
Security analysis of SPAKE2+

Victor Shoup

New York University
shoup@cs.nyu.edu

Abstract. We show that a slight variant of Protocol SPAKE2+, which
was presented but not analyzed in [17], is a secure asymmetric password-
authenticated key exchange protocol (PAKE), meaning that the protocol
still provides good security guarantees even if a server is compromised
and the password file stored on the server is leaked to an adversary. The
analysis is done in the UC framework (i.e., a simulation-based security
model), under the computational Diffie-Hellman (CDH) assumption, and
modeling certain hash functions as random oracles. The main difference
between our variant and the original Protocol SPAKE2+ is that our
variant includes standard key confirmation flows; also, adding these flows
allows some slight simplification to the remainder of the protocol. Along
the way, we also (i) provide the first proof (under the same assumptions)
that a slight variant of Protocol SPAKE2 from [5] is a secure symmetric
PAKE in the UC framework (previous security proofs were all in the
weaker BPR framework [7]); (ii) provide a proof (under very similar
assumptions) that a variant of Protocol SPAKE2+ that is currently
being standardized is also a secure asymmetric PAKE; (iii) repair several
problems in earlier UC formulations of secure symmetric and asymmetric
PAKE.

1 Introduction

A password-authenticated key exchange (PAKE) protocol allows two
users who share nothing but a password to securely establish a session key.
Ideally, such a protocol prevents an adversary, even one who actively partici-
pates in the protocol (as opposed to an eavesdropping adversary), to mount an
offline dictionary attack. PAKE protocols were proposed initially by Bellovin
and Merrit [9], and have been the subject of intensive research ever since.

A formal model of security for PAKE protocols was first proposed by Bellare,
Pointcheval, and Rogaway [7]. We call this the BPR framework for PAKE
security. The BPR framework is a “game based” security definition, as op-
posed to a “simulation based” security definition. A simulation-based security
definition for PAKE was later given in [14]. We shall refer to this and similar
simulation-based security definitions as the UC framework for PAKE secu-
rity. Here, UC is short for “Universal Composability”, as the definitions in [14]
are couched in terms of the more general Universal Composability framework
of [12]. As shown in [14], PAKE security in the UC framework implies PAKE
security in the BPR framework. In fact, the UC framework for PAKE security



is stronger than the BPR framework in a number of ways that we will discuss
further below.

Abdalla and Pointcheval [5] present Protocol SPAKE2, which itself is a vari-
ant of a protocol originally presented in [9] and analyzed in [7]. Protocol SPAKE2
is a simple and efficient PAKE protocol, and was shown in [5] to be secure in
the BPR security framework. Their proof of security is in the random oracle
model [8] under the computational Diffie-Hellman (CDH) assumption.1

The protocol also makes use of a common reference string consisting of two
random group elements.

Protocol SPAKE2 has never been proven secure in the UC framework. As
we argue below, it seems very unlikely that it can be. One of our results is to
show that by adding standard key confirmation flows to (a simplified version of)
Protocol SPAKE2 (which is anyway considered to be good security practice),
the resulting protocol, which we call Protocol KC-SPAKE2, is secure in the UC
framework (under the same assumptions).

Protocols SPAKE2 and KC-SPAKE2 are symmetric PAKE protocols, mean-
ing that both parties must know the password when running the protocol. In
the typical setting where one party is a client and the other a server, while the
client may memorize their password, the server stores the password in some
type of “password file”. If this password file itself is ever leaked, then the client’s
password is totally compromised. From a practical security point of view, this
vulnerability possibly negates any perceived benefits of using a PAKE proto-
col instead of a more traditional password-based protocol layered on top of a
one-sided authenticated key exchange (which is still the overwhelming practice
today).

In order to address this security concern, the notion of an asymmetric
PAKE was studied in [19], where the UC framework of [14] is extended to
capture the notion that after a password file is leaked, an adversary must still
carry out an offline dictionary attack to retrieve a client’s password. The paper
also gives a general mechanism for transforming a secure PAKE into a secure
asymmetric PAKE.2

In [17], a variant of Protocol SPAKE2, called Protocol SPAKE2+, is intro-
duced. This protocol is meant to be a secure asymmetric PAKE, while being
simpler and more efficient than what would be obtained by directly applying
the transformation in [19] to Protocol SPAKE2 or KC-SPAKE2. However, the
security of Protocol SPAKE2+ was never formally analyzed.

In this paper, we propose adding standard key confirmation flows to (a
simplified version of) Protocol SPAKE2+, obtaining a protocol called Proto-
col KC-SPAKE2+, which we prove is a secure asymmetric PAKE in the UC
framework (under the CDH assumption, in the random oracle model, and with
a common reference string). This is our main result. We also present and justify

1 The CDH assumption, in a group G of prime order q generated by g ∈ G, asserts
that given gα, gβ , for random α, β ∈ Zq, it is hard to compute gαβ .

2 The paper [19] was certainly not the first to study asymmetric PAKE protocols, nor
is it the first to propose a formal security definition for such protocols.



various design choices in both the details of the protocol and the ideal function-
ality used in its security analysis. As we discuss below, some changes in the ideal
functionality in [19] were necessary in order to obtain meaningful results. Since
some changes were necessary, we also made other changes in the name of making
things simpler.

Comparison to OPAQUE. In [23], a stronger notion of asymmetric PAKE se-
curity is introduced, wherein the adversary cannot initiate an offline dictionary
attack until after the password file is leaked. None of the protocols analyzed here
are secure in this stronger sense. Nevertheless, the protocols we analyze here may
still be of interest. First, while an offline dictionary attack may be initiated be-
fore the password file is leaked, such a dictionary attack must be directed at
a particular client. Second, the protocols we analyze here are quite simple and
efficient, and unlike the OPAQUE protocol in [23], they do not require hashing
a password to a group element. Third, the protocols we analyze here are proved
secure under the CDH assumption, while the OPAQUE protocol is proved secure
under the stronger “one-more Diffie-Hellman assumption”.

In defense of programmable random oracles. Our main results are proofs of
security in the UC framework using programmable random oracles. The same
is true for many other results in this area (including [23]), and results in [20]
suggest that secure asymmetric PAKE protocols may only be possible with pro-
grammable random oracles.

Recently, results that use programmable random oracles in the UC framework
have come to be viewed with some skepticism (see, for example, [15, 11]). We
wish to argue (briefly) that such skepticism is a bit overblown (perhaps to sell a
new “brand” of security) and that such results are still of considerable value.

Besides the fact that in any security analysis the random oracle model is at
best a heuristic device (see, for example, [13]), there is a concern that in the UC
framework, essential composability properties may be lost. (In fact, this com-
posability concern applies to any type of “programmable” set-up assumption,
such as a common reference string, and not just to random oracles.)

While composability with random oracles is a concern, in most applications,
it is not an insurmountable problem. First, the ideal functionalities we define
in this paper will all be explicitly in a multi-user/multi-instance setting where
a single random oracle is used for all users and user instances. Second, even if
one wants to use the same random oracle in this and other protocols, that is
not a problem, so long as all of the protocols involved coordinate on how their
inputs are presented to the random oracle. Specifically, as long as all protocols
present their inputs to the random oracle using some convention that partitions
the oracle’s input space (say, by prefixing some kind of “protocol ID” and/or
“protocol instance ID”), there will be no unwanted interactions, and it will be “as
if” each different protocol (or protocol instance) is using its own, independent
random oracle. In the UC framework, this is all quite easily justified using the
JUC theorem [16]. Granted, such coordination among protocols in a protocol
stack may be a bit inconvenient, but is not the end of the world.



public system parameters: random a, b ∈ G
shared secret password: π

P Q

α←R Zq, u← gαaπ β ←R Zq, v ← gβbπ

u−−−−−−−−−−−−→
v←−−−−−−−−−−−−

w ← (v/bπ)α

k ← H(π, idP , idQ, u, v, w)
w ← (u/aπ)β

k ← H(π, idP , idQ, u, v, w)

session key: k

Fig. 1: Protocol SPAKE2

Full version of the paper. Because of space limitations, a number of details have
been omitted from this extended abstract. We refer the reader to the full version
of the paper [25] for these details.

2 Overview

We start by considering Protocol SPAKE2, which is shown in Fig. 1, and which
was first presented and analyzed in [5]. Here, G is a group of prime order q,
generated by g ∈ G, and H is a hash function that outputs elements of the
set K of all possible session keys. Passwords are viewed as elements of Zq. The
protocol also assumes public system parameters a, b ∈ G, which are assumed to
be random elements of G that are generated securely, so that no party knows
their discrete logarithms.

This protocol is perfectly symmetric and can be implemented with the two
flows sent in any order or even concurrently. In [5], it was shown to be secure in
the BPR framework, under the CDH assumption, and modeling H as a random
oracle.

Their security analysis, however, did not take corruption queries (which leak
passwords to the adversary) into account, which must be done in order to prove
forward security in the BPR framework. Later, [1] show that Protocol SPAKE2



public system parameters: random a, b ∈ G
password: π, (φ0, φ1) := F (π, idP , idQ)

P Q

secret: φ0, φ1 secret: φ0, c := gφ1

α←R Zq, u← gαaφ0 β ←R Zq, v ← gβbφ0

u−−−−−−−−−−→
v←−−−−−−−−−−

w ← (v/bφ0)α, d← (v/bφ0)φ1

k ← H(φ0, idP , idQ, u, v, w, d)
w ← (u/aφ0)β , d← cβ

k ← H(φ0, idP , idQ, u, v, w, d)

session key: k

Fig. 2: Protocol SPAKE2+

does indeed provide forward security in the BPR framework,3 also in the random
oracle model, but under the stronger Gap CDH assumption.4

A major drawback of Protocol SPAKE2 is that if one of the two parties rep-
resents a server, and if the server’s password file is leaked to the adversary, then
the adversary immediately learns the user’s password. The initial goal of this re-
search was to analyze the security of Protocol SPAKE2+, shown in Fig. 2, which
was designed to mitigate against such password file leakage. Protocol SPAKE2+
was presented in [17], but only some intuition of security was given, rather than
a proof. The claim in [17] was that it is secure under the CDH assumption in
the random oracle model, but even the security model for this claim was not
specified.

The goal is to analyze such a protocol in the model where the password file
may be leaked. In the case of such a leakage, the basic security goal is that the
adversary cannot log into the server unless it succeeds in an offline dictionary
attack (note that the adversary can certainly impersonate the server to a client).

In terms of formal models for this setting, probably the best available model
is the UC framework for asymmetric PAKE security in [19], which builds on
the UC framework for ordinary (i.e., symmetric) PAKE security in [14]. Even

3 The security theorem in [1] only applies to so-called “weak” corruptions in the BPR
framework, in which corrupting a party reveals to the adversary only its password,
and not the internal state of any corresponding protocol instance.

4 The Gap CDH assumption asserts that the problem of computing gαβ , given gα, gβ

for random α, β ∈ Zq, is hard even if the attacker has access to a DDH oracle. Such
an oracle is given triples (gµ, gν , gκ), and returns “yes” if κ = µν and “no” otherwise.
This is not a falsifiable assumption (as defined in [24]). This is in contrast to the
weaker interactive CDH assumption, in which it is required that gµ = gα. This is
the same assumption used to analyze the well-known DHIES and ECIES schemes
(which are essentially just “hashed” ElGamal schemes) in the random oracle model.
See [3], where is called the Strong Diffie-Hellman assumption.



without password file leakage, the UC framework is stronger than, and preferable
to, the BPR framework in a number of important aspects.

• The UC framework models arbitrary password selection, where some pass-
words may be related, and where the choice of password can be arbitrary,
rather than chosen from some assumed distribution. In contrast, the BPR
framework assumes that all passwords are independently drawn from some
specific distribution.

• In the BPR framework, when the adversary guesses any one password, the
game is over and the adversary wins. This means that in a system of 1,000,000
users, if the adversary guesses any one user’s password in an online dictionary
attack, there are no security guarantees at all for the remaining 999,999 users.
In contrast, in the UC framework, guessing one password has no effect on
the security of other passwords (to the extent, of course, that those other
passwords are independent of the guessed password).

• It is not clear what the security implications of the BPR framework are for
secure-channel protocols that are built on top of a secure PAKE protocol.
(We will discuss this in more detail in the following paragraphs.) In contrast,
PAKE security in the UC framework implies simulation-based security of any
secure-channel protocol built on top of the PAKE protocol.

For these reasons, we prefer to get a proof of security in the UC framework.
However, Protocol SPAKE2 itself does not appear to be secure in UC frame-
work for symmetric PAKE (as defined in [14]), and for the same reason, Proto-
col SPAKE2 + is not secure in UC framework for asymmetric PAKE (as defined
in [19]). One way to see this is as follows. Suppose that in Protocol SPAKE2 an
adversary interacts with Q, and runs the protocol honestly, making a guess that
the correct password is π′. Now, at the time the adversary delivers the random
group element u to Q, no simulator can have any idea as to the adversary’s guess
π′ (even if it is allowed to see the adversary’s queries to the random oracle H),
and Q will respond with some v, and from Q’s perspective, the key exchange
protocol is over, and Q may start using the established session key k in some
higher-level secure-channel protocol. For example, at some later time, the ad-
versary might see a message together with a MAC on that message using a key
derived from k. At this later time, the adversary can then query H at the appro-
priate input to determine whether its guess π′ was correct or not. However, in
the ideal functionality presented in [14], making a guess at a password after the
key is established is not allowed. On a practical level, good security practice dic-
tates that any reasonable ideal functionality should not allow this, as any failed
online dictionary attack should be detectable by the key exchange protocol. On
a more fundamental level, in any reasonable UC formulation, the simulator (or
the simulator together with ideal functionality) must decide immediately, at the
time a session key is established, whether it is a “fresh” key, a copy of a “fresh”
key, or a “compromised” key (one that may be known to the adversary). In the
above example, the simulator cannot possibly classify Q’s key at the time that
the key is established, because it has no way of knowing if the password π′ that
the adversary has in mind (but which at that time is completely unknown to the



simulator) is correct or not. Because it might be correct, that would suggest we
must classify the key as “compromised”, even though it may not be. However,
if the ideal functionality allowed for that, this would be an unacceptably weak
notion of security, as then every interaction with the adversary would result in
a “compromised” session key.

The obvious way to solve the problem noted above is to enhance Proto-
col SPAKE2 with extra key confirmation flows. This is anyway considered good
security practice, and the IETF draft specification [26] already envisions such
an enhancement.

Note that [1] shows that Protocol SPAKE2 provides forward security in the
BPR framework. This suggests that the notion of forward security defined in [7]
is not really very strong; in particular, it does not seem strong enough to prove
a meaningful simulation-based notion of security for a channel built on top of a
PAKE protocol.

In concurrent and independent work, [2] show that Protocol SPAKE2 is
secure in the UC framework, but with respect to a weak ideal functionality
(which, again, does not seem strong enough to prove a meaningful simulation-
based notion of security for a channel built on top of a PAKE protocol). They
also show that Protocol SPAKE2 with additional key confirmation flows is secure
in the UC framework, with respect to an ideal functionality very similar to that
considered here. We note that all of their security proofs make use of the very
strong Gap CDH assumption, mentioned above, whereas all of our results only
make use of the standard CDH assumption.

2.1 Outline

In Section 3, we introduce Protocol KC-SPAKE2, which is a variation of Pro-
tocol SPAKE2 that includes key confirmation. In Section 4 we give a fairly
self-contained overview of the general UC framework, and in Section 4.2, we
specify the symmetric PAKE ideal functionality that we will use to analyze
Protocol KC-SPAKE2 in the UC framework (discussing why we made cer-
tain changes to the UC formulation in [14]). In Section 5, we introduce Pro-
tocol KC-SPAKE2+, which is to Protocol KC-SPAKE2 as Protocol SPAKE2+
is to Protocol SPAKE2. In Section 6, we specify the asymmetric PAKE ideal
functionality that we will use to analyze Protocol KC-SPAKE2+ in the UC
framework, and we discuss why we made certain changes to the UC formulation
in [19]. Section 7 describes Protocol IETF-SPAKE2+, which is a variant of Pro-
tocol KC-SPAKE2+ that generalizes the protocol described in the IETF draft
specification [26]. Section 8 gives formal statements of our security theorems. All
of our security proofs are in the random oracle model under the CDH assump-
tion (with some additional, standard assumptions on some symmetric primitives
for Protocol IETF-SPAKE2+). Although we do not have space in this extended
abstract to present proofs of these theorems (but which are presented in the full
version of the paper [25]), in Section 9 we present a very brief sketch of some of
the main ideas.



public system parameter: random a ∈ G
shared secret password: π

P Q

α←R Zq, u← gαaπ
u−−−−−−→ β ←R Zq, v ← gβ

w ← (u/aπ)β

(k, k1, k2)← H(π, idP , idQ, u, v, w)

w ← vα

(k, k1, k2)← H(π, idP , idQ, u, v, w)
validate k1

v, k1←−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 3: Protocol KC-SPAKE2

3 Protocol KC-SPAKE2

We begin by presenting a protocol, KC-SPAKE2 , which is a simplified version of
Protocol SPAKE2 with key confirmation flows. This protocol is essentially Pro-
tocol PFS-SPAKE2 presented in the paper [6]. In that paper, this protocol was
shown to provide perfect forward secrecy in the BPR framework [7] (under the
CDH assumption in the random oracle model). Our goal here is to analyze Pro-
tocol KC-SPAKE2 in the UC model, and then to augment Protocol KC-SPAKE2
so that it is secure against server compromise in the UC framework. Note that in
the paper [4], a protocol that is very similar to Protocol KC-SPAKE2 was also
shown to provide perfect forward secrecy in the BPR framework (also under the
CDH assumption in the random oracle model).

Protocol KC-SPAKE2 makes use of a cyclic group G of prime order q gen-
erated by g ∈ G. It also makes use of a hash function H, which we model as
a random oracle, and which outputs elements of the set K × Kauth × Kauth,
where K is the set of all possible session keys, and Kauth is an arbitrary set
of super-polynomial size, used for explicit key confirmation. The protocol has
a public system parameter a ∈ G, which is assumed to be a random element
of G that is generated securely, so that no party knows its discrete logarithm.
Furthermore, passwords are viewed as elements of Zq. Protocol KC-SPAKE2 is
described in Fig. 3. Both users compute the value w = gαβ , and then compute
(k, k1, k2)← H(π, idP , idQ, u, v, w). Note that P “blinds” the value gα by mul-
tiplying it by aπ, while Q does not perform a corresponding blinding. Also, P
checks that the authentication key k′1 it receives is equal to the authentication
key k1 that it computed; otherwise, P aborts without sending k2. Likewise, Q
checks that the authentication key k′2 it receives is equal to the authentication
key k2 that it computed; otherwise, Q aborts. The value k is the session key.

In this protocol, it is essential that the P first sends the flow u, and then Q
responds with v, k1, and only then (if k1 is valid) does P respond with k2. Also,



in this protocol, as well as Protocol KC-SPAKE2+ (in Section 5), it is essential
that P validates that v ∈ G and Q validates that u ∈ G.

It is useful to think of P as the client and Q as the server. From a practical
point of view, this is a very natural way to assign roles: the client presumably
initiates any session with the server, and the first flow of Protocol KC-SPAKE2
can piggyback on that initial message. In addition, as we transition from Pro-
tocol KC-SPAKE2 to Protocol KC-SPAKE2+, we will also assign P the role of
client and Q the role of server.

Detecting failed online dictionary attacks. From a practical perspective, it is
desirable to be able to detect a failed online dictionary attack and to take pre-
ventive action. In Protocol KC-SPAKE2, a client P can detect a (potential)
failed online dictionary attack when it receives an invalid authentication key k1
(of course, the authentication key could be invalid for other, possibly benign,
reasons, such as a transmission error). Moreover, the adversary can only learn if
its password guess was correct by seeing how P responds. Indeed, the adversary
learns nothing at all if it does not send the second flow to P . Now consider how
a server Q may detect a (potential) failed online dictionary attack. After the
server sends out k1, the adversary can already check if its guess was correct. If
its guess was incorrect, it cannot feasibly respond with a valid k2, and such an
adversary would presumably not even bother sending k2. Thus, if Q times out
waiting for k2, then to be on the safe side, Q must consider such a time-out
to be a potential online dictionary attack. If, from a security perspective, it is
viewed that online dictionary attacks against the server are more likely, it might
be advantageous to flip the roles of P and Q, so that it is the client that sends
the first authentication key. Unfortunately, in the typical setting where the client
sends the first flow, this will increase the number of flows from 3 to 4. Although
we do not analyze this variant or its asymmetric secure “+” variant, it should
be straightforward to modify the proofs presented here to cover these variants as
well. Finally, as we already mentioned above, in the original Protocol SPAKE2,
which provides no explicit key confirmation, it is impossible to detect a failed
online dictionary attack in the key exchange protocol itself.

4 Simulation-based definition of secure PAKE

Protocol KC-SPAKE2 was already analyzed in the BPR framework. Our goal
is to analyze Protocol KC-SPAKE2 in the UC framework. The main motiva-
tion for doing so is that we eventually want to analyze the asymmetric Proto-
col KC-SPAKE2+ in the UC framework.

We give a fairly self-contained definition of a secure PAKE. Our definition is
a simulation-based definition that is essentially in the UC framework of [12]. We
do not strictly adhere to all of the low-level mechanics and conventions given
in [12]. Indeed, it is not really possible to do so, for a couple of reasons. First,
between the time of its original appearance on the eprint archive and the time
of this writing, the paper [12] has been revised a total of 14 times, with some of



(a) The real world

H

Z

A
· · ·

· · ·

⇧⇧⇧

(b) The ideal world

Z

SF

· · ·

Fig. 4: The real and ideal worlds in the UC framework

those revisions being quite substantial. So it is not clear what “the” definition of
the UC framework is. Second, as pointed out in [22] and [21], the definitions in
the contemporaneous versions of [12] were mathematically inconsistent. While
there are more recent versions of [12], we have not yet been able to independently
validate that these newer versions actually correct the problems identified in [22]
and [21], while not introducing new problems. Our point of view, however, is that
even though it is extremely difficult to get all of the details right, the core of the
UC framework is robust enough so as to give meaningful security guarantees even
if some of the low-level mechanics are vaguely or even inconsistently specified,
and that these security guarantees are mainly independent of small changes to
these low-level mechanics. In fact, it is fair to say that most papers that purport
to prove results in the UC framework are written without any serious regard
toward, or even knowledge of, most of these low-level mechanics.

Our definitions of security for PAKE differ from that presented in [14], which
was the first paper to formally define secure PAKE in the UC framework. Some of
these differences are due to the fact that we eventually will modify this function-
ality to deal with server corruptions, and so we will already modify the definition
to be more compatible with this. While the paper [19] builds on [14] to model
asymmetric PAKE, the paper [20] identifies several flaws in the model of [19].
Thus, we have taken it upon ourselves to correct these flaws in a reasonable way.

4.1 Review of the UC framework

We begin with a very brief, high-level review of the UC framework. Fig. 4a
shows a picture of the “real world” execution of a Protocol Π. The oval shapes
represent individual machines that are faithfully executing the protocol Π. The
environment Z represents higher-level protocols that use Π as a sub-protocol, as
well as any adversary that is attacking those higher-level protocols. However, all
of these details are abstracted away, and Z can be quite arbitrary. The adversary
A represents an adversary attacking Protocol Π. Adversary A communicates
continuously with Z, so as to coordinate its attack on Π with any ongoing



attack on a higher-level protocol. The protocol machines receive their inputs
from Z and send their outputs to Z. Normally, one would think of these inputs
as coming from and going to a higher-level protocol. The protocol machines
also send and receive messages from A, but not with each other. Indeed, among
other things, the adversary A essentially models a completely insecure network,
effectively dropping, injecting, and modifying protocol messages at will. Fig. 4a
also shows a box labeled H. In our analysis of Protocol KC-SPAKE2, we model
H a random oracle. This means that in the “real world”, the protocol machines
and the adversary A may directly query the random oracle H. The environment
Z does not have direct access to H; however, it can access H indirectly via A.

Fig. 4b shows a picture of the “ideal world” execution. The environment Z
is exactly the same as before. The box labeled F is an ideal functionality that is
essentially a trusted third party that we wish we could use to run the protocol
for us. The small oval shapes also represent protocol machines, but now these
protocol machines are just simple “repeaters” that pass their inputs directly from
Z to F , and their outputs directly from F to Z. The box labeled S is called a
simulator, but really it is just an adversary that happens to operate in the “ideal
world”. The simulator S can converse with Z, just as A did in the “real world”.
The simulator S can also interact with F , but its influence on F will typically
be limited: the precise influence that S can exert on F is determined by the
specification of F itself. Typically, while S cannot cause any “bad events” that
would violate security, it can still determine the order in which various events
occur.

Roughly speaking, we say that Protocol Π securely emulates ideal function-
ality F if for every efficient adversary A, there exists an efficient simulator S,
such that no efficient environment Z can effectively distinguish between the “real
world” execution and the “ideal world” execution. The precise meaning of “effi-
cient” here is a variant of polynomial time that adequately deals with a complex,
multi-party system. We suggest the definitions in [22, 21], but other definitions
are possible as well. In the UC framework, saying that Protocol Π is “secure”
means that it securely emulates F . Of course, what “secure” means depends on
the specification of F .

4.2 An ideal functionality for PAKE

We now give our ideal functionality for PAKE. As mentioned above, the func-
tionality we present here is a bit different from that in [14], and some of the
low-level mechanics (relating to things like “session identifiers”) is a bit different
from those in [12].

• Party P inputs: (init-client, rid , π)
Intuition: This models the initialization of a client and its relationship to a partic-
ular server, including the shared password π.

◦ We say that P is initialized as a client, where rid is its relationship ID and π
is its password.



◦ Assumes (i) that P has not been previously initialized as either a client or
server, and (ii) that no other client has been initialized with the same relation
ID.5

◦ The simulator is sent (init-client, P, rid).
◦ Note that rid is a relationship ID that corresponds to a single client/server

pair. In practice (and in the protocols analyzed here), such a relationship ID
is a pair rid = (idP , idQ).

• Party Q inputs: (init-server, rid , π)
Intuition: This models the initialization of a server and its relationship to a par-
ticular client, including the shared password π.

◦ We say that Q is initialized as a server, where rid is its relationship ID and π
is its password.

◦ Assumes (i) that Q has not been previously initialized at either a client or
server, and (ii) that no other server has been initialized with the same rela-
tionship ID.

◦ Assumes that if a client and server are both initialized with the same relation-
ship ID rid , then they are both initialized with the same password π.

◦ The simulator is sent (init-server, Q, rid).
◦ Note: for any relationship ID, there can be at most one client and one server

with that ID, and we call this client and server partners.

• Party P inputs: (init-client-instance, iidP , π
∗)

Intuition: This models the initialization of a client instance, which corresponds
to a single execution of the key exchange protocol by the client, using possibly
mistyped or misremembered password π∗.

◦ Party P must have been previously initialized as a client.
◦ The value iidP is an instance ID, and must be unique among all instances of
P .

◦ The simulator is sent (init-client-instance, P, iidP , type), where type := 1
if π∗ = π, and otherwise type := 0, and where π is P ’s password.

◦ We call this instance (P, iidP ), and the ideal functionality sets the state of the
instance to original.

◦ We call π∗ the password of this instance, and we say that this instance is good
if π∗ = π, and bad otherwise.

◦ Note: a bad client instance is meant to model the situation in the actual, phys-
ical world where the human client mistypes or misremembers their password
associated with the server.

• Party Q inputs: (init-server-instance, iidQ)
Intuition: This models the initialization of a server instance, which corresponds to
a single execution of the key exchange protocol by the server.

◦ Party Q must have been previously initialized as a server.
◦ The value iidQ is an instance ID, and must be unique among all instances of
Q.

◦ The simulator is sent (init-server-instance, Q, iidQ).

5 As we describe it, the ideal functionality imposes various pre-conditions on the inputs
it receives. The reader may assume that if these are not met, an “error message”
back to whoever sent the input. However, see Remark 1 below.



◦ We call this instance (Q, iidQ), and the ideal functionality sets the state of the
instance to original.

◦ If π is Q’s password, we also define π∗ := π to be the password of this instance.
Unlike client instances, server instances are always considered good.

• Simulator inputs: (test-pwd, X, iidX , π
′)

Intuition: This models an on-line dictionary attack, whereby an attacker makes a
single guess at a password by interacting with a particular client/server instance.

◦ Assumes (i) that there is an instance (X, iidX), where X is either a client or
server, (ii) that this is the first test-pwd for (X, iidX), and (iii) that the state
of (X, iidX) is either original or abort.

◦ The ideal functionality tests if π′ is equal to the password π∗ of instance
(X, iidX):

– if π′ = π∗, then the ideal functionality does the following: (i) if the state
of the instance is original, it changes the state to correct-guess, and (ii)
sends the message (correct) to the simulator.

– if π′ 6= π∗, then the ideal functionality does the following: (i) if the state
of the instance is original, it changes the state to incorrect-guess, and (ii)
sends the message (incorrect) to the simulator.

◦ Note: if X is a server or (X, iidX) is a good client instance, then π∗ = π, where
π is X’s password.

• Simulator inputs: (fresh-key, X, iidX , sid)
Intuition: This models the successful termination of a protocol instance that returns
to the corresponding client or server a fresh key, i.e., a key that is completely
random and independent of all other keys and of the attacker’s view, along with
the given session ID sid . This is not allowed if a password guess was made against
this instance.

◦ The value sid is a session ID that is to be assigned to the instance (X, iidX).
◦ Assumes (i) that (X, iidX) is an original, good instance, where X is either a

client or a server, (ii) that there is no other instance (X, iid ′X) that has been
assigned the same session ID sid , (iii) that X has a partner Y , and (iv) that
there is no instance (Y, iidY ) that has been assigned the same session ID sid .

◦ The ideal functionality does the following: (i) assigns the session ID sid to
the instance (X, iidX), (ii) generates a random session key k, (iii) changes
the state of the instance (X, iidX) to fresh-key, and (iv) sends the output
(key, iidX , sid , k) to X.

• Simulator inputs: (copy-key, X, iidX , sid)
Intuition: This models the successful termination of a protocol instance that returns
to the corresponding client or server a copy of a fresh key, along with the given
session ID sid . Note that a fresh key can be copied only once and only from an
appropriate partner instance with a matching session ID. This is not allowed if a
password guess was made against this instance.

◦ Assumes (i) that (X, iidX) is an original, good instance, where X is either a
client or server, (ii) that there is no other instance (X, iid ′X) that has been
assigned the same session ID sid , (iii) that X has a partner Y , (iv) that there
is a unique instance (Y, iidY ) that has been assigned the same session ID sid ,
and (v) the state of (Y, iidY ) is fresh-key.

◦ The ideal functionality does the following: (i) assigns the session ID sid to the
instance (X, iidX), (ii) changes the state of the instance (X, iidX) to copy-key,



and (iii) sends the output (key, iidX , sid , k) to X, where k is the key that was
previously generated for the instance (Y, iidY ).

• Simulator inputs: (corrupt-key, X, iidX , sid , k)
Intuition: This models the successful termination of a protocol instance that re-
turns to the corresponding client or server a corrupt key, i.e., a key that is known
to the adversary, along with the given session ID sid . This is only allowed if a
corresponding password guess against this particular instance was successful.

◦ Assumes (i) that (X, iidX) is a correct-guess instance, where X is either a
client or server, (ii) that there is no other instance (X, iid ′X) that has been
assigned the same session ID sid , and (iii) that if X has a partner Y , there is
no instance (Y, iidY ) that has been assigned the same session ID sid .

◦ The ideal functionality does the following: (i) assigns the session ID sid to the
instance (X, iidX), (ii) changes the state of the instance (X, iidX) to corrupt-
key, and (iii) sends the output (key, iidX , sid , k) to X.

• Simulator inputs: (abort, X, iidX)
Intuition: This models the unsuccessful termination of a protocol instance. Note
that an incorrect password guess against an instance can only lead to its unsuc-
cessful termination.

◦ Assumes that (X, iidX) is either an original, correct-guess, or incorrect-guess
instance, where X is either a client or server.

◦ The ideal functionality does the following: (i) changes the state of the instance
(X, iidX) to abort, and (ii) sends the output (abort, iidX) to X.

4.3 Well-behaved environments

In the above specification of our ideal functionality, certain pre-conditions must
be met on inputs received from the environment (via the parties representing
clients and servers). To this end, we impose certain restrictions on the environ-
ment itself.

We say that an environment Z is well behaved if the inputs from clients
and servers (which come from Z) do not violate any of the stated preconditions.
Specifically, this means that for the init-client and init-server inputs: (i)
no two clients are initialized with same relationship ID, (ii) no two servers are
initialized with the same relationship ID, and (iii) if a client and server are
initialized with the same relationship ID, then they are initialized with the same
password; moreover, for the init-client-instance and init-server inputs
(iv) no two instances of a given client or server are initialized with the same
instance ID.

In formulating the notion that a concrete protocol “securely emulates” the
ideal functionality, one restricts the quantification over all environments to all
such well-behaved environments. It is easy to verify that all of the standard UC
theorems, including dummy-adversary completeness, transitivity, and composi-
tion, hold when restricted to well-behaved environments.

Remark 1. In describing our ideal functionality, in processing an input from a
client, server, or simulator, we impose pre-conditions on that input. In all cases,
these pre-conditions can be efficiently verified by the ideal functionality, and



one may assume that if these pre-conditions are not satisfied, then the ideal
functionality sends an “error message” back to whoever sent it the input.

However, it is worth making two observations. First, for inputs from a client
or server, these pre-conditions cannot be “locally” validated by the given client or
server; however, the assumption that the environment is well-behaved guarantees
that the corresponding pre-conditions will always be satisfied (see Remark 2
below for further discussion). Second, for inputs from simulator, the simulator
itself has enough information to validate these pre-conditions, and so without loss
of generality, we can also assume that the simulator does not bother submitting
invalid inputs to the ideal functionality.

4.4 Liveness

In general, UC security by itself does not ensure any notion of protocol “liveness”.
For a PAKE protocol, it is natural to define such a notion of liveness as follows.
In the real world, if the adversary faithfully delivers all messages between a good
instance I of a client P and an instance J of P ’s partner server Q, then I and
J will both output a session key and their session IDs will match. All of the
protocols we examine here satisfy this notion of liveness.

With our PAKE ideal functionality, UC security implies that if an instance
I of a client P and an instance J of P ’s partner server Q both output a session
key, and their session IDs match, then one of them will hold a “fresh” session
key, while the other will hold a copy of that “fresh” key.

If we also assume liveness, then UC security implies the following. Suppose
that the adversary faithfully delivers all messages between a good instance I
of a client P and an instance J of P ’s partner server Q. Then I and J will
both output a session key, their session IDs will match, and one of them will
hold a “fresh” session key, while the other will hold a copy of that “fresh” key.
Moreover, by the logic of our ideal functionality, this implies that in the ideal
world, the simulator did not make a guess at the password. See further discussion
in Remark 7 below.

4.5 Further discussion

Remark 2. As in [14], our ideal functionality does not specify how passwords are
chosen or how a given clients/server pair come to agree upon a shared password.
All of these details are relegated to the environment. Our “matching password
restriction”, which says that in any well-behaved environment (Section 4.3), a
client and server that share the same relationship ID must be initialized with
the same password, really means this: whatever the mechanism used for a client
and server to agree upon a shared password, the agreed-upon password should be
known to the client (resp., server) before the client (resp., server) actually runs
an instance of the protocol.

This “matching password restriction” seems perfectly reasonable and making
it greatly simplifies both the logic of the ideal functionality and the simulators
in our proofs.



Note that the fact that client inputs this shared password to the ideal func-
tionality during client initialization is not meant to imply that in a real protocol
the client actually stores this password anywhere. Indeed, in the actual, physical
world, we expect that a human client may memorize their password and not
store it anywhere (except during the execution of an instance of the protocol).
Our model definitely allows for this.

Also note that whatever mechanisms are used to choose a password and
share it between a client and server, as well as to choose relationship IDs and
instance IDs, these mechanisms must satisfy the requirements of a well-behaved
environment. These requirements are quite reasonable and easy to satisfy with
well-known techniques under reasonable assumptions.

Remark 3. Our formalism allows us to model the situation in the actual, physical
world where a human client mistypes or misremembers their password. This is
the point of having the client pass in the password π∗ when it initializes a client
instance. The “matching password restriction” (see Remark 2) makes it easy for
the ideal functionality to immediately classify a client as good or bad, according
to whether or not π∗ = π, where π is the password actually shared with the
corresponding server.6 The logic of our ideal functionality implies that the only
thing that can happen to a bad instance is that either: (a) the instance aborts,
or (b) the adversary makes one guess at π∗, and if that guess is correct, the
adversary makes that instance accept a “compromised” key. In particular, no
instance of the corresponding server will ever share a session ID or session key
with a bad client instance.

Mistyped or misremembered passwords are also modeled in [14] and subse-
quent works (such as [19] and [20]). All of these works insist on “hiding” from
the adversary, to some degree or other, whether or not the client instance is bad.
It is not clear what the motivation for this really is. Indeed, in [14], they observe
that “we are not aware of any application where this is needed”. Moreover, in
the typical situation where a client is running a secure-channels protocol on top
of a PAKE protocol, an adversary will almost inevitably find out that a client
instance is bad, because it will most likely abort without a session key (or pos-
sibly, as required in [14], will end up with a session key that is not shared with
any server instance).

So to keep things simple, and since there seems little motivation to do oth-
erwise, our ideal simply notifies the simulator if a client instance is good or bad,
and it does so immediately when the client instance is initialized. Indeed, as
pointed out in [20], the mechanism [19] for dealing with mistyped or misremem-
bered passwords was flawed. In [20], another mechanism is proposed, but our
mechanism is much simpler and more direct.

6 Otherwise, if the corresponding server had not yet been initialized with a password
π at the time this client instance had been initialized with a password π∗, the ideal
functionality could not determine (or inform the simulator) whether or not π∗ = π
at that time. This would lead to rather esoteric complications in the logic of the
ideal functionality and the simulators in our proofs.



Remark 4. One might ask: why is it necessary to explicitly model mistyped or
misremembered passwords at all? Why not simply absorb bad client instances
into the adversary. Indeed, from the point of view of preventing such a bad client
from logging into a server, this is sufficient. However, it would not adequately
model security for the client: if, say, a human client enters a password that is
nearly identical to the correct password, this should not compromise the client’s
password in any way; however, we cannot afford to model this situation by giving
this nearly-identical password to the adversary .

Note that the BPR framework [7] does not model mistyped or misremem-
bered passwords at all. We are not aware of any protocols that are secure in
the BPR framework that become blatantly insecure if a client enters a closely
related but incorrect password.

Remark 5. In our formalism, in the real world, all instances of a given client
are executed by a single client machine. This is an abstraction, and should not
be taken too literally. In the real, physical world, a human client may choose
to run instances of the protocol on different devices. Logically, there is nothing
preventing us from mapping those different devices onto the same client machine
in our formalism.

Remark 6. In our formalism, in the real world, a server instance must be ini-
tialized (by the environment) before a protocol message can be delivered (from
the adversary) to that instance. This is an abstraction, and should not be taken
too literally. In practice, a client could initiate a run of the protocol by sending
an initial message over the network to the server, who would then initialize an
instance of the protocol and then effectively let the adversary deliver the initial
message to that instance.

Remark 7. As in all UC formulations of PAKE, the simulator (i.e., ideal-world
adversary) gets to make at most one password guess per protocol instance, which
is the best possible, since in the real world, an adversary may always try to log
in with a password guess. Moreover, as discussed above in Section 4.4, then
assuming the protocol provides liveness, the simulator does not get to make any
password guesses for protocol executions in which the adversary only eavesdrops.
This corresponds to the “Execute” queries in the BPR framework, in which
an adversary passively eavesdrops on protocol executions, and which do not
increase the odds of guessing a password. Unlike the formulation in [14], where
this property requires a proof, this property is explicitly built in to the definition.

Remark 8. Our ideal functionality is explicitly a “multi-session” functionality:
it models all of the parties in the system and all runs of the protocol.

Formally, for every client/server pair (P,Q) that share a relationship ID rid ,
this ID will typically be of he form rid = (idP , idQ), where idP is a client-ID
and idQ is a server-ID. This is how relationship IDs will be presented Proto-
col KC-SPAKE2, but it is not essential. In practice, the same client-ID may be
associated with one user in relation to one server, and with a different user in
relation to another server.



For a given party X, which may either be a client P or server Q, it will have
associated with it several instances, each of which has an instance ID iidX . Note
that in the formal model, identifiers like P and Q denote some kind of formal
identifier, although these are never intended to be used in any real protocols.
Similarly, instance IDs are also not intended to be used in any real protocols.
These are all just “indices” used in the formalism to identify various partici-
pants. It is the relationship IDs and session IDs that are meant to be used by
and have meaning in higher-level protocols. Looking ahead, the session IDs for
KC-SPAKE2 will be the partial conversations (u, v).

Also note that every instance of a server Q in our formal model establishes
sessions with instances of the same client P . In practice, of course, a “server” es-
tablishes sessions with many clients. One maps this onto our model by modeling
such a “server” as a collection of several of our servers.

Remark 9. What we call a relationship ID corresponds to what is called a “ses-
sion ID” in the classical UC framework [12]. Our ideal functionality explicitly
models many “UC sessions” — this is necessary, as we eventually need to con-
sider several such “UC sessions” since all of the protocols we analyze make use
of common reference string and random oracles shared across many such “UC
sessions”. What we call a session ID actually corresponds most closely what is
called a “subsession ID” in [14] (in the “multi-session extension” of their PAKE
functionality). Note that [14], a client and server instance have to agree in ad-
vance on a “subsession ID”. This is actually quite impractical, as it forces an
extra round of communication just to establish such a “subsession ID”. In con-
trast, our session IDs are computed as part of the protocol itself (which more
closely aligns with the notion of a “session ID” in the BPR framework [7]).

In our model, after a session key is established, a higher-level protocol would
likely use a string composed of the relationship ID, the session ID, and perhaps
other elements, as a “session ID” in the sense of [12].

Remark 10. Our ideal functionality models explicit authentication in a fairly
strict sense. Note that [14] does not model explicit authentication at all. Fur-
thermore, as pointed out in [20], the formulation of explicit authentication in
[19] is flawed. Our ideal functionality is quite natural in that when an adversary
makes an unsuccessful password guess on a protocol instance, then when that
instance terminates, the corresponding party will receive an abort message. Our
formulation of explicit authentication is similar to that in [20], but is simpler
because (as discussed above in Remark 3) we do not try to hide the fact that a
client instance is bad. Another difference is that in our formulation, the simulator
may first force an abort and then only later make its one password guess — this
behavior does not appear to be allowed in the ideal functionality in [20]. This
difference is essential to be able to analyze KC-SPAKE2, since an adversary may
start a session with a server, running the protocol with a guessed password, but
after the server sends the message v, k1, the adversary can send the server some
garbage, forcing an abort, and then at a later time, the adversary may evaluate
the random oracle at the relevant point to see if its password guess was correct.



Remark 11. We do not explicitly model corrupt parties, or corruptions of any
kind for that matter (although this will change somewhat when we model server
compromise in the asymmetric PAKE model in Section 6). In particular, all client
and server instances in the real world are assumed to faithfully follow their pre-
scribed protocols. This may seem surprising, but it is not a real restriction. First
of all, anything a statically corrupt party could do could be done directly by the
adversary, as there are no authenticated channels in our real world. In addition,
because the environment manages passwords, our formulation models adaptively
exposing passwords, which corresponds to the “weak corruption model” of the
BPR framework [7]. Moreover, just like the security model in [14], our security
model implies security in the “weak corruption model” of the BPR framework.7

The proof is essentially the same as that in [14]. However, just like in [14] (as well
as in [19] and [20]), our framework does not model adaptive corruptions in which
an adversary may obtain the internal state of a running protocol instance.8

5 Protocol KC-SPAKE2+

We present Protocol KC-SPAKE2+ in Fig. 5. Given a password π, a client
derives a pair (φ0, φ1) ∈ Z2

q using a hash function F , which we model as a random
oracle. The server, on the other hand, just stores the pair (φ0, c), where c :=
gφ1 ∈ G. Note that unlike Protocol KC-SPAKE2, in Protocol KC-SPAKE2+,
a password π need not be an element of Zq, as it first gets passed through the
hash function F .

6 An ideal functionality for asymmetric PAKE

First, as we already noted, the attempt to formulate an asymmetric PAKE func-
tionality in [19] was fundamentally flawed, as was demonstrated in [20]. One
major problem identified in [20] was that after a server is compromised, we need
a good way to bound the number of “offline test” queries in the ideal world in
terms of the number of “random oracle” queries in the real world. The paper
[20] points out that the ideal functionality suggested in [19] cannot actually be
realized by any protocol (including the protocol presented in [19]) for which the
“password file record” stored on the server is efficiently and deterministically
computable from the password. However, the “fix” proposed in [20] relies in an
essential way on the notion of polynomial running time in the UC framework
as formulated in [12], and as pointed out in [22], this notion of running time is

7 Actually, our framework does not model the notion in [7] that allows password infor-
mation stored on the server to be changed. That said, we are ultimately interested
asymmetric PAKE, and we are not aware of any asymmetric PAKE functionality in
the literature that models this notion.

8 This type of corruption would correspond to the “strong corruption model” of the
BPR framework [7]. Note that the protocol analyzed in [7] is itself only proven secure
in the “weak corruption model”.



public system parameter: random a ∈ G
password: π, (φ0, φ1) := F (π, idP , idQ)

P Q

secret: φ0, φ1 secret: φ0, c := gφ1

α←R Zq, u← gαaφ0 u−−−−−−→ β ←R Zq, v ← gβ

w ← (u/aφ0)β , d← cβ

(k, k1, k2)←
H(φ0, idP , idQ, u, v, w, d)

w ← vα, d← vφ1

(k, k1, k2)←
H(φ0, idP , idQ, u, v, w, d)

validate k1

v, k1←−−−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 5: Protocol KC-SPAKE2+

itself flawed (and may or may not have been repaired in later versions of [12]).
Moreover, ignoring these technical problems, the “fix” in [20] is not very satis-
factory, as it does not yield a strict bound on the number of “offline test” queries
in terms of the number “random oracle” queries. Rather, it only guarantees that
the simulator runs in time bounded by some polynomial in the number of bits
passed to the adversary from the environment.

We propose a simple and direct way of dealing with this issue. It is a some-
what protocol-specific solution, but it gets the job done, and is hopefully of more
general utility. We assume that the protocol in question makes use of a hash func-
tion F , which we model as a random oracle, and that inputs to F are of the form
(π, rid), where rid is a relationship ID, and π is a password. However, the ideal
functionality for accessing this random oracle is a bit non-standard. Specifically,
in the real world, the adversary is not allowed direct access to this random oracle.
Rather, for the adversary to obtain the output value of the random oracle at some
input, the environment must specifically instruct the random oracle functionality
to give this output value to the adversary. More precisely, the environment may
send an input message (oracle-query, π, rid) to the random oracle functional-
ity, who responds by sending the message (oracle-query, π, rid , F (π, rid)) to
the adversary.9 Note that machines representing clients and servers may access
F directly.

Now, in our ideal functionality for asymmetric PAKE, when the environment
sends an input (oracle-query, π, rid), this is sent to the asymmetric PAKE
functionality, who simply forwards the message (oracle-query, π, rid) to the

9 Note that in the specific UC framework of [12], the environment sends this message
to the random oracle functionality via a special “dummy” party.



simulator.10 Moreover, when the simulator makes an “offline test” query to the
ideal functionality, the ideal functionality will only allow such a query if there
was already a corresponding oracle-query. This simple mechanism restricts the
number of “offline line” test queries made against a particular rid in the ideal
world strictly in terms of the number of “random oracle” queries made with the
same rid in the real world.

In addition to supporting the oracle-query interface discussed above, the
following changes are made to the ideal functionality in Section 4.2. There is a
new interface:

• Server Q inputs: (compromise-server)

◦ The simulator is sent (compromise-server, Q).
◦ We say that Q is compromised.

Note that in the real world, upon receiving (compromise-server), server Q
sends to the adversary its “password file record” for this particular client/server
pair (for Protocol KC-SPAKE2+, this would be the pair (φ0, c)).

11 However, the
server Q otherwise continues to faithfully execute its protocol as normal. There
is a second new interface, which allows for “offline test” queries:

• Simulator inputs: (offline-test-pwd, Q, π′)

◦ Assumes (i) that Q is a compromised server, and (ii) that the environment has
already submitted the query (oracle-query, rid , π′) to the ideal functionality,
where rid is Q’s relationship ID.

◦ The simulator is sent (correct) if π′ = π, and (incorrect) if π′ 6= π.

Finally, to model the fact that once a server Q is corrupted, the simulator is al-
ways able to impersonate the server to its partner P , we modify the corrupt-key
interface as follows. Specifically, condition (i), which states:

(i) that (X, iidX) is a correct-guess instance, where X is either a client or server

is replaced by the following:

(i) that either: (a) (X, iidX) is a correct-guess instance, where X is either a client or
server, or (b) (X, iidX) is an original, good instance and X’s partner is a compro-
mised server

7 Protocol IETF-SPAKE2+

Here we describe Protocol IETF-SPAKE2+, which is generalization of the pro-
tocol called SPAKE2+ in the IETF draft specification [26]. The protocol is
presented in Fig. 6. Unlike the previous PAKE protocols we have presented,
both client and server take as input associated data D, and the session key is
computed as (u, v,D). We will discuss below in detail the semantic significance
of this associated data.

Unlike in Protocol KC-SPAKE2+, group elements received by a party may
lie in some larger group G containing G as a subgroup. It is assumed that

10 This allows the simulator to “program” the random oracle.
11 As in [21], we model this type of compromise simply by a message sent from the

environment, rather than the more indirect mechanism in [12].



public system parameters: random a, b ∈ G
password: π, (φ0, φ1) := F (π, idP , idQ)

associated data: D

P Q

secret: φ0, φ1 secret: φ0, c := gφ1

α←R Zq, u← gαaφ0 u−−−−−−→ β ←R Zq, v ← gβbφ0

w ← (u`/aλφ0)β , d← cλβ

(k, k1, k2)←
H(φ0, idP , idQ, u, v, w, d,D)

w ← (v`/bλφ0)α, d← (v`/bλφ0)φ1

(k, k1, k2)←
H(φ0, idP , idQ, u, v, w, d,D)

validate k1

v, k1←−−−−−−

k2−−−−−−→ validate k2

session key: k

Fig. 6: Protocol IETF-SPAKE2+

parties validate membership in G (which is generally cheaper than validating
membership in G). Specifically, P should validate that v ∈ G and Q should
validate that u ∈ G. We also assume that the index of G in G is `, where ` is
not divisible by q. Note that for all x ∈ G, we have x` ∈ G.

We shall denote by λ the image of ` in Zq. Note that λ 6= 0. We will be
rather careful in our notation involving exponents on group elements. Namely,
on elements in G, exponents will always be elements of Zq. On elements that lie
in G but not necessarily in G, the only exponent that will be used is the index
`.

Unlike in Protocol KC-SPAKE2+, the functions F and H in Proto-
col IETF-SPAKE2+ are not modeled as random oracles; rather, they are defined
as follows:

F (π, idP , idQ) := (φ0, φ1)

where (φ0, φ1) := F1(f) and f := F0(π, idP , idQ).
(1)

and

H(φ0, idP , idQ, u, v, w, d,D) := (k, k1, k2),

where k1 := H1(h; 1, u,D), k2 := H1(h; 2, v,D)

and (k, h) := H0(φ0, idP , idQ, u, v, w, d).

(2)

Here, the functions F0, F1, H0, H1 are modeled as follows:

• F0 is modeled as a random oracle producing an output f ∈ F , where F is
some large finite set.



• F1 is modeled as a pseudorandom generator (PRG) with seed space F and
output space Zq × Zq.

• H0 is modeled as a random oracle producing an output (k, h) ∈ K×H, where
H is some large finite set.

• H1 is modeled as a pseudorandom function (PRF) with key space H, input
space {1, 2} × G × D, and output space Kauth. As before, we assume that
the size of Kauth is super-polynomial.

Remark 12. We can actually prove security under significantly weaker assump-
tions on F1 and H1. See the full version of the paper [25] for details.

Remark 13. The second public parameter b ∈ G is not necessary, and all of our
proofs of security hold even if the discrete log of b is fixed and/or known to the
adversary. In particular, one can set b = 1.

Remark 14. In the IETF draft specification [26], the function F0 is defined to be
PBKFD , which outputs two bit strings p0 and p1, and F1(p0, p1) = (φ0, φ1) =
(p0 mod q, p1 mod q), where p0 and p1 are viewed as the binary representations
of integers. Here, PBKFD is a password-based key derivation function designed
to slow down brute-force attackers. Examples are Scrypt [RFC7914] and Argon2
[10]. The inputs to PBKFD are encoded using a prefix-free encoding scheme.
The lengths of p0 and p1 should be significantly longer than the bit length of q
to ensure that φ0 and φ1 have distributions that are statistically close to uniform
on Zq. In order to minimize the reliance on random oracles, it is also possible to
incorporate the final stage of PBKFD in the function F1.

Remark 15. In the IETF draft specification, the function H0 is defined to be a
hash function Hash, which may be SHA256 or SHA512 [RFC6234]. The inputs
to Hash are encoded using a prefix-free encoding scheme. The output of Hash is a
bit string h ‖ k. The computation of the function H1(h; i, x,D), where i ∈ {1, 2},
x ∈ G, and D ∈ D, is defined as follows. First, we compute

(h2 ‖ h1) = KDF(nil, h, "ConfirmationKeys" ‖ D).

Here, KDF is a key derivation function such as HKDF [RFC5869], which takes
as input a salt (here, nil), intermediate keying material (here, h), info string
(here, "ConfirmationKeys" ‖ D), as well as a derived-key-length parameter
(not shown here). The output of H1 is MAC (hi, x), where MAC is a message
authentication code, such as HMAC [RFC2104] or CMAC-AES-128 [RFC4493],
which takes as input a key (here, hi) and a message (here, x). In the modes of
operation used here, it is reasonable to view KDF as a PRF (with key h), and
to view MAC (with key hi) as a PRF. Assuming both of these are PRFs implies
that H1 itself is a PRF.

Remark 16. We model the above implementations of H0 and F0 as indepen-
dent random oracles. Ideally, this would be verified by carrying out a complete
analysis in the indifferentiability framework [18]. As proved in [18], the imple-
mentation of H0 as a standard hash function, like SHA256 or SHA512, with



prefix-free input encoding, is indeed a random oracle in the indifferentiability
framework, under appropriate assumptions on the underlying compression func-
tion. We are not aware of an analogous analysis for the implementation of F0 as
a standard password-based key derivation function, like Scrypt, or of any pos-
sible interactions between the hash functions used in both (which may be the
same). Also, for H0, it would be preferable that its inputs were prefixed with
some sort of protocol ID, and that higher-level protocols that use the same hash
function similarly prefix their inputs with an appropriate protocol ID. (which
includes the system parameters a and b). This would ensure that there are no
unwanted interactions between random oracles used in different protocols. Sim-
ilarly, it would be preferable if F0 were implemented by first hashing its input
using the same hash function used for H0, but prefixed with a different protocol
ID (and which includes the system parameters a and b). This would ensure no
unwanted interactions between these two random oracles. Despite these recom-
mendations, it seems highly unlikely that the current IETF draft specification
[26] has any real weaknesses.

Remark 17. The IETF draft specification allows idP and/or idQ to be omitted
as inputs to H0 and F0 under certain circumstances. Our analysis does not cover
this.

Remark 18. The IETF draft specification allows the parties to negotiate a ci-
phersuite. Our analysis does not cover this. We assume a fixed ciphersuite is
used by all parties throughout the lifetime of the protocol.

Remark 19. Including u and v as inputs to H1 is superfluous, and could have
been omitted without any loss in security. Equivalently, in the IETF draft speci-
fication discussed above in Remark 15, we could just set (k1, k2) := (h1, h2), and
forgo the MAC entirely.

Remark 20. The IETF draft specification insists that the client checks that v` 6=
1 and that the server checks that u` 6= 1. This is superfluous. We will ignore this.
Indeed, one can easily show that a protocol that makes these checks securely
emulates one that does not. Note, however, that by making these checks, the
“liveness property” (see Section 4.4) only holds with overwhelming probability
(rather than with probability 1).

Remark 21. The IETF draft specification allows the server to send v and k1
as separate messages. We will ignore this. Indeed, one can easily show that a
protocol that sends these as separate messages securely emulates one that does
not. This is based on the fact that in the IETF draft specification, even if v and
k1 are sent by the server as separate messages, they are sent by the server only
after it receives u, and the client does nothing until it receives both v and k1.

7.1 Extending the ideal functionality to handle associated data

The only change required to deal with associated data are the
init-client-instance and init-client-instance interfaces. In both



cases, the associated data D is passed along as an additional input to the ideal
functionality, which in turn passes it along immediately as an additional output
to the simulator.

Remark 22. In practice, the value of D is determined outside of the protocol
by some unspecified mechanism. The fact that D is passed as an input to
init-client-instance and init-server-instance means that D must be
fixed for that instance before the protocol starts. The fact that the value is
sent to the simulator means that the protocol does not treat D as private data.

Remark 23. Our ideal functionality for PAKE allows a client instance and a
server instance to share a session key only if their session IDs are equal. For
Protocol IETF-SPAKE2+, since the session ID is computed as (u, v,D), the
ideal functionality will allow a client instance and a server instance to share
a session key only if their associated data values are equal. In fact, as will be
evident from our proof of security, in Protocol IETF-SPAKE2+, if an adversary
faithfully delivers messages between a client instance and a server instance, but
their associated data values do not match, then neither the client nor the server
instance will accept any session key at all. Our ideal functionality does not model
this stronger security property.

8 Statement of main results

Our main results are the following:

Theorem 1. Under the CDH assumption for G, and modeling H as a random
oracle, Protocol KC-SPAKE2 securely emulates the ideal functionality in Sec-
tion 4.2 (with respect to all well-behaved environments as in Section 4.3).

Theorem 2. Under the CDH assumption for G, and modeling H and F as
random oracles, Protocol KC-SPAKE2+ securely emulates the ideal functionality
in Section 6 (with respect to all well-behaved environments as in Section 4.3).

Theorem 3. Under the CDH assumption for G, assuming F1 is a PRG, as-
suming H1 is a PRF, and modeling H0 and F0 as random oracles, Proto-
col IETF-SPAKE2+ securely emulates the ideal functionality in Section 6 (with
respect to all well-behaved environments as in Section 4.3, and with associated
data modeled as in Section 7.1).

Because of space limitations, we refer the reader to the full version of the
paper [25] for proofs of these theorems. In the full version of the paper, we
also briefly discuss alternative proofs under an the interactive CDH assumption,
which yield tighter reductions.

9 Sketch of proof ideas

Although we do not have space to provide detailed proofs, we can give a sketch
of some of the main ideas.



Protocol KC-SPAKE2 We start by giving an informal argument that Proto-
col KC-SPAKE2 is a secure symmetric PAKE under the CDH assumption, and
modeling H as a random oracle. We make use of a “Diffie-Hellman operator”,
defined as follows: for α, β ∈ Zq, define

[gα, gβ ] = gαβ . (3)

We first make some simple observations about this operator. For all x, y, z ∈ G
and all µ, ν ∈ Zq, we have

[x, y] = [y, x], [xy, z] = [x, z][y, z], and [xµ, yν ] = [x, y]µν .

Also, note that [x, gµ] = xµ, so given any two group elements x and y, if we
know the discrete logarithm of either one, we can efficiently compute [x, y].

Using this notation, the CDH assumption can be stated as follows: given
random s, t ∈ G, it is hard to compute [s, t].

First, consider a passive adversary that eavesdrops on a run of the proto-
col between an instance of P and an instance of Q. He obtains a conversation
(u, v, k1, k2). The session key and authentication values are computed by P and
Q is

(k, k1, k2) = H(π, idP , idQ, u, v, [u/a
π, v]). (4)

Intuitively, to mount an offline dictionary attack, the adversary’s goal is to query
the random oracle H at as many relevant points as possible, where here, a
relevant point is one of the form

(π′, idP , idQ, u, v, [u/a
π′
, v]), (5)

where π′ ∈ Zq. By evaluating H at relevant points, and comparing the outputs
to the values k1, k2 (as well as values derived from k), the adversary can tell
whether or not π′ = π.

The following lemma shows that under the CDH assumption, he is unable to
make even a single relevant query:

Lemma 1. Under the CDH assumption, the following problem is hard: given
random a, u, v ∈ G, compute γ ∈ Zq and w ∈ G such that w = [u/aγ , v].

Proof. Suppose we have an adversary that can efficiently solve the problem in
the statement of the lemma with non-negligible probability. We show how to use
this adversary to solve the CDH problem with non-negligible probability. Given
a challenge instance (s, t) for the CDH problem, we compute

µ←R Zq, a← gµ,

and then we give the adversary

a, u := s, v := t.



Suppose now that the adversary computes for us γ ∈ Zq and w ∈ G such that
w = [u/aγ , v]. Then we have

w = [u, v][a, v]−γ (6)

Since we know the discrete log of a, we can compute [a, v], and therefore, we can
compute [u, v] = [s, t] �

Next, consider an active adversary that engages in the protocol with an
instance of server Q.

Now, in the adversary’s attack, he submits the first message u to Q. Next,
Q chooses v at random and sends this to the adversary. Server Q also computes
k, k1, k2 as in (4) and also sends k1 to the adversary. Again, the adversary’s goal
is to evaluate the random oracle H at as many relevant points, as in (5), as
possible. Of course, an adversary that simply follows the protocol using some
guess π′ for the password can always make one relevant query. What we want
to show is that it is infeasible to make more than one relevant query. This is
implied by the following lemma:

Lemma 2. Under the CDH assumption, the following problem is hard: given
random a, v ∈ G, compute γ1, γ2 ∈ Zq and u,w1, w2 ∈ Zq such that γ1 6= γ2 and
wi = [u/aγi , v] for i = 1, 2.

Proof. Suppose that we are given an instance (s, t) of the CDH problem. We
give the adversary

a := s, v := t.

The adversary computes for us γ1, γ2 and w1, w2 such that γ1 6= γ2, and

wi = [u/aγi , v] = [u, v][a, v]−γi (i = 1, 2).

Then we have
w2/w1 = [a, v]γ1−γ2 . (7)

This allows us to compute [a, v] = [s, t]. �

Note that if an adversary tries to mount a dictionary attack by interacting
with an instance of a client P , by design, the adversary gets only one guess at
the password: the only random oracle query that matters is the one that yields
the value k1 that the adversary sends to the client instance.

Protocol KC-SPAKE2+ It is not hard to argue that Protocol KC-SPAKE2+
offers the same level of security as protocol KC-SPAKE2 under normal condi-
tions, when the server is not compromised. However, consider what happens if
the server Q is compromised in protocol KC-SPAKE2+, and the adversary ob-
tains φ0 and c. At this point, the adversary could attempt an offline dictionary
attack, as follows: evaluate F at points (π′, idP , idQ) for various passwords π′,
trying to find π′ such that F (π′, idP , idQ) = (φ0, ·). If this succeeds, then with
high probability, π′ = π, and the adversary can easily impersonate the client P .



The key property we want to prove is the following: if the above dictionary
attack fails, then under the CDH assumption, the adversary cannot impersonate
the client.

To prove this property, first suppose that an adversary compromises the
server, then attempts a dictionary attack, and finally, attempts to log in to the
server. Compromising the server means that the adversary obtains φ0 and c =
gφ1 . Now suppose the dictionary attack fails, which means that the adversary has
not evaluated F at the point (π, idP , idQ). The value φ1 is completely random,
and the adversary has no other information about φ1, other than the fact that
c = gφ1 . When he attempts to log in, he sends the server Q some group element
u′, and the server responds with v := gβ for random β ∈ Zq. To successfully
impersonate the client, he must explicitly query the random oracle H at the
point (φ0, idP , idP , u

′, v, [u′/aφ0 , v], [c, v]), which means, in particular, he has to
compute [c, v]. But since, from the adversary’s point of view, c and v are random
group elements, computing [c, v] is tantamount to solving the CDH problem.

The complication we have not addressed in this argument is that the adver-
sary may also interact with the client P at some point, giving some arbitrary
message (v′, k′1) to an instance of P , and in the above algorithm for solving the
CDH, we have to figure out how the CDH solver should respond to this message.
Assuming that (v′, k′1) did not come from an instance of Q, the only way that P
will not abort is if k′1 is the output of a query to H explicitly made by the adver-
sary; moreover, this query must have been (φ0, idP , idP , u, v

′, [u/aφ0 , v′], [c, v′]),
where u is the random group element generated by this instance of P . Now,
with overwhelming probability, there is at most one query to H that outputs k′1;
however, we have to determine if it is of the required form. We may assume that
our CDH solver knows logg a (in addition to φ0), and so our CDH solver needs
to be able to determine, given adversarially chosen v′, w′, d′ ∈ G, whether or not
w′ = [u, v′] and d′ = [c, v′]. Since it does not know logg c, our CDH solver would
appear to need an oracle to answer such queries. Without the additional con-
dition w′ = [u, v′], we would require the interactive CDH assumption; however,
with this additional condition, we can use the “Twin Diffie-Hellman Trapdoor
Test” from [17] to efficiently implement this oracle, and so we only need the
standard CDH assumption.

References

1. Abdalla, M., Barbosa, M.: Perfect forward security of SPAKE2. Cryptology ePrint
Archive, Report 2019/1194 (2019), https://eprint.iacr.org/2019/1194

2. Abdalla, M., Barbosa, M., Bradley, T., Jarecki, S., Katz, J., Xu, J.: Univer-
sally composable relaxed password authenticated key exchange. Cryptology ePrint
Archive, Report 2020/320 (2020), https://eprint.iacr.org/2020/320

3. Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and
an analysis of DHIES. In: Topics in Cryptology - CT-RSA 2001, The Cryptogra-
pher’s Track at RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001,
Proceedings. pp. 143–158 (2001)



4. Abdalla, M., Bresson, E., Chevassut, O., Möller, B., Pointcheval, D.: Provably
secure password-based authentication in TLS. In: Proceedings of the 2006 ACM
Symposium on Information, Computer and Communications Security, ASIACCS
2006. pp. 35–45 (2006), https://doi.org/10.1145/1128817.1128827

5. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: CT-RSA 2005. pp. 191–208 (2005)

6. Becerra, J., Ostrev, D., Skrobot, M.: Forward secrecy of spake2. Cryptology ePrint
Archive, Report 2019/351 (2019), https://eprint.iacr.org/2019/351

7. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. Cryptology ePrint Archive, Report 2000/014 (2000),
https://eprint.iacr.org/2000/014

8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: CCS ’93, Proceedings of the 1st ACM Conference on Com-
puter and Communications Security, Fairfax, Virginia, USA, November 3-5, 1993.
pp. 62–73. ACM (1993), https://doi.org/10.1145/168588.168596

9. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Computer Society Symposium on
Research in Security and Privacy, Oakland, CA, USA, May 4-6, 1992. pp. 72–84
(1992)

10. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: the memory-hard function for
password hashing and other applications (2017), https://github.com/P-H-C/phc-
winner-argon2/blob/master/argon2-specs.pdf

11. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The won-
derful world of global random oracles. In: Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part I. pp. 280–312 (2018)

12. Canetti, R.: Universally composable security: A new paradigm for cryp-
tographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000),
https://eprint.iacr.org/2000/067

13. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
J. ACM 51(4), 557–594 (2004)

14. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. Cryptology ePrint Archive, Report 2005/196 (2005),
https://eprint.iacr.org/2005/196

15. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random
oracle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, Scottsdale, AZ, USA, November 3-7, 2014. pp. 597–608
(2014)

16. Canetti, R., Rabin, T.: Universal composition with joint state. In: Advances in
Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference,
Santa Barbara, California, USA, August 17-21, 2003, Proceedings. pp. 265–281
(2003)

17. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and
applications. Cryptology ePrint Archive, Report 2008/067 (2008),
https://eprint.iacr.org/2008/067

18. Coron, J., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-damg̊ard revisited: How
to construct a hash function. In: Advances in Cryptology - CRYPTO 2005: 25th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 14-18, 2005, Proceedings. pp. 430–448 (2005)



19. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for mak-
ing password-based key exchange resilient to server compromise.
In: Advances in Cryptology - CRYPTO 2006. pp. 142–159 (2006),
https://iacr.org/archive/crypto2006/41170140/41170140.pdf

20. Hesse, J.: Separating standard and asymmetric password-authenticated
key exchange. Cryptology ePrint Archive, Report 2019/1064 (2019),
https://eprint.iacr.org/2019/1064

21. Hofheinz, D., Shoup, V.: GNUC: A new universal composability framework. J.
Cryptology 28(3), 423–508 (2015)

22. Hofheinz, D., Unruh, D., Mller-Quade, J.: Polynomial runtime and
composability. Cryptology ePrint Archive, Report 2009/023 (2009),
https://eprint.iacr.org/2009/023

23. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol se-
cure against pre-computation attacks. In: Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings,
Part III. pp. 456–486 (2018)

24. Naor, M.: On cryptographic assumptions and challenges. In: Ad-
vances in Cryptology - CRYPTO 2003. vol. 2729, pp. 96–109 (2003),
https://iacr.org/archive/crypto2003/27290096/27290096.pdf

25. Shoup, V.: Security analysis of SPAKE2+. Cryptology ePrint Archive, Report
2020/313 (2020), https://eprint.iacr.org/2020/313

26. Taubert, T., Wood, C.A.: SPAKE2+, an Augmented PAKE. Internet-Draft
draft-bar-cfrg-spake2plus-00, Internet Engineering Task Force (Mar 2020),
https://datatracker.ietf.org/doc/draft-bar-cfrg-spake2plus/


