subquadratic communication
complexity; however, once it is finished the parties can revert to the solution
above which has subquadratic communication per BA execution. Overall, this
gives BA with amortized subquadratic communication.
Impossibility result. We justify our reliance on a trusted dealer by showing
that some form of setup is necessary for (non-amortized) subquadratic BA tol-
erating Θ(n) corrupted parties. Moreover, this holds even when secret channels
and erasures are available.

1.1 Related Work
The problem of BA was introduced by Lamport, Shostak and Pease [31]. Without
some form of setup, BA is impossible (even in a synchronous network) when

2

f ≥ n/3. Fischer, Lynch, and Patterson [23] ruled out deterministic protocols
for asynchronous BA even when f = 1. Starting with the work of Rabin [38],
randomized protocols for asynchronous BA have been studied in both the setup-
free setting [14, 34] as well as the setting with a PKI and a trusted dealer [11].

Dolev and Reischuk [21] show that any BA protocol achieving subquadratic
communication complexity (even in the synchronous setting) must be random-
ized. BA with subquadratic communication complexity was first studied in the
synchronous model by King et al., who gave setup-free almost-everywhere BA
protocols with polylogarithmic communication complexity for the case of f <
(1 − ϵ)n/3 static corruptions [30] and BA with O(n1.5) communication com-
plexity for the same number of adaptive corruptions [29]. Subsequently, several
works [32, 33, 35, 1, 26] gave improved protocols with subquadratic communica-
tion complexity (in the synchronous model with an adaptive adversary) using the
“player replaceability paradigm,” which requires setup in the form of verifiable
random functions.

Abraham et al. [1] show a BA protocol with adaptive security and sub-
quadratic communication complexity in the partially synchronous model. They
also give a version of the Dolev-Reischuk bound that rules out subquadratic BA
(even with setup, and even in the synchronous communication model) against
a strong adversary who is allowed to remove messages sent by honest parties
from the network after those parties have been adaptively corrupted. Our lower
bound adapts their ideas to the standard asynchronous model where honest par-
ties’ messages can be arbitrarily delayed, but cannot deleted once they are sent.
(We refer to the work of Garay et al. [24] for further discussion of these two mod-
els.) In concurrent work, Rambaud [39] proves an impossibility result similar to
our own; we refer to Section 7 for further discussion.

Cohen et al. [19] show an adaptively secure asynchronous BA protocol with
o(n2) communication. However, they consider a non-standard asynchronous model
in which the adversary cannot arbitrarily schedule delivery of messages. In par-
ticular, the adversary in their model cannot reorder messages sent by honest
parties in the same protocol step. We work in the standard asynchronous model.
On the other hand, our work requires stronger computational assumptions and
a trusted dealer (unless we settle for amortized subquadratic communication
complexity).

We remark for completeness that asynchronous BA with subquadratic com-
munication complexity for a static adversary corrupting f < n/3 of the parties is
trivial using a committee-based approach, assuming a trusted dealer. Roughly,
the dealer chooses a random committee of Θ(κ) parties (where κ is a security
parameter) who then run BA on behalf of everyone. Achieving subquadratic BA
without any setup in the static-corruption model is an interesting open question.

Asynchronous secure multi-party computation (MPC) was first studied by
Ben-Or, Canetti and Goldreich [4]. Since then, improved protocols have been
proposed with both unconditional [40, 37, 36] and computational [27, 28, 16, 17]
security. These protocols achieve optimal output quality, and incur a total com-
munication complexity of at least Θ(n3κ) assuming the output has length κ.

3

Our MPC protocol gives a trade-off between the communication complexity and
the output quality. In particular, we achieve subquadratic communication com-
plexity when the desired output quality is sublinear (as in the case of no-input,
randomized functions).

1.2 Overview of the Paper

In Section 2 we discuss our model and recall some standard definitions. We show
how to achieve asynchronous reliable consensus and reliable broadcast with sub-
quadratic communication in Section 3. In Section 4 we present an asynchronous
BA protocol with subquadratic communication complexity, assuming prior setup
by a trusted dealer for each execution. In Section 5 we show a communication-
efficient asynchronous protocol for secure multi-party computation (MPC). We
describe how these components can be combined to give our main results in
Section 6. We conclude with our lower bound in Section 7.

2 Preliminaries and Definitions

We denote the security parameter by κ, and assume κ < n = poly(κ). In all our
protocols, we implicitly assume parties take 1κ as input; in our definitions, we im-
plicitly allow properties to fail with probability negligible in κ. We let ppt stand
for probabilistic polynomial time. We use standard digital signatures, where a
signature on a message m using secret key sk is computed as σ ← Signsk(m); a
signature is verified relative to public key pk by calling Vrfypk(m,σ). For simplic-
ity, we assume in our proofs that the adversary cannot forge valid signatures on
behalf of honest parties. When replacing the signatures with real-world instanti-
ations, our theorems follow except with an additive negligible failure probability.
Model. We consider a setting where n parties P1, . . . , Pn run a distributed
protocol over a network in which all parties are connected via pairwise authen-
ticated channels. We work in the asynchronous model, meaning the adversary
can arbitrarily schedule the delivery of all messages, so long as all messages are
eventually delivered. We consider an adaptive adversary that can corrupt some
bounded number f of the parties at any point during the execution of some
protocol, and cause them to deviate arbitrarily from the protocol specification.
However, we assume the “atomic send” model, which means that (1) if at some
point in the protocol an honest party is instructed to send several messages (pos-
sibly to different parties) simultaneously, then the adversary can corrupt that
party either before or after it sends all those messages, but not in the midst of
sending those messages; and (2) once an honest party sends a message, that mes-
sage is guaranteed to be delivered eventually even if that party is later corrupted.
In addition, we assume secure erasure.

In many cases we assume an incorruptible dealer who can initialize the parties
with setup information in advance of any protocol execution. Such setup may
include both public information given to all parties, as well as private information
given to specific parties; when we refer to the size of a setup, we include the total

4

private information given to all parties but count the public information only
once. A public key infrastructure (PKI) is one particular setup, in which all
parties hold the same vector of public keys (pk1, . . . , pkn) and each honest party
Pi holds the honestly generated secret key ski corresponding to pki.
Byzantine agreement. We include here the standard definition of Byzantine
agreement. Definitions of other primitives are given in the relevant sections.

Definition 1. (Byzantine agreement) Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and parties terminate upon
generating output. Π is an f -secure Byzantine agreement protocol if the following
hold when at most f parties are corrupted:

– Validity: if every honest party has the same input value v, then every honest
party outputs v.

– Consistency: all honest parties output the same value.

3 Building Blocks

In this section we show asynchronous protocols with subquadratic communica-
tion for reliable consensus, reliable broadcast, graded consensus, and coin flip-
ping.

3.1 Reliable Consensus

Reliable consensus is a weaker version of Byzantine agreement where termination
is not required. The definition follows.

Definition 2. (Reliable consensus) Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and parties terminate upon
generating output. Π is an f -secure reliable consensus protocol if the following
hold when at most f parties are corrupted:

– Validity: if every honest party has the same input value v, then every honest
party outputs v.

– Consistency: either no honest party terminates, or all honest parties output
the same value.

We show a reliable consensus protocol ΠRC with subquadratic communica-
tion. The protocol can be viewed as a variant of Bracha’s reliable broadcast
protocol [7, 8] for the case where every party has input. The protocol assumes
prior setup initialized by a trusted dealer. The trusted setup has expected
size O(κ2) and takes the following form. First, the dealer selects two secret
committees C1, C2 by independently placing each party in C1 (resp., C2) with
probability κ/n. Then, for each party Pi in C1 (resp., C2), the dealer generates
a public/private key pair (pk1,i, sk1,i) (resp., (pk2,i, sk2,i)) for a digital signature
scheme and gives the associated private key to Pi; the public keys (but not the
identities of the members of the committees) are given to all parties.

5

The protocol itself is described in Figure 1. It begins by having each party
in C1 send its signed input to all the parties. The parties in C2 then send a
signed ready message on a value v the first time they either (1) receive v from
κ− t parties in C1 or (2) receive ready messages on v from t+ 1 parties in C2.
All parties terminate upon receiving ready messages on the same value from
κ − t parties in C2. Each committee has expected size O(κ), and each member
of a committee sends a single message to all parties; thus, O(κn) messages are
sent (in expectation) during the protocol.

Security relies on the fact that an adversary cannot corrupt too many mem-
bers of C1 (resp., C2) “until it is too late,” except with negligible probability.
For a static adversary this is immediate. For an adaptive adversary this follows
from the fact that each member of a committee sends only a single message and
erases its signing key after sending that message; thus, once the attacker learns
that some party is in a committee, adaptively corrupting that party is useless.

Protocol ΠRC

We describe the protocol from the point of view of a party Pi with input vi,
assuming the setup described in the text. Set t = (1− ϵ) · κ/3.

1. If Pi ∈ C1: Compute σi ← Signsk1,i(vi), erase sk1,i, and send
(echo, (i, vi, σi)) to all parties.

2. If Pi ∈ C2: As long as no ready message has yet been sent, do: upon
receiving (echo, (j, v, σj)) with Vrfypk1,j (v, σj) = 1 on the same value
v from at least κ − t distinct parties, or receiving (ready, (j, v, σj))
with Vrfypk2,j (v, σj) = 1 on the same value v from strictly more than
t distinct parties, compute σi ← Signsk2,i(v), erase sk2,i, and send
(ready, (i, v, σi)) to all parties.

3. Upon receiving (ready, (j, v, σj)) with Vrfypk2,j (v, σj) = 1 on the same
value v from at least κ− t distinct parties and, output v and terminate.

Fig. 1. A reliable consensus protocol, parameterized by ϵ.

Theorem 1. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠRC is an f -
secure reliable consensus protocol with expected setup size O(κ2) and expected
communication complexity O((κ + I) · κn), where I is the size of each party’s
input.

Proof. Recall that t = (1 − ϵ) · κ/3. Say a party is 1-honest if it is in C1 and
is not corrupted when executing step 1 of the protocol, and 1-corrupted if it is
in C1 but corrupted when executing step 1 of the protocol. Define 2-honest and
2-corrupted analogously. Lemma 11 shows that with overwhelming probability
C1 (resp., C2) contains fewer than (1 + ϵ) · κ parties; there are more than κ− t
parties who are 1-honest (resp., 2-honest); and there are fewer than t < κ − t
parties who are 1-corrupted (resp., 2-corrupted). For the rest of the proof we

6

assume these hold. We also use the fact that once a 1-honest (resp., 2-honest)
party P sends a message, that message is the only such message that will be
accepted by honest parties on behalf of P (even if P is adaptively corrupted
after sending that message).

We first prove that ΠRC is f -valid. Assume all honest parties start with the
same input v. Each of the parties that is 1-honest sends an echo message on
v to all other parties, and so every honest party eventually receives valid echo

messages on v from more than κ− t distinct parties. Since there are fewer than
κ− t parties that are 1-corrupted, no honest party receives valid echo messages
on v′ ̸= v from κ− t or more distinct parties. It follows that every 2-honest party
sends a ready message on v to all other parties. A similar argument then shows
that all honest parties output v and terminate.

Toward showing consistency, we first argue that if honest Pi, Pj send ready

messages on vi, vj , respectively, then vi = vj . Assume this is not the case, and let
Pi, Pj be the first honest parties to send ready messages on distinct values vi, vj .
Then Pi (resp., Pj) must have received at least κ− t valid ready messages on vi
(resp., vj). But then at least

(κ− t) + (κ− t) = (1 + ϵ) · κ+ t

valid ready messages were received by Pi, Pj overall. But this is impossible,
since the maximum number of such messages is at most |C2| plus the number of
2-corrupted parties (because 2-honest parties send at most one ready message),
which is strictly less than (1 + ϵ) · κ+ t.

Now, assume an honest party Pi outputs v. Then Pi must have received valid
ready messages on v from at least κ−t distinct parties in C2, more than κ−2t > t
of whom are 2-honest. As a consequence, all 2-honest parties eventually receive
valid ready messages on v from more than t parties, and so all 2-honest parties
eventually send a ready message on v. Thus, all honest parties eventually receive
valid ready messages on v from at least κ− t parties, and so output v also.

3.2 Reliable Broadcast

Reliable broadcast allows a sender to consistently distribute a message to a
set of parties. In contrast to full-fledged broadcast (and by analogy to reliable
consensus), reliable broadcast does not require termination.

Definition 3. (Reliable broadcast) Let Π be a protocol executed by parties
P1, . . . , Pn, where a designated sender P ∗ initially holds input v∗, and parties
terminate upon generating output. Π is an f -secure reliable broadcast protocol if
the following hold when at most f parties are corrupted:

– Validity: if P ∗ is honest at the start of the protocol, then every honest party
outputs v∗.

– Consistency: either no honest party terminates, or all honest parties output
the same value.

7

It is easy to obtain a reliable broadcast protocol ΠRBC (cf. Figure 2) from
reliable consensus: the sender P ∗ simply signs its message and sends it to all
parties, who then run reliable consensus on what they received. In addition to
the setup for the underlying reliable consensus protocol, ΠRBC assumes P ∗ has
a public/private key pair (pk∗, sk∗) with pk∗ known to all other parties.

Protocol ΠRBC

1. P ∗ does: compute σ∗ ← Signsk∗(v
∗), erase sk∗, and send (v∗, σ∗) to all

parties.
2. Upon receiving (v∗, σ∗) with Vrfypk∗(v, σ) = 1, input v to ΠRC (with

parameter ϵ).
3. Upon receiving output v from ΠRC, output v and terminate.

Fig. 2. A reliable broadcast protocol, implicitly parameterized by ϵ.

Theorem 2. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠRBC is an f -
secure reliable broadcast protocol with expected setup size O(κ2) and expected
communication complexity O((κ + I) · κn), where I is the size of the sender’s
input.

Proof. Consistency follows from consistency of ΠRC. As for validity, if P ∗ is
honest at the outset of the protocol then P ∗ sends (v∗, σ∗) to all parties in
step 1; even if P ∗ is subsequently corrupted, that is the only valid message from
P ∗ that other parties will receive. As a result, every honest party runs ΠRC using
input v, and validity of ΠRC implies validity of ΠRBC.

3.3 Graded Consensus

Graded consensus [22] can be viewed as a weaker form of consensus where parties
output a grade along with a value, and agreement is required to hold only if some
honest party outputs a grade of 1. Our definition does not require termination
upon generating output.

Definition 4. (Graded consensus) Let Π be a protocol executed by parties
P1, . . . , Pn, where each party Pi holds an input vi and is supposed to output
a value wi along with a grade gi ∈ {0, 1}. Π is an f -secure graded-consensus
protocol if the following hold when at most f parties are corrupted:

– Graded validity: if every honest party has the same input value v, then
every honest party outputs (v, 1).

– Graded consistency: if some honest party outputs (w, 1), then every honest
party Pi outputs (w, gi).

We formally describe a graded-consensus protocol ΠGC inspired by the graded
consensus protocol of Canetti and Rabin [14], and prove the following theorem
in the full version of the paper.

8

Theorem 3. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠGC is an f -
secure graded-consensus protocol with expected setup size O(κ3) and expected
communication complexity O((κ + I) · κ2n), where I is the size of each party’s
input.

3.4 A Coin-Flip Protocol

We describe here a protocol that allows parties to generate a sequence of random
bits (coins) Coin1, . . . ,CoinT for a pre-determined parameter T . We denote the
sub-protocol to generate the ith coin by CoinFlip(i). Roughly speaking, the pro-
tocol guarantees that (1) when all honest parties invoke CoinFlip(i), all honest
parties output the same value Coini and (2) until the first honest party invokes
CoinFlip(i), the value of Coini is uniform.

Our coin-flip protocol assumes setup provided by a trusted dealer that takes
the following form: For each iteration 1, . . . , T , the dealer chooses uniform Coini ∈
{0, 1}; chooses a random subset Ei of the parties by including each party in Ei

with probability κ/n; and then gives authenticated secret shares of Coini (using
a perfectly secret ⌈κ/3⌉-out-of-|Ei| secret-sharing scheme) to the members of Ei.
(Authentication is done by having the dealer sign the shares.) Since each share
(including the signature) has size O(κ), the size of the setup is O(κ2T).

The coin-flip protocol itself simply involves having the parties in the relevant
subset send their shares to everyone else. The communication complexity is thus
O(κ2n) per iteration.

Lemma 1. Let 0 < ϵ < 1/3 and f ≤ (1− 2ϵ) · n/3. Then as long as at most f
parties are corrupted, CoinFlip(i) satisfies the following:

1. all honest parties obtain the same value Coini,
2. until the first honest party invokes CoinFlip(i), the value of Coini is uniform

from the adversary’s perspective.

Proof. Lemma 11 implies that, except with negligible probability, Ei contains
more than ⌈κ/3⌉ honest parties and fewer than (1 − ϵ) · κ/3 corrupted parties.
The stated properties follow.

4 (Single-Shot) BA with Subquadratic Communication

In this section we describe a BA protocol ΠBA with subquadratic communication
complexity. (See Figure 3.) ΠBA assumes setup that is then used for a single
execution of the protocol. The setup for ΠBA corresponds to the setup required
for O(κ) executions of graded consensus, O(κ) iterations of the coin-flip sub-
protocol, and a single execution of reliable consensus. Using the protocols from
the previous section, ΠBA thus requires setup of size O(κ4) overall.

Following ideas by Mostéfaoui et al. [34], our protocol consists of a sequence
of Θ(κ) iterations, where each iteration invokes a graded-consensus subprotocol
and a coin-flip subprotocol. In each iteration there is a constant probability that

9

Protocol ΠBA

We describe the protocol from the point of view of a party with input
v ∈ {0, 1}.
Set b := v and ready := false. Then for k = 1 to κ+ 1 do:

1. Run ΠGC on input b, and let (b, g) denote the output.
2. Invoke CoinFlip(k) to obtain Coink.
3. If g = 0 then set b := Coink.
4. Run ΠGC on input b, and let (b, g) denote the output.
5. If g = 1 and ready = false, then set ready := true and run ΠRC on input

b.
6. Set k := k + 1 and goto step 1.

Termination: If ΠRC ever terminates with output b′, output b′ and termi-
nate.

Fig. 3. A Byzantine agreement protocol, implicitly parameterized by ϵ.

honest parties reach agreement; once agreement is reached, it cannot be undone
in later iterations. The coin-flip protocol allows parties to adopt the value of a
common coin if agreement has not yet been reached (or, at least, if parties are
unaware that agreement has been reached). Reliable consensus is used so parties
know when to terminate.

We prove security via a sequence of lemmas. Throughout the following, we
fix some value 0 < ϵ < 1/3 and let f ≤ (1 − 2ϵ)n/3 be a bound on the number
of corrupted parties.

Lemma 2. If at most f parties are corrupted during an execution of ΠBA, then
with all but negligible probability some honest party sets ready = true within the
first κ iterations.

Proof. Consider an iteration k of ΠBA such that no honest party set ready = true
in any previous iteration. (This is trivially true in the first iteration). We begin
by showing that some honest party sets ready = true in that iteration with
probability at least 1/2. Consider two cases:

– If some honest party outputs (b, 1) in the first execution of ΠGC during iter-
ation k, then graded consistency of ΠGC guarantees that every other honest
party outputs (b, 1) or (b, 0) in that execution. The value b is independent
of Coink, because b is determined prior to the point when the first honest
party invokes CoinFlip(i); thus, Coink = b with probability 1/2. If that oc-
curs, then all honest parties input b to the second execution of ΠGC and, by
graded validity, every honest party outputs (g, 1) in the second execution
of ΠGC and sets ready = true.

– Say no honest party outputs grade 1 in the first execution of ΠGC during
iteration k. Then all honest parties input Coink to the second execution of
ΠGC and, by graded validity, every honest party outputs (g, 1) in the second
execution of ΠGC and sets ready = true.

10

Thus, in each iteration where no honest party has yet set ready = true, some
honest party sets ready = true in that iteration with probability at least 1/2. We
conclude that the probability that no honest party has set ready = true after κ
iterations is negligible.

Lemma 3. Assume at most f parties are corrupted during execution of ΠBA.
If some honest party executes ΠRC using input b in iteration k, then (1) honest
parties who execute ΠGC in any iteration k′ > k use input b, and (2) honest
parties who execute ΠRC in any iteration k′ ≥ k use input b.

Proof. Consider the first iteration k in which some honest party P sets ready =
true, and let b denote P ’s input to ΠRC. P must have received (b, 1) from the
second execution of ΠGC in iteration k. By graded consistency, all other honest
parties must receive (b, 0) or (b, 1) from that execution of ΠGC as well. Thus,
any honest parties who execute ΠRC in iteration k use input b, and any honest
parties who run2 the first execution of ΠGC in iteration k + 1 will use input b as
well. Graded validity ensures that any honest party who receives output from
that execution of ΠGC will receive (b, 1), causing them to use input b to the next
execution of ΠGC as well as ΠRC (if they execute those protocols), and so on.

Lemma 4. Assume at most f parties are corrupted during an execution of ΠBA.
If some honest party sets ready = true within the first κ iterations and executes
ΠRC using input b, then all honest parties terminate with output b.

Proof. Let k ≤ κ be the first iteration in which some honest party sets ready =
true and executes ΠRC using input b. By Lemma 3, any other honest party who
executes ΠRC must also use input b, and furthermore all honest parties who
execute ΠGC in any subsequent iteration use input b there as well. We now
consider two cases:

– If no honest party terminates before all honest parties receive output from
the second execution of ΠGC in iteration k + 1, then graded validity of ΠGC

ensures that all honest parties receive (b, 1) as output from that execution,
and thus all parties execute ΠRC using input b at this point if they have not
done so already. Validity of ΠRC then ensures that all honest parties output
b and terminate.

– If some honest party P has terminated before all honest parties receive out-
put from the second execution of ΠGC in iteration k + 1, validity of ΠRC

implies that P must have output b. In that case, consistency of ΠRC guar-
antees that all parties will eventually output b and terminate.

This completes the proof.

Theorem 4. Let 0 < ϵ < 1/3 and f ≤ (1 − 2ϵ) · n/3. Then ΠBA is an f -
secure BA protocol with expected setup size O(κ4) and expected communication
complexity O(κ4n).
2 Note that some honest parties may terminate before others, and in particular it may

be the case that not all honest parties run some execution of ΠGC.

11

Proof. By Lemma 2, with overwhelming probability some honest party sets
ready = true within the first κ iterations and thus executes ΠRC using some
input b. It follows from Lemma 4 that all honest parties eventually output b and
terminate. This proves consistency.

Assume all honest parties have the same input v. Unless some honest party
terminates before all honest parties have concluded the first iteration, one can
verify (using graded validity of ΠGC) that in the first iteration all honest parties
output (v, 1) from the first execution of ΠGC; use input v to the second execution
of ΠGC; output (v, 1) from the second execution of ΠGC; and execute ΠRC using
input v. But the only way some honest party could terminate before all honest
parties have concluded the first iteration is if that party executes ΠRC using
input v. Either way, Lemma 4 shows that all honest parties will terminate with
output v, proving validity.

5 MPC with Subquadratic Communication

In this section we give a protocol for asynchronous secure multiparty computa-
tion (MPC). Our protocol uses a Byzantine agreement protocol as a subroutine;
importantly, the number of executions of Byzantine agreement is independent of
the number of parties as well as the output length, as long as the desired input
quality is low enough. Our MPC protocol also relies on a sub-protocol for (a
variant of the) asynchronous common subset problem; we give a definition, and
a protocol with subquadratic communication complexity, in the next section.

5.1 Validated ACS with Subquadratic Communication

A protocol for the asynchronous common subset (ACS) problem [5, 12] allows
n parties to agree on a subset of their initial inputs of some minimum size. We
consider a validated version of ACS (VACS), where it is additionally ensured
that all values in the output multiset satisfy a given predicate Q [15, 10].

Definition 5. Let Q be a predicate, and let Π be a protocol executed by parties
P1, . . . , Pn, where each party outputs a multiset of size at most n, and terminates
upon generating output. Π is an f-secure Q-validated ACS protocol with
ℓ-output quality if the following hold when at most f parties are corrupted
and every honest party’s input satisfies Q:

– Q-Validity: if an honest party outputs S, then each v ∈ S satisfies Q(v) = 1.
– Consistency: every honest party outputs the same multiset.
– ℓ-Output quality: all honest parties output a multiset of size at least ℓ that

contains inputs from at least ℓ − f parties who were honest at the start of
the protocol.

Our VACS protocol Πℓ,Q
VACS (see Figure 4) is inspired by the protocol of Ben-Or

et al. [5]. During the setup phase, a secret committee C is chosen by indepen-
dently placing each party in C with probability s/n, where s = 3

2+ϵℓ and ℓ is

12

the desired output quality. Each party in the committee acts as a sender in a
reliable-broadcast protocol, and then the parties run |C| instances of Byzantine
agreement to agree on the set of reliable-broadcast executions that terminated.
The expected communication complexity and setup size for Πℓ,Q

VACS are thus (in
expectation) a factor of O(ℓ) larger than those for reliable broadcast and Byzan-
tine agreement.

Protocol Πℓ,Q
VACS

We describe the protocol from the point of view of a party P with input v.
We assume prior setup in which a committee C is chosen (see text).

1. Execute |C| instances of reliable broadcast, denoted RBC1, . . . ,RBC|C|.
If P is the ith member of C, then P executes the ith instance of ΠRBC

as the sender using input v.
2. On output vi from RBCi with Q(vi) = 1, if P has not yet begun ex-

ecuting the ith instance BAi of Byzantine agreement, then begin that
execution using input 1.

3. When P has output 1 in ℓ instances of Byzantine agreement, then begin
executing any other instances of Byzantine agreement that have not yet
begun using input 0.

4. Once P has terminated in all instances of Byzantine agreement, let
CoreSet be the indices of those instances that resulted in output 1.
After receiving output vi from RBCi for all i ∈ CoreSet, output the
multiset {vi}i∈CoreSet.

Fig. 4. A VACS protocol (implicitly parameterized by ϵ) with ℓ-output quality and
predicate Q.

Using the protocols from the previous sections, we thus obtain:

Theorem 5. Let 0 < ϵ < 1/3, f ≤ (1 − 2ϵ) · n/3, and ℓ ≤ (1 + ϵ/2) · 2n/3.
Then Πℓ,Q

VACS is an f -secure Q-validated ACS protocol with ℓ-output quality. It
has expected setup size O(ℓκ4) and expected communication complexity O(ℓ ·(I+
κ3) · κn), where I is the size of each party’s input, and uses O(ℓ) invocations of
Byzantine agreement in expectation.

Proof. Say v is in the multiset output by some honest party, where v was output
by RBCi. BAi must have resulted in output 1, which (by validity of BA) can only
occur if some honest party used input 1 when executing BAi. But then Q(v) = 1.
This proves Q-validity of Πℓ,Q

VACS.
By consistency of BA, all honest parties agree on CoreSet. If i ∈ CoreSet,

then BAi must have resulted in output 1 which means that some honest party P
must have used input 1 to BAi. (Validity or BAi ensures that if all honest parties
used input 0, the output of BA must be 0). But then P must have terminated

13

in RBCi; consistency of RBCi then implies that all honest parties eventually
terminate RBCi with the same output vi. Consistency of Πℓ,Q

VACS follows.
Lemma 11 shows that with overwhelming probability there are more than

2+ϵ
3 ·

3
2+ϵℓ = ℓ honest parties in C at step 1 of the protocol. Validity of RBC implies

that in the corresponding instances of RBC, all honest parties terminate with an
output satisfying Q. If every honest party begins executing all the corresponding
instances of BA, those ℓ instances will all yield output 1. The only way all honest
parties might not begin executing all those instances of BA is if some honest party
outputs 1 in some (other) ℓ instances of BA, but then consistency of BA implies
that all honest parties output 1 in those same ℓ instances. We conclude that
every honest party outputs 1 in at least ℓ instances of BA, and so outputs a
multiset S of size at least ℓ. Since each instance of RBC (and so each corrupted
party) contributes at most one value to S, this proves ℓ-output quality.

5.2 Secure Multiparty Computation

We begin by reviewing the definition of asynchronous MPC by Canetti [13]. Let
g be an n-input function, possibly randomized, where if the inputs of the parties
are x = (x1, . . . , xn) then all parties should learn y ← g(x1, . . . , xn). In the real-
world execution of a protocol Π computing g, each party Pi initially holds 1κ

and an input xi, and an adversary A has input 1κ and auxiliary input z. The
parties execute Π, and may be adaptively corrupted byA during execution of the
protocol. At the end of the execution, each honest party outputs its local output
(as dictated by the protocol), and A outputs its view. We let realΠ,A(κ,x, z)
denote the distribution over the resulting vector of outputs as well as the set of
corrupted parties.

Security of Π is defined relative to an ideal-world evaluation of g by a trusted
party. The parties hold inputs as above, and we now denote the adversary by S.
The ideal execution proceeds as follows:

– Initial corruption. S may adaptively corrupt parties and learn their inputs.
– Computation with ℓ-output quality. S sends a set CoreSet ⊆ {P1, . . . , Pn}

of size at least ℓ to the trusted party. In addition, S sends to the trusted
party an input x′

i for each corrupted Pi ∈ CoreSet.
For Pi ̸∈ CoreSet, let x′

i =⊥; if Pi ∈ CoreSet is honest, then let x′
i = xi. The

trusted party computes y ← g(x′
1, . . . , x

′
n) and sends (y,CoreSet) to each

party.
– Additional corruption. S may corrupt additional parties.3
– Output stage. Each honest party outputs (y,CoreSet).
– Post-execution corruption. S may corrupt additional parties, and then

outputs an arbitrary function of its view.

We let idealℓ
g,S(κ,x, z) be the distribution over the vector of outputs and the

set of corrupted parties following an ideal-world execution as above.
3 S learns nothing additional, because we assume secure erasure (in both the ideal-

and real-world executions).

14

Definition 6. Π f -securely computes g with ℓ-output quality if for any ppt
adversary A corrupting up to f parties, there is a ppt adversary S such that:

{idealℓ
g,S(κ,x, z)}κ∈N;x,z∈{0,1}∗ ≈c {realΠ,A(κ,x, z)}κ∈N;x,z∈{0,1}∗ .

We construct an MPC protocol Πℓ
MPC that offers a tradeoff between com-

munication complexity and output quality; in particular, it has subquadratic
communication complexity when the output quality and the output length of
the functionality being computed are sublinear in the number of parties. We
provide a high-level overview of our protocol next, with a full description in
Figure 5.

Let t = (1− ϵ) · κ/3. Our protocol assumes trusted setup as follows:

1. A random committee C is selected by including each party in C indepen-
dently with probability κ/n. This is done in the usual way by giving each
member of the committee a secret key for a signature scheme, and giving
the corresponding public keys to all parties. In addition:
(a) We assume a threshold fully homomorphic encryption (TFHE) scheme [2,

6] TFHE = (KGen,Enc,Dec,Eval) with non-interactive decryption whose
secret key is shared in a t-out-of-|C| manner among the parties in C.
(We refer to Appendix B.1 for appropriate definitions of TFHE.)
Specifically, we assume a TFHE public key ek is given to all parties, while
a share dki of the corresponding secret key is given to the ith party in C.

(b) The setup for Πℓ
MPC includes setup for |C| instances of ΠRBC (with the

ith party in C the sender for the ith instance of ΠRBC), as well as one
instance of ΠRC.

2. All parties are given a list of |C| commitments to each of the TFHE shares dki;
the randomness ωi for the ith commitment is given to the ith member of C.

3. All parties are given the TFHE encryption of a random κ-bit value r. We
denote the resulting ciphertext by crand ← Encek(r).

4. Parties are given the setup for one instance of VACS protocol Πℓ,Q
VACS. We

further assume that each party in the committee that is chosen as part of
the setup for that protocol is given a secret key for a signature scheme, and
all parties are given the corresponding public keys.

5. All parties are given a common reference string (CRS) for a universally com-
posable non-interactive zero-knowledge (UC-NIZK) proof [20] (see below).

The overall expected size of the setup is O((ℓ+ κ) · poly(κ)).
Fix a (possibly randomized) functionality g the parties wish to compute.

We assume without loss of generality that g uses exactly κ random bits (one
can always use a PRG to ensure this). To compute g, each party Pi begins by
encrypting its input xi using the TFHE scheme, and signing the result; it also
computes an NIZK proof of correctness for the resulting ciphertext. The parties
then use VACS (with ℓ-output quality) to agree on a set S containing at least
ℓ of those ciphertexts. Following this, parties carry out a local computation in
which they evaluate g homomorphically using the set of ciphertexts in S as the
inputs and the ciphertext crand (included in the setup) as the randomness. This

15

results in a ciphertext c∗ containing the encrypted result, held by all parties.
Parties in C enable decryption of c∗ by using reliable broadcast to distribute
shares of the decrypted value (along with a proof of correctness). Finally, the
parties use reliable consensus to agree on when to terminate.

In the description above, we have omitted some details. In particular, the
protocol ensures adaptive security by having parties erase certain information
once it is no longer needed. This means, in particular, that we do not need to
rely on equivocal TFHE [18].

In our protocol, parties generate UC-NIZK proofs for different statements.
(Note that UC-NIZK proofs are proofs of knowledge; they are also non-malleable.)
In particular, we define the following languages, parameterized by values (given
to all parties) contained in the setup:

1. (i, ci) ∈ L1 if there exist xi, ri such that ci = Encek(xi; ri).
2. (i, c∗, di) ∈ L2 if di = Decdki

(c∗) and comi = Com(dki;ωi). (Here, comi is
the commitment to dki included in the setup.)

Protocol Πℓ
MPC

Let t = (1− ϵ) · κ/3. We describe the protocol from the point of view of a
party Pi with input xi, assuming the setup described in the text.

1. Compute ci ← Encek(xi) along with a UC-NIZK proof πi that (i, ci) ∈
L1. Erase xi and the randomness used to generate c1 and πi.
Execute Πℓ,Q

VACS using input (i,Signski(ci), ci, πi), where Q(i, σ, c, π) = 1
iff Vrfypki(c, σ) = 1 and π is a correct proof for (i, c). Let S′ denote the
multiset output by Πℓ,Q

VACS. Let S ⊆ S′ be the set obtained by including,
for all i, only the lexicographically first tuple (i, ⋆, ⋆, ⋆) in S′. Let I =
{i | ∃ (i, ⋆, ⋆, ⋆) ∈ S}.

2. Define the circuit Cg taking |I| + 1 inputs, where Cg({xi}i∈I , r) =
g({xi}i∈I , {⊥}i ̸∈I ; r). Compute c∗ := Evalek(Cg, {ci}i∈I , crand).
If Pi ∈ C, compute di := Decdki(c

∗) and a UC-NIZK proof π′
i that

(i, c∗, di) ∈ L2. Erase dki, ωi, and the randomness used to generate π′
i.

Execute |C| instances of ΠRBC. If Pi is the ith member of C, it executes
the ith instance of ΠRBC as the sender using input (i, di, π

′
i).

3. Upon receiving t outputs {(j, dj , π′
j)} from the ΠRBC instances, with

valid proofs and distinct j, compute yi := Rec({dj}) and execute ΠRC

with input yi. When ΠRC terminates with output y, output (y, I) and
terminate.

Fig. 5. An MPC protocol with ℓ-output quality, parameterized by ϵ.

We prove the following theorem in the full version of the paper.

Theorem 6. Let 0 < ϵ < 1/3, f ≤ (1 − 2ϵ) · n/3, and ℓ ≤ (1 + ϵ/2) · 2n/3.
Assuming appropriate security of the NIZK proofs and TFHE, protocol Πℓ

MPC

f -securely computes g with ℓ-output quality. Πℓ
MPC requires setup of expected size

16

O((ℓ+κ) · poly(κ)), has expected communication complexity O((ℓ+κ) · (I +O) ·
poly(κ) · n), where I is the size of each party’s input and O is the size of the
output, and invokes Byzantine agreement O(ℓ) times in expectation.

6 Putting it All Together

The BA protocol ΠBA from Section 4 requires prior setup by a trusted dealer
that can be used only for a single BA execution. Using multiple, independent
instances of the setup it is, of course, possible to support any bounded number
of BA executions. But a new idea is needed to support an unbounded number of
executions.

In this section we discuss how to use the MPC protocol from Section 5 to
achieve this goal. The key idea is to use that protocol to refresh the setup each
time a BA execution is done. We first describe how to modify our MPC protocol
to make it suitable for our setting, and then discuss how to put everything
together to obtain the desired result.

6.1 Securely Simulating a Trusted Dealer

As just noted, the key idea is for the parties to use the MPC protocol from
Section 5 to simulate a trusted dealer. In that case the parties are evaluating a
no-input (randomized) functionality, and so do not need any output quality; let
ΠMPC = Π0

MPC. Importantly, ΠMPC has communication complexity subquadratic
in n.

Using ΠMPC to simulate a dealer, however, requires us to address several
technicalities. As described, ΠMPC evaluates a functionality for which all parties
receive the same output. But simulating a dealer requires the parties to compute
a functionality where parties receive different outputs. The standard approach
for adapting MPC protocols to provide parties with different outputs does not
work in our context: specifically, using symmetric-key encryption to encrypt the
output of each party Pi using a key that Pi provides as part of its input does
not work since ΠMPC has no output quality (and even Πℓ

MPC only guarantees
ℓ-output quality for ℓ < n). Assuming a PKI, we can fix this by using public-key
encryption instead (in the same way); this works since the public keys of the par-
ties can be incorporated into the functionality being computed—since they are
common knowledge—rather than being provided as inputs to the computation.

Even when using public-key encryption as just described, however, additional
issues remain. ΠMPC has (expected) subquadratic communication complexity
only when the output length O of the functionality being computed is sublinear
in the number of parties. Even if the dealer algorithm generates output whose
length is independent of n, naively encrypting output for every party (encrypting
a “null” value of the appropriate length for parties whose output is empty) would
result in output of total length linear in n. Encrypting the output only for parties
with non-empty output does not work either since, in general, this might reveal

17

which parties get output, which in our case would defeat the purpose of the
setup!

We can address this difficulty by using anonymous public-key encryption [3].
Roughly, an anonymous public-key encryption (APKE) scheme has the property
that a ciphertext leaks no information about the public key pk used for encryp-
tion, except to the party holding the corresponding secret key sk (who is able to
decrypt the ciphertext using that key). Using APKE to encrypt the output for
each party who obtains non-empty output, and then randomly permuting the
resulting ciphertexts, allows us to compute a functionality with sublinear out-
put length while hiding which parties receive output. This incurs—at worst—an
additional multiplicative factor of κ in the output length.

Summarizing, we can simulate an arbitrary dealer algorithm in the following
way. View the output of the dealer algorithm as pub, {(i, si)}, where pub rep-
resents the public output that all parties should learn, and each si is a private
output that only Pi should learn. Assume the existence of a PKI, and let pki
denote a public key for an APKE scheme, where the corresponding secret key
is held by Pi. Then use ΠMPC to compute pub, {Encpki(si)}, where the cipher-
texts are randomly permuted. As long as the length of the dealer’s output is
independent of n, the output of this functionality is also independent of n.

6.2 Unbounded Byzantine Agreement with Subquadratic
Communication

We now show how to use the ideas from the previous section to achieve an
unbounded number of BA executions with subquadratic communication. We de-
scribe two solutions: one involving a trusted dealer who initializes the parties
with a one-time setup, and another that does not require a dealer (but does
assume a PKI) and achieves expected subquadratic communication in an amor-
tized sense.

For the first solution, we assume a trusted dealer who initializes the parties
with the setup for one instance of ΠBA and one instance of ΠMPC. (We also
assume a PKI, which could be provided by the dealer as well; however, when we
refer to the setup for ΠMPC we do not include the PKI since it does not need
to be refreshed.) Importantly, the setup for ΠMPC allows the parties to compute
any no-input functionality; the size of the setup is fixed, independent of the size
of the circuit for the functionality being computed or its output length. For an
execution of Byzantine agreement, the parties run ΠBA using their inputs and
then use ΠMPC to refresh their setup by simulating the dealer algorithm. (We
stress that the parties refresh the setup for both ΠBA and ΠMPC.) The expected
communication complexity per execution of Byzantine agreement is the sum of
the communication complexities of ΠBA and ΠMPC. The former is subquadratic;
the latter is subquadratic if we follow the approach described in the previous
section. Thus, the parties can run an unbounded number of subquadratic BA
executions while only involving a trusted dealer once.

Alternately, we can avoid a trusted dealer by having the parties simulate the
dealer using an arbitrary adaptively secure MPC protocol. (We still assume a

18

PKI.) The communication complexity of the initial MPC protocol may be arbi-
trarily high, but all subsequent BA executions will have subquadratic (expected)
communication complexity as above. In this way we achieve an unbounded num-
ber of BA executions with amortized (expected) subquadratic communication
complexity.

7 A Lower Bound for Asynchronous Byzantine
Agreement

We show that some form of setup is necessary for adaptively secure asynchronous
BA with (non-amortized) subquadratic communication complexity. Our bound
holds even if we allow secure erasure, and even if we allow secret channels between
all the parties. (However, we assume an attacker can tell when a message is sent
from one party to another.)

A related impossibility result was shown by Abraham et al. [1, Theorem
4]; their result holds even with prior setup and in the synchronous model of
communication. However, their result relies strongly on an adversary who can
delete messages sent by honest parties after those parties have been adaptively
corrupted. In contrast, our bound applies to the standard communication model
where honest parties’ messages cannot be deleted once they are sent.

In concurrent work [39], Rambaud shows a bound that is slightly stronger
than ours: His result holds even in the partially synchronous model, and rules
out subquadratic communication complexity even with a PKI. We note, however,
that his analysis treats signatures in an idealized manner, and thus it does not
apply, e.g., to protocols using unique signatures for coin flipping.

We provide an outline of our proof that omits several technical details, but
conveys the main ideas. Let Π be a setup-free protocol for asynchronous BA with
subquadratic communication complexity. We show an efficient attacker A who
succeeds in violating the security of Π. The attacker exploits the fact that with
high probability, a uniform (honest) party P will communicate with only o(n)
other parties during an execution of Π. The adversary A can use this to “isolate”
P from the remaining honest parties in the network and cause an inconsistency.
In more detail, consider an execution in which P holds input 1, and the remaining
honest parties S′ all hold input 0. A tricks P into thinking that it is running
in an alternate (simulated) execution of Π in which all parties are honest and
hold input 1, while fooling the parties in S′ into believing they are running an
execution in which all honest parties hold 0 and at most f (corrupted) parties
abort. By validity, P will output 1 and the honest parties in S′ will output 0,
but this contradicts consistency.

To “isolate” P as described, A runs two simulated executions of Π alongside
the real execution of the protocol. (Here, it is crucial that Π is setup-free, so
A can run the simulated executions on behalf of all parties.) A delays messages
sent by honest parties to P in the real execution indefinitely; this is easy to do
in the asynchronous setting. When a party Q ∈ S′ sends a message to P in the
simulated execution, A corrupts Q in the real execution and then sends that

19

message on Q’s behalf. Analogously, when P sends a message to some honest
party Q ∈ S′ in the real execution, A “intercepts” that message and forwards it
to the corresponding party in the simulation. (A subtlety here is that messages
sent between two honest parties cannot be observed via eavesdropping, because
we allow secret channels, and can not necessarily be observed by adaptively
corrupting the recipient Q after it receives the message, since we allow erasure.
Instead, A must corrupt Q before it receives the message sent by P .) It only
remains to argue that, in carrying out this strategy, A does not exceed the
corruption bound.

A BA protocol is (f, δ)-secure if the properties of Definition 1 simultaneously
hold with probability at least δ when f parties are corrupted.

Theorem 7. Let 2
3 < δ < 1 and f ≥ 2. Let Π be a setup-free BA protocol

that is (f, δ)-secure in an asynchronous network. Then the expected number of
messages that honest parties send in Π is at least (3δ−2

8δ)2 · (f − 1)2.

Proof. If f ≥ n/3 the theorem is trivially true (as asynchronous BA is impossi-
ble); thus, we assume f < n/3 in what follows. We present the proof assuming
f is even and show that in this case, the expected number of messages is at
least c2f2. The case of odd f can be reduced to the case of even f since any
(f, δ)-secure protocol is also an (f − 1, δ)-secure protocol.

Let c = 3δ−2
8δ . Fix an (f, δ)-secure protocol Π whose expected number of

messages is less than c2f2. Fix a subset S ⊂ [n] with |S| = f
2 . Let S′ denote the

remaining parties. Consider an execution (Ex1) of Π that proceeds as follows:
At the start of the execution, an adversary corrupts all parties in S and they
immediately abort. The parties in S′ remain honest and run Π using input 0.
By δ-security of Π we have:

Lemma 5. In Ex1 all parties in S′ output 0 with probability at least δ.

Now consider an execution (Ex2) of Π involving an adversary A. (As ex-
plained in the proof intuition, A’s goal is to make P believe it is running in
an execution in which all parties are honest and have input 1, and to make the
honest parties in S′ believe they are running in Ex1.) At the start of the exe-
cution, A chooses a uniform P ∈ S and corrupts all parties in S except for P .
All parties in S′ are initially honest and hold input 0, while P holds input 1. A
maintains two simulated executions that we label red and blue. (See Figure 6.)
In the blue execution, A plays the role of all parties other than P ; all these
virtual parties run Π honestly with input 1. In the red execution, A simulates
an execution in which all parties in S immediately abort, and all parties in S′

run Π honestly with input 0. A uses these two simulations to determine how to
interact with the honest parties in the real execution. Specifically, it schedules
delivery of messages as follows:

– S′ to P , real execution. Messages sent by honest parties in S′ to P in the
real execution are delayed, and delivered only after all honest parties have
generated output.

20

– P to S′, real execution. When P sends a message to an honest party
Q ∈ S′ in the real execution, A delays the message and then corrupts Q.
Once Q is corrupted, A delivers the message to Q in the real execution (and
can then read the message). A also delivers that same message to Q in the
blue simulation.

– S′ to P , blue execution. When a party Q ∈ S′ sends a message m to
P in the blue execution, A corrupts Q in the real execution (if Q was not
already corrupted), and then sends m to P (on behalf of Q) in the real exe-
cution. (Messages that Q may have sent previously to P in the real execution
continue to be delayed.)

– S to P , blue execution. When a party Q ∈ S sends a message m to P in
the blue execution, Q sends m to P in the real execution (recall that parties
in S \ {P} are corrupted in Ex2).

– S′ to S′, real execution. Messages sent by honest parties in S′ to other
parties in S′ in the real execution are delivered normally. If the receiver is
corrupted, the message is relayed to A, who simulates this same message in
the red execution.

– S′ to S \ {P}, real execution. Messages sent by honest parties in S′ to
the (corrupted) parties in S \ {P} in the real execution are ignored.

– S′ to S′, red execution. If a party Q ∈ S′ is corrupted in the real execution,
then whenever a message m is sent by a party Q to another party in S′ in
the red execution, Q sends m in the real execution.
If A would ever need to corrupt more than f parties in total, then it simply

aborts. (However, the real execution continues without any further interference
from A.)
Lemma 6. In Ex2, the distribution of the joint view of all parties in S′ who
remain uncorrupted is identical to the distribution of their joint view in Ex1.
In particular, with probability at least δ in Ex2 all parties in S′ who remain
uncorrupted output 0.
Proof. The only messages received by the parties in S′ in either Ex1 or Ex2 are
those that arise from an honest execution of Π among the parties in S′, all of
whom hold input 0. Moreover, in Ex2 the decision as to whether or not a party
in S′ is corrupted is independent of the joint view of all uncorrupted parties
in S′. The final statement follows from Lemma 5.

We also show that with positive probability, A does not abort.
Lemma 7. In Ex2, A does not abort with probability at least 1− 4c.
Proof. A aborts if it would exceed the corruption bound. Initially, only the f/2
parties in S are corrupted. Let M denote the total number of messages sent
either by the parties in S′ to the parties in S or by parties in S to parties in S′

in the blue execution. By assumption, Exp[M] < c2f2. Let X be the event that
M ≤ c

2f
2. Lemma 9 implies that

Pr[X] ≥ Pr

[
M ≤ Exp[M]

2c

]
≥ 1− 2c.

21

Ex 1
(Input 0)

delivered normally

relayed to/from A

delayed

Key

honest

corrupt

S′

S

Ex 3
(Input 1)

S′

S

S′

S

P

Adversary Real Execution

P

Fig. 6. Adversarial strategy in Ex2. In the real execution (shown at right) corrupted
parties in S interact with P as if they are honest with input 1, and ignore honest
parties in S′. Corrupted parties in S′ interact with P as if they are honest with input 1,
and interact with S′ as if they are honest with input 0. All messages between P and
honest parties in S′ are delayed indefinitely. The adversary maintains two simulated
executions (shown at left) to determine which messages corrupted parties will send in
the real execution.

Let Y be the event that, among the first cf2/2 messages sent by parties in S′ to
parties in S or vice versa, a uniformly chosen P ∈ S sends and/or receives at most
f/2 of those messages. By the pigeonhole principle, at most cf parties in S can
receive and/or send f/2 or more of those messages, and so Pr[Y] ≥ 1− cf/|S| =
1−2c.4 Thus, Pr[X ∧Y] = Pr[X]+Pr[Y]−Pr[X ∪Y] ≥ (1−2c)+(1−2c)−1 =
1− 4c. The lemma follows by observing that when X and Y occur, at most f/2
parties in S′ are corrupted.

Finally, consider an execution (Ex3) in which a uniform P ∈ S is chosen and
then Π is run honestly with all parties holding input 1.

Lemma 8. In Ex2, conditioned on the event that A does not abort, the view of
P is distributed identically to the view of P in Ex3. In particular, with probability
at least δ in Ex2, P outputs 1.

4 It is convenient to view the communication between S and S′ as an undirected,
bipartite multi-graph in which each node represents a party and an edge (U, V)
represents a message sent between parties U ∈ S and V ∈ S′. As the number of
edges in this graph is at most cf2/2, there can not be more than cf nodes in S
whose total degree is at least f/2.

22

Proof. In Ex2, the view of P is determined by the virtual execution in which
all parties run Π honestly using input 1. The final statement follows because in
Ex3, (f, δ)-security of Π implies that P outputs 1 with probability at least δ.

We now complete the proof of the theorem. In execution Ex2, let Z1 be the
event that A does not abort; by Lemma 7, Pr[Z1] ≥ 1− 4c. Let Z2 be the event
that P does not output 0 in Ex2; using Lemma 8 we have

Pr[Z2] ≥ Pr[Z2 | Z1] · Pr[Z1] ≥ δ · (1− 4c).

Let Z3 be the event that all uncorrupted parties in S′ output 0 in Ex2. By
Lemma 6, Pr[Z3] ≥ δ. Recalling that 2/3 < δ < 1, we see that

Pr[Z2 ∧ Z3] = Pr[Z2] + Pr[Z3]− Pr[Z2 ∪ Z3] ≥ 2δ − 4cδ − 1 =
δ

2
>

1

3
> 1− δ,

contradicting (f, δ)-security of Π.

References

1. Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass,
Ling Ren, and Elaine Shi. Communication complexity of byzantine agreement,
revisited. In Peter Robinson and Faith Ellen, editors, 38th ACM PODC, pages
317–326. ACM, July / August 2019.

2. Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication,
computation and interaction via threshold FHE. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 483–501.
Springer, Heidelberg, April 2012.

3. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor, ASIACRYPT 2001, volume
2248 of LNCS, pages 566–582. Springer, Heidelberg, December 2001.

4. Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure compu-
tation. In 25th ACM STOC, pages 52–61. ACM Press, May 1993.

5. Michael Ben-Or, Boaz Kelmer, and Tal Rabin. Asynchronous secure computations
with optimal resilience (extended abstract). In Jim Anderson and Sam Toueg,
editors, 13th ACM PODC, pages 183–192. ACM, August 1994.

6. Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter
M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from threshold fully
homomorphic encryption. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 565–596. Springer, Heidel-
berg, August 2018.

7. Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and
Computation, 75:130–143, 1987.

8. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM, 32(4):824–840, 1985.

9. Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryp-
tion from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS, pages 97–106.
IEEE Computer Society Press, October 2011.

23

10. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 524–541. Springer, Heidelberg, August 2001.

11. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constan-
tipole: practical asynchronous byzantine agreement using cryptography (extended
abstract). In Gil Neiger, editor, 19th ACM PODC, pages 123–132. ACM, July
2000.

12. Ran Canetti. Studies in secure multiparty computation and applications. PhD
thesis, Weizmann Institute of Science, 1996.

13. Ran Canetti. Security and composition of multiparty cryptographic protocols.
Journal of Cryptology, 13(1):143–202, January 2000.

14. Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In 25th ACM STOC, pages 42–51. ACM Press, May 1993.

15. Ashish Choudhury, Martin Hirt, and Arpita Patra. Unconditionally secure asyn-
chronous multiparty computation with linear communication complexity. Cryptol-
ogy ePrint Archive, Report 2012/517, 2012. http://eprint.iacr.org/2012/517.

16. Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with
linear communication complexity. In Proc. Intl. Conference on Distributed Com-
puting and Networking (ICDCN), pages 1–10, 2015.

17. Ran Cohen. Asynchronous secure multiparty computation in constant time. In
Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part II, volume 9615 of LNCS, pages 183–207. Springer, Heidelberg,
March 2016.

18. Ran Cohen, abhi shelat, and Daniel Wichs. Adaptively secure MPC with sublin-
ear communication complexity. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part II, volume 11693 of LNCS, pages 30–60. Springer,
Heidelberg, August 2019.

19. Shir Cohen, Idit Keidar, and Alexander Spiegelman. Not a COINcidence:
Sub-quadratic asynchronous Byzantine agreement WHP, 2020. Available at
https://arxiv.org/abs/2002.06545.

20. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kilian, editor,
CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer, Heidelberg, Au-
gust 2001.

21. Danny Dolev and Rüdiger Reischuk. Bounds on information exchange for Byzan-
tine agreement. Journal of the ACM, 32(1):191–204, 1985.

22. Paul Feldman and Silvio Micali. Optimal algorithms for byzantine agreement. In
20th ACM STOC, pages 148–161. ACM Press, May 1988.

23. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM, 32(2):374–382,
1985.

24. Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. Adap-
tively secure broadcast, revisited. In Cyril Gavoille and Pierre Fraigniaud, editors,
30th ACM PODC, pages 179–186. ACM, June 2011.

25. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

26. Yue Guo, Rafael Pass, and Elaine Shi. Synchronous, with a chance of partition tol-
erance. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part I, volume 11692 of LNCS, pages 499–529. Springer, Heidelberg, August 2019.

24

27. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Cryptographic asyn-
chronous multi-party computation with optimal resilience (extended abstract). In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 322–340.
Springer, Heidelberg, May 2005.

28. Martin Hirt, Jesper Buus Nielsen, and Bartosz Przydatek. Asynchronous multi-
party computation with quadratic communication. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP 2008, Part II, volume 5126 of LNCS, pages 473–
485. Springer, Heidelberg, July 2008.

29. Valerie King and Jared Saia. Breaking the O(n2) bit barrier: scalable byzantine
agreement with an adaptive adversary. In Andréa W. Richa and Rachid Guerraoui,
editors, 29th ACM PODC, pages 420–429. ACM, July 2010.

30. Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader election.
In 17th SODA, pages 990–999. ACM-SIAM, January 2006.

31. Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine generals
problem. ACM Trans. Programming Languages and Systems, 4(3):382–401, 1982.

32. Silvio Micali. Very simple and efficient byzantine agreement. In Christos H. Pa-
padimitriou, editor, ITCS 2017, volume 4266, pages 6:1–6:1, 67, January 2017.
LIPIcs.

33. Silvio Micali and Vinod Vaikuntanathan. Optimal and player-replaceable consen-
sus with an honest majority. Technical report, MIT, 2017.

34. Achour Mostéfaoui, Moumen Hamouma, and Michel Raynal. Signature-free asyn-
chronous byzantine consensus with t < n/3 and O(n2) messages. In Magnús M.
Halldórsson and Shlomi Dolev, editors, 33rd ACM PODC, pages 2–9. ACM, July
2014.

35. Rafael Pass and Elaine Shi. The sleepy model of consensus. In Tsuyoshi Takagi
and Thomas Peyrin, editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS,
pages 380–409. Springer, Heidelberg, December 2017.

36. Arpita Patra, Ashish Choudhury, and C. Pandu Rangan. Efficient asynchronous
multiparty computation with optimal resilience. Cryptology ePrint Archive, Re-
port 2008/425, 2008. http://eprint.iacr.org/2008/425.

37. B. Prabhu, K. Srinathan, and C. Pandu Rangan. Asynchronous unconditionally
secure computation: An efficiency improvement. In Alfred Menezes and Palash
Sarkar, editors, INDOCRYPT 2002, volume 2551 of LNCS, pages 93–107. Springer,
Heidelberg, December 2002.

38. Michael O. Rabin. Randomized byzantine generals. In 24th FOCS, pages 403–409.
IEEE Computer Society Press, November 1983.

39. Matthieu Rambaud. Lower bounds for authenticated randomized Byzantine con-
sensus under (partial) synchrony: The limits of standalone digital signatures. Avail-
able at https://perso.telecom-paristech.fr/rambaud/articles/lower.pdf.

40. K. Srinathan and C. Pandu Rangan. Efficient asynchronous secure multiparty
distributed computation. In Bimal K. Roy and Eiji Okamoto, editors, IN-
DOCRYPT 2000, volume 1977 of LNCS, pages 117–129. Springer, Heidelberg,
December 2000.

41. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, EU-
ROCRYPT 2010, volume 6110 of LNCS, pages 24–43. Springer, Heidelberg,
May / June 2010.

25

A Concentration Inequalities

We briefly recall the following standard concentration bounds.

Lemma 9. (Markov bound) Let X be a non-negative random variable. Then
for a > 0,

Pr[X ≥ a] ≤ E[X]

a
.

Lemma 10 (Chernoff bound). Let X1, ..., Xn be independent Bernoulli ran-
dom variables with parameter p. Let X :=

∑
i Xi, so µ := E[X] = p · n. Then,

for δ ∈ [0, 1]

– Pr[X ≤ (1− δ) · µ] ≤ e−δ2µ/2.
– Pr[X ≥ (1 + δ) · µ] ≤ e−δ2µ/(2+δ).

Let χs,n denote the distribution that samples a subset of the n parties, where
each party is included independently with probability s/n. The following lemma
will be useful in our analysis.

Lemma 11. Fix s ≤ n and 0 < ϵ < 1/3, and let f ≤ (1 − 2ϵ) · n/3 be a bound
on the number of corrupted parties. If C ← χs,n, then:

1. C contains fewer than (1 + ϵ) · s parties except with probability e−
ϵ2s
2+ϵ .

2. C contains more than (1 + ϵ/2) · 2s/3 honest parties except with probability
at most e−ϵ2s/12·(1+ϵ).

3. C contains fewer than (1− ϵ) · s/3 corrupted parties except with probability
at most e−ϵ2s/(6−9ϵ).

Proof. Let H ⊆ [n] be the indices of the honest parties. Let Xj be the Bernoulli
random variable indicating if Pj ∈ C, so Pr[Xj = 1] = s/n. Define Z1 =

∑
j Pj ,

Z2 :=
∑

j∈H Xj , and Z3 :=
∑

j ̸∈H Xj . Then:

1. Since E[Z1] = s, setting δ = ϵ in Lemma 10 yields

Pr [Z1 ≥ (1 + ϵ) · s] ≤ e−ϵ2s/(2+ϵ).

2. Since E[Z2] ≥ (n − f) · s/n ≥ (1 + ϵ) · 2s/3, setting δ = ϵ
2+2ϵ in Lemma 10

yields

Pr

[
Z2 ≤

(1 + ϵ/2) · 2s
3

]
≤ e−ϵ2s/12·(1+ϵ).

3. Since E[Z3] ≤ f · s/n ≤ (1− 2ϵ) · s/3, setting δ = ϵ
1−2ϵ in Lemma 10 yields

Pr

[
Z3 ≥

(1− ϵ) · s
3

]
≤ e−ϵ2s/(6−9ϵ).

26

B Additional Definitions

B.1 Threshold Fully Homomorphic Encryption

For our protocol we require a threshold (compact) fully homomorphic encryption
(TFHE) scheme. Our definitions follow prior work [25, 41, 9, 2, 6].

Definition 7. A threshold fully homomorphic encryption (TFHE) scheme con-
sists of the following algorithms:

– The key-generation algorithm KGen takes as input the security parameter
along with integers t,N . It outputs an encryption key ek and decryption
keys dk1, . . . , dkN .

– The encryption algorithm Enc takes as input the encryption key ek and a
message m. It outputs a ciphertext c.

– The (deterministic) homomorphic evaluation algorithm Eval takes as input
the encryption key ek, an n-input circuit C, and n ciphertexts c1, . . . , cn; it
outputs a ciphertext c.

– The (deterministic) partial decryption algorithm Dec takes as input a de-
cryption key dki and a ciphertext c. It outputs a decryption share di.

– The reconstruction algorithm Rec takes as input decryption shares {di} and
outputs a message m.

We require:

Correctness: For any integers n, t,N , messages {mi}i∈[n], n-input circuit C,
and set I ⊆ [N] with |I| = t, if we run (ek, {dki}i∈[N]) ← KGen(1κ, 1t, 1N)
followed by

c := Evalek(C,Encek(m1), . . . ,Encek(mn)),

then Rec({Decdki
(c)}i∈I) = C(m1, . . . ,mn).

Compactness: There is a polynomial p such that for all (ek, dk) output by
KGen(1κ, 1t, 1N) and all {mi}, the length of

Evalek(C,Encek(m1), . . . ,Encek(mn))

is at most p(|C(m1, . . . ,mn)|, κ).

For our application, it is easiest to define security in terms of simulation.

Definition 8. We say a TFHE scheme is simulation secure if there is a proba-
bilistic polynomial-time simulator Sim such that for any probabilistic polynomial-
time adversary A, the following experiments are computationally indistinguish-
able:
realA,C(1

κ, 1t, 1N) :

1. Compute (ek, {dki}Ni=1)← KGen(1κ, 1t, 1N) and give ek to A.
2. A adaptively chooses a subset S ⊂ [N] with |S| < t as well as messages

m1, . . . ,mn and a circuit C. In return, A is given {dki}i∈S and {ci ←
Encek(mi)}ni=1.

27

3. A outputs {(m′
i, r

′
i)}i∈S. Define c′i := Encek(m

′
i; r

′
i) for i ∈ S.

4. Let c∗ := Evalek({ci}ni=1, {c′i}i∈S) and give {Decdki
(c∗)}i̸∈S to A.

idealA,C(1
κ, 1t, 1N) :

1. Compute ek ← Sim(1κ, 1t, 1N) and give ek to A.
2. A adaptively chooses a subset S of parties with |S| < t as well as messages

m1, . . . ,mn and a circuit C. In return, Sim(1n) is run to compute {dki}i∈S

and {ci}ni=1 that are given to A.
3. A outputs {(m′

i, r
′
i)}i∈S.

4. Let y = C({mi}ni=1, {m′
i}i∈S). Compute {di}i̸∈S ← Sim(y) and give the result

to A.

B.2 Anonymous Public-Key Encryption

We recall the definition of anonymous public-key encryption from [3].

Definition 9. A CPA-secure public-key encryption scheme PE = (KGen,Enc,Dec)
is anonymous if the following is negligible for any ppt adversary A:∣∣∣∣Pr [(pk0, sk0)← KGen(1κ); (pk1, sk1)← KGen(1κ);

m← A(pk0, pk1); b← {0, 1}; c← Encpkb(m)
: A(c) = b

]
− 1

2

∣∣∣∣ .

28

