
The Resiliency of MPC with Low Interaction:
The Benefit of Making Errors

(Extended Abstract)?

Benny Applebaum1, Eliran Kachlon1, and Arpita Patra2

1 Tel-Aviv University, Tel-Aviv, Israel {benny.applebaum,elirn.chalon}@gmail.com
2 Indian Institute of Science, Bangalore, India arpita@iisc.ac.in

Abstract. We study information-theoretic secure multiparty protocols that achieve full security, in-
cluding guaranteed output delivery, at the presence of an active adversary that corrupts a constant
fraction of the parties. It is known that 2 rounds are insufficient for such protocols even when the
adversary corrupts only two parties (Gennaro, Ishai, Kushilevitz, and Rabin; Crypto 2002), and that
perfect protocols can be implemented in 3 rounds as long as the adversary corrupts less than a quarter of
the parties (Applebaum , Brakerski, and Tsabary; Eurocrypt, 2019). Furthermore, it was recently shown
that the quarter threshold is tight for any 3-round perfectly-secure protocol (Applebaum, Kachlon, and
Patra; FOCS 2020). Nevertheless, one may still hope to achieve a better-than-quarter threshold at the
expense of allowing some negligible correctness errors and/or statistical deviations in the security.

Our main results show that this is indeed the case. Every function can be computed by 3-round protocols
with statistical security as long as the adversary corrupts less than third of the parties. Moreover, we
show that any better resiliency threshold requires 4 rounds. Our protocol is computationally inefficient
and has an exponential dependency in the circuit’s depth d and in the number of parties n. We show
that this overhead can be avoided by relaxing security to computational, assuming the existence of
a non-interactive commitment (NICOM). Previous 3-round computational protocols were based on
stronger public-key assumptions. When instantiated with statistically-hiding NICOM, our protocol
provides everlasting statistical security, i.e., it is secure against adversaries that are computationally
unlimited after the protocol execution.

To prove these results, we introduce a new hybrid model that allows for 2-round protocols with linear
resiliency threshold. Here too we prove that, for perfect protocols, the best achievable resiliency is n/4,
whereas statistical protocols can achieve a threshold of n/3. In the plain model, we also construct the
first 2-round n/3-statistical verifiable secret sharing that supports second-level sharing and prove a
matching lower-bound, extending the results of Patra, Choudhary, Rabin, and Rangan (Crypto 2009).
Overall, our results refine the differences between statistical and perfect models of security, and show
that there are efficiency gaps even for thresholds that are realizable in both models.

Keywords: Information-Theoretic Cryptography · Cryptographic Protocols · Secure Computation ·
Round Complexity.

1 Introduction

Interaction is a valuable and expensive resource in cryptography and distributed computation. Consequently,
a huge amount of research has been devoted towards characterizing the amount of interaction, typically
measured via round complexity, that is needed for various distributed tasks (e.g., Byzantine agreement [44,
27, 29], coin flipping [24, 45], and zero-knowledge proofs [35, 19]) under different security models. In this
? The full version of this paper can be found in [7]. The first two authors are supported by the European Union’s
Horizon 2020 Programme (ERC-StG-2014-2020) under grant agreement no. 639813 ERC-CLC, and the Check
Point Institute for Information Security. Arpita Patra would like to acknowledge financial support from SERB
MATRICS (Theoretical Sciences) Grant 2020 and Google India AI/ML Research Award 2020.

paper, we focus on two central cryptographic goals: secure-multiparty-computation (MPC) of general n-
party functionalities and verifiable secret sharing (VSS) [23]. We strive for full information-theoretic security,
including guaranteed output delivery, at the presence of a computationally-unbounded active (aka Byzantine
or malicious) rushing adversary that controls up to t of the parties. In this setting, originally presented in
the classical works of Ben-Or, Goldwasser, and Wigderson [17] and Chaum, Crépeau and Damgård [21], we
assume that each pair of parties is connected by a secure and authenticated point-to-point channel and that
all parties have access to a common broadcast channel, which allows each party to send a message to all
players and ensures that the received message is identical.

The round complexity of information-theoretic MPC was extensively studied [12, 16, 28, 52, 39, 32,
34, 40, 46, 41, 43, 37, 4, 2, 31, 3, 5, 8]. For passive perfect security, it was recently showed that optimal
resiliency of t = b(n− 1)/2c and optimal round complexity of two can be simultaneously achieved [4, 31].
For active-security the picture is more complicated, and there seems to be a tradeoff between the number
of rounds r and the resiliency threshold t. If the adversary is allowed to corrupt a single party (t = 1) then
2 rounds are sufficient whenever n ≥ 4 [37]. Any larger resiliency threshold t > 1 requires at least three
rounds [32, 34]. For 3-round error-free perfectly-secure protocols, it was recently showed that a resiliency
threshold of t = b(n− 1)/4c is achievable [5] and that no better resiliency can be achieved [8]. The latter paper
also shows that, for error-free perfectly-secure protocols, 4 rounds suffice for a threshold of tp = b(n− 1)/3c
which is known to be optimal for perfect protocols regardless of their round complexity [17].

In this paper, we will be studying the other extreme point of this tradeoff. We fix a minimal model
of communication (i.e., a round-complexity bound rmin) for which linear resiliency is realizable, and try
to characterize the best achievable resiliency t within this model. Since 2-round protocols cannot achieve
resiliency larger than 1, we ask:

Q1: What is the best resiliency threshold t that can be achieved by a three-round protocol with full
information-theoretic active security? Can we beat the b(n− 1)/4c perfect-MPC barrier by resorting
to statistical security?
Q2: Can we formalize a meaningful two-round model in which a linear resiliency threshold is achiev-
able ?

We provide a complete answer to the first question and show that statistical three-round protocols can achieve
b(n− 1)/3c resiliency and nothing beyond that! We also answer the second question to the affirmative by
presenting a new two-round hybrid model in which linear-resiliency is achievable. This model will serve
as a stepping stone towards constructing three-round protocols. Along the way, we reveal new interesting
differences between perfectly-secure error-free protocols to protocols that achieve perfect-secrecy but make
errors with negligible probability. We continue with a detailed account of our results starting with the two-
round hybrid model.

1.1 Two-Round Protocols in a Single-Input First-Round Hybrid Model

Single-Input First-Round Hybrid (SIFR) Model. We present a new Single-Input First-Round Hybrid Model
(SIFR). In this model the communication network, which contains the usual peer-to-peer/broadcast channels,
is augmented with some ideal n-party functionalities F that are restricted in two ways: (1) Every party Pi
is allowed to invoke the functionalities multiple times but only during the first round ; and (2) The ideal
functionalities must be single-input functionalities, that is, when Pi invokes a functionality F isi : {0, 1}∗ →
({0, 1}∗)n the functionality delivers an output that depends only on the input of Pi. For example, both
the authenticated-private channel functionality (that delivers a message from Pi to Pj) and the broadcast
functionality (that delivers a message from Pi to all other parties) are simple instances of single-input
functionalities. A more interesting example is the polynomial-VSS functionality that takes from Pi a degree-
t polynomial Q over some finite field F, and delivers to every party Pj an evaluation of Q in some canonical
point αj ∈ F. We refer to this model as the F-SIFR model or simply as the SIFR model when we wish to
keep the oracles F unspecified.

We will be interested in two-round protocols in the SIFR model. In such protocols, all the first-round
messages depend solely on the input of a single party and the only “mixing” (between different inputs of

2

different parties) occurs during the second round. Hence, two rounds are indeed essential for computing any
non-trivial functionality. As an additional feature, we note that single-input functionalities can be trivially
implemented with passive security via a single-round protocol, and so any two-round protocol in the SIFR
model immediately translates into a two-round passively-secure protocol in the plain model.

Limitations of Perfect protocols in SIFR Model. To get a sense of the model, note that one can perfectly com-
pute any degree-2 functionality over any finite field F of size larger than n with resiliency of t = b(n− 1)/4c.
Roughly speaking, at the first round each party uses the single-input Fpoly functionality to share each input
via Shamir-based secret-sharing with polynomials of degree t; then each party locally computes the func-
tionality over the shares (making an arbitrary number of additions and a single multiplication). At the end
of this local computation, each party holds a share of the output that lies on a degree-2t polynomial. At the
second round, the parties broadcast the output shares and apply Reed-Solomon decoding to overcome the
effect of at most t adversarial corruptions.3 In fact, it was recently showed in [8] (building on [5]) that degree-
2 functionalities over any binary extension field are complete under non-interactive reductions either with
perfect resiliency of b(n− 1)/3c or with statistical resiliency of b(n− 1)/2c. Therefore, the above observation
yields an b(n− 1)/4c-perfect protocol in our model for an arbitrary functionality. In the full version [7], we
prove that for perfect protocols this is the best achievable threshold.

Theorem 1 (perfect 2-round SIFR-protocols). General n-party functionalities can be perfectly-computed
in two rounds in the SIFR Model with resiliency of t if and only if t ≤ b(n− 1)/4c.

The upper-bound holds in the Fpoly-SIFR model. The lower-bound holds relative to any (vector of)
computationally-unbounded single-input functionalities and applies even when the adversary is non-rushing.
In fact, the negative result shows that even the AND functionality cannot be computed in this model. As
a corollary, for any t ≥ n/4, the theorem rules out the existence of t-private secret sharing scheme that is
robustly-multiplicative in the sense that parties can locally convert shares of x and shares of y to shares of xy
that are t-robust, i.e., they are recoverable even at the presence of t-corruptions. (This notion of multiplicative
secret-sharing is stronger than the standard variants of multiplicative and strongly-multiplicative secret
sharing, see [26].) The negative part of Theorem 1 is proved by turning a two-round n/4-perfectly secure
protocol for the AND-functionality in the SIFR hybrid model into a two-party protocol in the plain model
for AND with perfect security against semi-honest adversaries, contradicting the impossibility result of [22].

Statistical protocols in Fvsh-SIFR Model. We show that the n/4 lower-bound can be bypassed by allowing
the protocol to make negligible correctness errors while preserving perfect secrecy.4 Our protocol makes
use of the bivariate version of the VSS functionality, denoted by Fvsh. Roughly speaking, this single-input
functionality receives a symmetric bivariate polynomial F (x, y) of degree less than or equal to t from a dealer
and sends the polynomial fi(x) = F (x, i) to every party Pi. (See Fig 2 in Section 3 for a formal definition.)

Theorem 2 (statistical 2-round SIFR-protocols). Any n-party functionality f of degree-2 over some
finite field F of cardinality larger than n can be computed by a two-round Fvsh-SIFR protocol with b(n− 1)/3c-
resiliency, perfect-secrecy, statistical-correctness and complexity of poly(S, n, log |F|, log(1/ε)) where S is the
circuit size of f and ε is the error probability.

Moreover, a similar result applies to any functionality f except that the complexity is also exponential in
the depth of the Boolean circuit that computes f . The dependency in the depth can be avoided at the expense
of downgrading security to computational and under the assumption that one-way functions exist.

3 The above description ignores some technical details such as output randomization which can be easily applied in
the Fpoly-SIFR model; see for example [5].

4 Formally, this means that, in addition to standard statistical security, the output distribution of the simulator S
in the ideal world and the output distribution of the adversary A in the real world are identically distributed. This
additional property (which is common to all our positive results) does not seem to be very useful as a feature, but
it indicates more accurately what is needed in order to bypass the lower-bounds in the perfect setting.

3

The “Moreover” part follows from the first part by using the aforementioned completeness of degree-2
functionalities [8, Thm. 5.23] whose overhead is exponential in the circuit’s depth in the case of information-
theoretic security. This makes the statistical variant of the theorem efficient only for NC1 functionalities.5
Similar limitations apply to all known constant-round protocols in the information-theoretic setting even for
the case of passively-secure protocols. Let us further mention that even inefficient protocols are non-trivial
since security holds against a computationally-unbounded adversary.

On the proof of Thm. 2: Round Compression via Guards. The proof of Theorem 2 is based on several
novel components. In a nutshell, following a blue-print suggested in [8], we derive a three-round protocol
π in the SIFR-hybrid model. We then exploit the special structure of the last two-rounds and show how
to compress them into a single round. In slightly more concrete terms, at the end of the first round, some
party, say Alice, holds two values a and b and some other party, say Bob, also has a copy of b. (Think of b
as a secret-share that was shared by Alice in the first round of π.) The purpose of the remaining rounds is
to release to all parties a value c = g(a, b) that depends on Alice’s a and Bob’s b while keeping b private.
This is done by using two additional rounds: First Alice broadcasts a, and then Bob computes the value c
based on (a, b) and broadcasts the result. The key observation is that all the relevant information (a and
b) is known to Alice, and the role of Bob is to make sure that the outcome c is computed properly with
respect to his own copy of b. (Other consistency mechanisms take care of the “correctness” of a). We abstract
this notion via a new form of Secure Computation with a Guard (SCG) and show that if one is willing to
tolerate statistical errors, then any function g can be realized (in the plain model) by a single-round protocol
that employs correlated randomness. Furthermore, the correlated randomness can be sampled by Bob in
a single preprocessing round. This allows us to collapse the last two rounds of π into a single round (plus
an additional offline preprocessing that is being handled during the first round.) Overall, our single-round
SCG’s allow us to compress the three-round SIFR-protocol into a two-round SIFR-protocol. The resulting
protocol makes use of the Fvsh functionality and an additional single-input functionality Ftsh that essentially
deals the shares of a random multiplicative triple (a, b, c = ab). In order to remove the Ftsh oracle, we first
implement it in three-rounds in the Fvsh-SIFR model, and then compress the last round via an additional use
of SCG. (See Section 3 for further details.) Our SCG constructions are based on a combination of message-
authentication codes (MACs) and multiparty private-simultaneous-message protocols [28, 38] (also known
as fully-decomposable randomized encoding of functions [39, 6]). (See Section 2 for details.)

1.2 Two-Round Verifiable Secret Sharing

Motivated by Theorem 2, our next goal is to realize the Fvsh functionality in the standard model within a
minimal number of rounds. The round complexity of VSS was extensively studied in the literature [32, 46,
30, 42, 43, 10, 1, 37, 49]. In the perfect setting, we have a complete answer: In order to achieve a linear
resiliency t, one must use a two-round protocol, and within this “budget” the best achievable resiliency is
t = b(n− 1)/4c [32]. Patra et al. [46] were the first to suggest that this bound may be bypassed by allowing
negligible statistical errors. Specifically, they view VSS as a stand-alone two-phase primitive, and showed
that the sharing phase of VSS with statistical error and perfect secrecy can be realized in two rounds if and
only if t ≤ b(n− 1)/3c.

Unfortunately, the resulting protocol does not implement the polynomial-based Fvsh-functionality and so
we cannot plug it into Theorem 2. Indeed, the existing protocol suffer from several caveats that make it less
suitable for MPC applications. Specifically, after the sharing phase some of the honest parties may not hold
a valid share, let alone a “second-level share”. In addition, the sub-protocol needed for the “reconstruction”
phase is relatively complicated and requires two rounds. In contrast, existing perfect VSS protocols [32, 42]
realize the Fvsh functionality, and correspondingly enable a trivial single-round reconstruction in which the
parties broadcast their views. The possibility of an analogous statistical realization of Fvsh in two rounds
and resiliency threshold of b(n− 1)/3c was left open by previous works. We answer this question in the
affirmative. (See Section 4 for further details.)
5 As usual in such settings, the exponential dependency in the depth can be replaced by an exponential dependency
in the (non-deterministic) branching-program complexity of f .

4

Theorem 3 (2-round statistical protocols for Fvsh). There exists a 2-round protocol that b(n− 1)/3c-
securely realizes the n-party functionality Fvsh over an arbitrary finite field F with perfect-secrecy and statistical-
correctness. The communication complexity is polynomial in n, log |F| and log(1/ε) where ε is the error-
probability. The computational complexity is polynomial in log |F|, log(1/ε) and exponential in the number of
parties.

The exponential dependency in the number of parties is due to the use of a clique finding algorithm
over an “agreement graph” of size n. While this dependency is unfortunate, the protocol is still meaningful
since it provides security against unbounded adversaries. The existence of a similar protocol with polynomial
dependency in n is left as an interesting open question.

Resiliency Lower-bounds. We further strengthen the lower-bounds of [46] and show that any resiliency of
t ≥ n/3 cannot be achieved by a VSS with a two-round sharing phase even if both secrecy and correctness
are statistical, and even if the adversary is non-rushing. This result applies to the more general setting where
the VSS is viewed as a two-phase primitive, as opposed to an MPC functionality. (See the full version [7] for
further details.) We also reveal an additional qualitative difference for the t ≥ n/3 regime: No matter how
many rounds are used in the sharing phase, the reconstruction phase cannot be implemented by letting the
parties broadcast their local view. That is, even during the reconstruction some secrecy must be maintained.
(See the full version [7] for further details.) Indeed, existing constructions in this regime [51, 43], employ
information-theoretic MACs or signatures and keep some of the secret-key information private even during
reconstruction. Our lower-bound shows that this is inherent.

1.3 Three-Round MPC in the Standard Model

We can now get back to the case of three-round plain-model protocols for general functionalities. Recall that
in Q1 we asked what is the best resiliency that can be achieved by 3 rounds protocols. This question was
recently resolved in the perfect setting. Specifically, it was shown that 3 rounds can achieve a resiliency of
t = b(n− 1)/4c [5]6, and that even a slightly better resiliency threshold of t = b(n− 1)/4c + 1 requires at
least four rounds [8].7

Again, we show that a small statistical error allows us to bypass the lower-bound. Specifically, by taking
the two-round Fvsh-SIFR protocol from Theorem 2 and instantiating the Fvsh oracle with the two-round
implementation from Theorem 3, we derive a three-round statistical protocol that remains secure as long as
at most b(n− 1)/3c of the parties are being corrupted. We further prove a matching lower bound on the
resiliency of three-round statistical protocols by showing that a 3-round protocol with (b(n− 1)/3c + 1)-
resiliency for an authenticated-VSS functionality can be collapsed into a VSS with a 2-round sharing phase,
contradicting our VSS negative results. (See full version [7] for further details.) Overall we derive the following
theorem.

Theorem 4 (3-round protocols with optimal resiliency). Every n-party functionality can be computed
in three-rounds with statistical security against an active rushing computationally-unbounded adversary that
corrupts at most b(n− 1)/3c of the parties. The communication complexity of the protocol is polynomial in
n, 2D and S and the computational complexity is polynomial in 2n, 2D and S where S and D are the size
and depth of the Boolean circuit that computes f .
6 The positive result can now be obtained by combining the simple 2-round VSS-hybrid protocol for quadratic
functions (Thm 1) with the 2-round perfect-VSS of [32] and with the completeness of degree-2 arithmetic func-
tionalities [8]. The original proof from [5] was significantly more complicated since it relied on a weaker degree-2
completeness result that was applicable only over the binary field.

7 The impossibility of three-round plain-model perfect protocols with resiliency t ≥ b(n− 1)/4c + 1 seems to be
incomparable to the impossibility of two-round perfect SIFR-model protocols (Theorem 1). One could deduce
the latter result from the former with the aid of two-round protocols for single-input functionalities with perfect
resiliency of t ≥ b(n− 1)/4c + 1. However, such protocols do not exist even for the special case of the VSS
functionality [32].

5

Furthermore, the security threshold is tight for three-round protocols. That is, there is a finite functionality
that cannot be computed in three rounds at the presence of an active (non-rushing) computationally-unbounded
adversary that corrupts b(n− 1)/3c+ 1 of the parties.

Theorem 4 fully characterizes the feasible security threshold of three-round protocols with information-
theoretic active security. As already mentioned the exponential dependency in the depth is expected, and
seems to be unavoidable given the current state of the art. The exponential dependency in n is derived from
our VSS construction (Theorem 3), and we hope that future works will be able to improve it and get a
polynomial overhead.

Downgrading to computational security. One way to bypass the exponential blow-up in n is to replace
the two-round b(n− 1)/3c-statistical VSS with the cryptographic VSS of [10]. The latter achieves the
same b(n− 1)/3c-resiliency against computationally-bounded adversaries assuming the existence of a non-
interactive commitment (NICOM). Specifically, by plugging this VSS into the computational part of Theo-
rem 2, we get the following theorem. (See full version [7] for further details.)

Theorem 5 (3-round computational MPC). Assuming the existence of NICOM, every n-party func-
tionality f admits a three-round protocol with computational security against a computationally-bounded
adversary that actively corrupts up to t ≤ b(n− 1)/3c of the parties. The complexity is polynomial in n and
in the circuit’s size of f . Moreover, if f is a single-input functionality the round complexity can be reduced
to 2.

The optimality of three rounds for any t > 1 is owing to the two-round impossibility result of [34] that
remains valid even in the cryptographic setting. For the special case of t = 1 and n = 4, [37] shows a
two-round construction from any one-way function. Other existing round-optimal constructions [2, 11] work
with t < n/2, albeit rely on public-key encryption schemes and two-round witness indistinguishable proofs
(ZAPs). These assumptions are believed to be strictly stronger than NICOM that can be based on injective
one-way functions [18, 55, 36] or even on general one-way functions assuming standard complexity-theoretic
de-randomization assumptions [13].

We further mention that if one employs a perfectly-hiding NICOM, then our protocol achieves ever-
lasting security, i.e., it is secure against adversaries that are computationally unlimited after the protocol
execution [54]. For this result one has to invoke the statistical variant of Theorem 2, and so the protocol is
efficient only for NC1 functionalities or general single-input functionalities. Perfectly-hiding NICOM can be
based on collision-resistance hash functions at the CRS model. Even in this model, the round-complexity
lower-bounds of [34] hold, and one cannot hope for two-round protocols.

The “moreover” part of the theorem covers an interesting family of “single-input” functionalities including
important tasks such as distributed ZK, multiplication triple generation (modellled via Ftsh) and VSS. Our
two-round protocol complements the incomparable result of [34] that achieves a similar round-complexity
with perfect-security, but with a smaller resiliency threshold of t < n/6. The proof of Theorem 5 of appears
in the full version [7].

1.4 Discussion: The benefit of errors

Since the works of Rabin and Ben-Or [51] and Beaver [15], it is known that statistical protocols can achieve a
resiliency threshold ts = b(n− 1)/2c that is strictly larger than the best resiliency threshold tp = b(n− 1)/3c
that is achievable by perfect protocols [50, 17]. Patra et al. [46] were the first to suggest that the statistical
setting may lead to better round complexity even for thresholds of t ≤ tp which are perfectly realizable
(i.e., realizable with perfect security). Specifically, they showed that the sharing phase of statistical VSS
with t = b(n− 1)/3c can be carried in two rounds, bypassing a three-round lower-bound of [34]. Another
indication for a possible advantage was given by [37] who showed that 4-party linear functions can be
statistically computed in two rounds with threshold of t = 1 which is impossible in the perfect setting as
shown by [33, Thm 8].8 However, to the best of our knowledge, so far we did not have a single example of
8 We thank Yuval Ishai for pointing this out.

6

an infinite MPC functionality whose statistical round complexity is strictly smaller than its perfect round
complexity under a perfectly-realizable threshold t ≤ tp. Theorem 4 settles this question in a strong way
showing that, for any n/4 ≤ t ≤ b(n− 1)/3c, statistical t-security can be achieved for all functions in three
rounds, whereas perfect t-security cannot be achieved in three rounds even for simple finite functionalities [8].

The separation proved in the SIFR model (Thm 1 vs. Thm 2) should be taken with more care. An
immediate corollary of Thm 1 asserts that for any perfect resiliency-threshold t that is larger than b(n− 1)/4c,
one cannot transform an r-round perfect-VSS (modeled as some ideal sharing functionality) into an r + 1-
round general MPC in a “black-box” way. Furthermore, since it is known that for tp = b(n− 1)/3c perfect VSS
takes exactly 3 rounds, one can naively conclude that for such resiliency general perfectly-secure MPC cannot
be implemented in less than 3 + 2 = 5 rounds. Nevertheless, [8] constructed a 4-round perfectly-secure tp-
resilient MPC protocol in the plain model. This construction is based on a 3-round implementation of the Fvsh

functionality in a fairly complicated way that exploits the concrete properties of the underlying Fvsh-protocol.
Specifically, the transformation makes use of intermediate values that are available before the Fvsh-protocol
terminates. The impossibility of perfect two-round Fvsh-SIFR protocol for general functionalities (Thm 1)
should therefore be interpreted as saying that such a complication is inherent ! In contrast, the statistical
relaxation allows us to obtain a significantly simpler reduction (i.e., two-round Fvsh-SIFR) as shown in Thm 2.

We end up the introduction, by depicting in Figure 1 the resiliency-vs-round landscape of MPC in various
models.

1 2 3 4

0

1

bn−1
4
c

bn−1
3
c

bn−1
2
c

Trivial

[41, 37]

[5]

[8]

[2, 11]

Rounds

T
hr
es
ho

ld

Perfect Security
Statistical Security

Computational Security

Figure 1: The best trade-offs known between the thresholds t and the number of rounds r in the plain
model. Circles, triangles and squares indicate perfect, statistical and computational security, respectively.
Our results are marked with solid shapes. Each of the marked points is optimal in the sense that it cannot be
moved up. That is, no better resiliency can be achieved under the corresponding model with the permitted
round complexity.

Organization. In the extended abstract version, we present a succinct version of the upper bounds. Section 2
presents the high-level idea of the Secure-Computation-with-Guard primitive, which is being employed in
Section 3 towards the construction of 2-round statistical Fvsh-SIFR Protocols. In Section 4 we construct
2-round VSS protocols.

7

2 Secure Computation with a Guard

In this section we present a new Secure Computation with a Guard (SCG) primitive that will be employed
later in our constructions. In SCG, there are two senders, Alice and Bob, with asymmetric roles: Bob knows
a single input b ∈ B whereas Alice knows both inputs a ∈ A and b ∈ B. The goal is to release the value
of f(a, b) to a receiver Carol who holds no input. (This can be formalized by the 3-party functionality
F ((a, b), b,⊥) = (⊥,⊥, f(a, b)).) Syntactically, the protocol consists of an offline phase, denoted scg.off, and
an online phase, scg.on. In the offline phase, Bob sends a single message to Carol and a single message
to Alice, these messages depend only on the randomness of Bob and do not depend on his input. In the
online phase, both Alice and Bob send a single message to Carol based on the offline messages and on their
inputs a, b. At the end Carol should output the value f(a, b) or a special abort symbol. As in the setting of
private simultaneous message (PSM) protocols [28], we require security against an adversary that corrupts
the receiver. In addition, if Alice (resp., Bob) is malicious, the receiver must abort or terminate with an
output of the form f(a′, b) for some a′ ∈ A (resp., f(a′, b)). In this sense, “Bob guards the computation”
against corrupted Alice and “Alice guards the computation” against a corrupted Bob.

Roughly speaking, in our construction Bob samples, in the offline phase, randomness r for a 2-party
f -PSM protocol and sends it to Alice. In addition, Bob signs all the possible messages that Alice may send
in the PSM protocol via an information-theoretic message authentication code, sends the tags to Alice and
delivers to Carol a permuted version of all the keys. In the online phase, Bob sends the PSM message sB(b; r)
that corresponds to his input b, whereas Alice sends the messages sA(a; r), sB(b; r) together with their tags.
Carol aborts if the tags do not match or if the B-part of the messages is inconsistent, otherwise it used the
PSM decoder to recover the output. A naive implementation of this idea yields an overhead which is linear
in the domain size, however, by using multiparty PSM, we can reduce the overhead to be poly-logarithmic
in the domain-size. Overall, we prove the following theorem. (See full version [7] for a proof.)

Lemma 1 (Polynomial-time SCG Protocols). Let A = Fm1
2 , B = Fm2

2 and C = Fp2. Let m = m1 +m2

and let f : A×B → C be a Boolean circuit with depth logarithmic in m, size polynomial in m and bounded
fan-in and fan-out. Then, for every statistical parameter ε, there exists an SCG protocol with complexity
poly(m) · log(1/ε).

3 A Two-Round Statistically-Secure Fvsh-SIFR Protocol

In this section, we prove Theorem 2. For an integer x, we use ‖x‖ to denote the set {1, . . . , x}. Let us denote
the set of n parties by P.

3.1 Definitions

The following definitions are parameterized by a resiliency threshold t, a finite field F of size q > n, and a
tuple of n non-zero elements in F, one for each party in P, which are denoted (with a slight abuse of notation)
by 1, . . . , n. Throughout this section, we fix t to b(n− 1)/3c.

Definition 1 (b·e-sharing). A value s is said to be committed amongst P, denoted as bse, if there exists
a polynomial f(x) of degree at most t with f(0) = s such that every honest party Pi either holds f(i) or ⊥
and at least t+ 1 honest parties hold non-⊥ values.

Definition 2 ([·]-sharing). A value s is said to be t-shared amongst P, denoted as [s], if there exists a
polynomial f(x) of degree at most t with f(0) = s such that every honest party Pi holds f(i).

Definition 3 ([[·]]-sharing). A value s is said to be doubly t-shared amongst P, denoted as [[s]], if there exist
polynomials f(x), {fi(x)}i∈{1,...,n}, all of degree at most t with f(0) = s and f(i) = fi(0) for i ∈ {1, . . . , n}
such that f(0), {fi(0)}i∈{1,...,n} are t-shared via polynomials f(x), {fi(x)}i∈{1,...,n} and every honest Pi holds
fi(x).

8

Definition 4 (〈·〉-sharing). A value s is said to be doubly 2t-shared amongst P, denoted as 〈s〉, if there
exist a degree-2t polynomial f(x) and degree-t polynomials {fi(x)}i∈{1,...,n} with f(0) = s and f(i) = fi(0)
for every honest party Pi such that {fi(0)}i∈{1,...,n} are t-shared via polynomials {fi(x)}i∈{1,...,n} and every
honest Pi holds f(i) and fi(x).

Definition 5 (First-level and Second-level sharing, Shares and Share-shares). In the double secret
sharing definitions ([[·]] and 〈·〉), the sharings done for the shares of the secret are referred as second-level
sharings, while the sharing for the actual secret is termed as first-level sharing and the shares of the shares
are termed as share-shares. The ith share of s is denoted as si (the context will make it clear whether the
shares correspond to t or 2t sharing). The jth share-share of the ith share si of s is denoted as sij.

The sharings [·], [[·]] and 〈·〉 are linear i.e. local addition of the shares of [a] and [b] results in [a + b]
(similarly for the other types of sharing). Furthermore, addition of 〈a〉 and [[b]] results in 〈a+ b〉.

3.2 The High-level Idea

Our goal is to build a 2-round statistical protocol in the Fvsh-SIFR model, that can evaluate any n-party
degree-2 functionality (over a field larger than n).

Prologue. Our starting point is the following completeness theorem from [8, Prop. 4.5 and Thm. 5.23].

Proposition 1 ([8]). Let F be an n-party functionality that can be computed by a Boolean circuit of size
S and depth D and let F be an arbitrary extension field of the binary field F2. Then, the task of securely-
computing F non-interactively reduces to the task of securely-computing the degree-2 n-party functionality f
over F that each of its outputs is of the form

xαxβ +

n∑
j=1

rj , (1)

where xα and xβ are the inputs of party Pα and Pβ respectively and rj is an input of party Pj for j ∈
{1, . . . , n}.

The reduction preserves active perfect-security (resp., statistical-security) with resiliency threshold of
b(n− 1)/3c (resp., b(n− 1)/2c) and the complexity of the function f and the overhead of the reduction
is poly(n, S, 2D, log |F|). Furthermore, assuming one-way functions, one can get a similar reduction that
preserves computational-security with resiliency threshold of b(n− 1)/2c and complexity/security-loss of
poly(n, S, log |F|).

Throughout this section we fix F to an F2-extension field of size larger than n, and assume that all the
sharing functionalities are defined with respect to F. (Specifically, we can take the smallest such field.) By
Proposition 1, it suffices to focus on functionalities whose output can be written as (1). From now on, we
focus on such a functionality f and construct a 2-round Fvsh-SIFR protocol whose complexity is polynomial
n and in the description of f . For simplicity, we will discuss computation of one degree-2 term as above. The
extension, guaranteeing that the same x values are used across different degree-2 terms, will follow easily.

2-round Fvsh-SIFR protocol. Given access to an ideal VSS functionality, denoted Fvsh, that can generate
a [[·]]-sharing of a party’s secret, we show how to construct a 2-round Fvsh-SIFR protocol for degree-2
computation. The Fvsh-SIFR protocol is efficient and statistically-secure for threshold t < n/3. Therefore,
when the protocol is instantiated with a realisation of VSS, the security (statistical vs. cryptographic) and
efficiency of the final MPC protocol reduce to that of underlying realisation of VSS.

Building on Fvsh, we first design a 2-round triple secret sharing (TSS) protocol in the Fvsh-SIFR model,
that verifiably generates [·]-sharing of a party’s triple secrets a, b, c satisfying the product relation c = ab.
The TSS completes the sharing in the first round, and the verification of the product relation is done in the
second round. Subsequently, we use both the VSS functionality Fvsh and the TSS protocol, in order to obtain
a protocol for degree-2 computation in the Fvsh-SIFR model, which is both efficient and statistically secure.

9

Partial Degree-reduction. Traditionally, evaluating a degree-2 function involves secret-sharing the values
and multiplying them distributively. The secret sharing takes the form of t-sharing and the share-wise
multiplication results in a non-random 2t-sharing of the product. The latter is transformed to a t-sharing via
degree-reduction and randomization, and lastly the t-shared product is reconstructed robustly to complete
degree-2 function evaluation. The degree-reduction in each step of multiplication seems necessary to keep the
degree inflation in check when a sequence of multiplications needs to be performed. With degree-two functions
as the end goal, we ditch full-fledged round-expensive degree-reduction. Rather we settle for generating a
randomized double 2t-sharing of the product which enables robust reconstruction via the second-level t-
sharings. That is, we perform one-time degree reduction for the second-level sharings alone. This idea is
borrowed from [8]. As we demonstrate in this work, the degree reduction is an easier task than the degree-
reduction of the first-level sharing. The key idea is to have Pi monitor the degree reduction for the ith second-
level sharings. We elaborate more below, starting with the description of a 3-round Fvsh-SIFR protocol, and
then showing how to shave a round in order to obtain a 2-round protocol.

A 3-round Fvsh-SIFR protocol. Our aim is to compute 〈xαxβ +
∑n
k=1 r

k〉 and reconstruct the output via
robust reconstruction of its second-level t-sharings. For simplicity, we ignore the additive terms and focus on
producing 〈y〉 = 〈xαxβ〉 and reconstructing the product. First, the Fvsh functionality is used to generate [[xα]]
and [[xβ]] in the first round. A local multiplication over the shares generates a non-random 2t-sharing of the
product xαxβ . Generating 〈y〉 is then done in two steps– randomization of the sharing and degree-reduction
of the second-level sharing. The former requires generating a 〈0〉 and adding to the non-random second-level
degree-reduced sharing of y. Generating a 〈0〉 requires producing t [[·]]-sharing via the Fvsh functionality and
can be concluded in the first round. Next, the degree reduction for the ith second-level sharing is conducted
under the supervision of Pi that produces an independent triple sharing ([ai], [bi], [ci]) which is then used to
turn the t-sharing of the ith shares of xα and xβ (respectively, xαi and xβi) to a t-sharing of their product via
Beaver’s circuit randomization technique [14]. The TSS generates the triple sharings in the first round via
Fvsh and completes the verification of product relation in the second round. Having all the material ready by
the first round (except the verification of the product-relation), Beaver’s technique can be initiated in the
second round, and it requires the reconstruction of ui = (xαi −ai), vi = (xβ − bi) to compute [yi] = [xαi x

β
i] as

uivi+ui[b
i] + vi[a

i] + [ci]. Subsequently, degree-2 computation requires reconstruction of yi (the randomized
version of it) which, if correct, is a share of the first-level 2t-sharing of the product xαxβ . The above approach
leads to a 3-round protocol. We compress the two sequential reconstructions, each of which typically achieved
via a single round communication followed by error correction, into a single-round affair.

Shaving a Round using 3-party secure computation with a guard (SCG). Our approach takes note that the
jth share-share yij is expressed as uivi+uibij + viaij + cij (where aij , bij and cij are the j-th shares of ai, bi and
ci), and the parties Pi, Pj jointly hold all the inputs before the start of round 2. Specifically, the two values
ui, vi that can be publicly reconstructed earliest at round 2 are already available to Pi in the end of round 1
(as she herself generated the triples and Fvsh instances for xα, xβ conclude in round 1). The shares of a, b, c,
on the other hand, is known to both Pi, Pj in the end of round 1 as soon as the relevant Fvsh conclude.
This perfectly creates a vacuum for a 3-party primitive between Alice, Bob and Carol. Alice holds inputs
x, y respectively from sets X and Y and Bob holds y. Together, they would like to enable Carol to compute
f(x, y) (and nothing else) with a one-shot communication. While Alice alone can do this, having Bob allows
us to conduct a ‘secure computation with a guard’ (SCG). Between Alice and Bob, the honest party guards
the computation ensuring certain level of correctness. Specifically, Carol outputs either f(x′, y) or ⊥ when
Alice is corrupt, whereas f(x, y) or ⊥ when Bob is corrupt. Using a SCG for a slightly tweaked function
g(x, y) = (x, f(x, y)) and ensuring that correct x is made available to Carol in round 2, it is possible to make
Carol output either f(x, y) or ⊥ in the Alice-corrupt case. We plug in an SCG, for every triple (i, j, k), with
Pi in the shoes of Alice with inputs x = (ui, vi), y = (aij , b

i
j , c

i
j), Pj in the shoes of Bob with input y, and the

function g outputting (ui, vi, yij) to Pk (Carol). We reconstruct ui, vi from their t-sharing in round 2 to make
them available with every Pk, to make sure that either f(x, y) or ⊥ are extracted from the reconstruction
of the SCG of g. For an honest Pi, SCG with every honest Pj will disclose yij , while with that of a corrupt
Pj is guaranteed to output either yij or ⊥. Denoting a SCG leading to ⊥ as a silent one, the reconstruction

10

of yi for an honest Pi reduces to fitting the unique t-degree polynomial over the disclosed yij . On the other
hand, a corrupt Pi needs to keep at least n − t SCGs non-silent (which is the case for an honest Pi), and
consequently it must agree to the inputs fed by the n − 2t honest parties. Furthermore, the SCG, together
with the reconstructed ui and vi, ensure that nothing but yij or ⊥ can make way to the output. Thus, if
some value is reconstructed in this case, it will be yi. Lastly, Pi can cheat by not ensuring ci = aibi for its
triple. However, TSS offers a mechanism to detect this mischief in round 2. Therefore, the reconstruction, if
at all successful, results in the correct yi for a corrupt Pi. Leveraging super-honest majority, we will always
have enough yi (n− t ≥ 2t+ 1) for the reconstruction of y.

Employing the SCGs. Recall that apart from the single-round communication, SCGs need an offline input-
independent communication round. In our protocols, the offline can be run in round 1. Furthermore, we apply
the SCG’s only to functions whose formula size is polynomial in n, and our construct is polynomial-time.
SCG also plays a key role in our TSS protocol.

Epilogue. For the degree-2 completeness, we need every party to output different y (yet with the same form).
To ensure that the same x inputs are used for computation of all the y values, the same secret sharing of the
x values needs to be used for computation of 〈y〉 as above for all y values. With the above high-level idea,
we first present the notion of secure computation with a guard, and then use this notion to derive a 2-round
statistically-secure degree-2 protocol in the Fvsh-SIFR model.

3.3 Fvsh-SIFR Protocol for Degree-2 Computation

For the Fvsh-SIFR protocol, we use an idealized version of VSS given in Fig 2, which is used in the first
round of the Fvsh-SIFR protocol.

Fvsh receives F (x, y) from D ∈ P. If F (x, y) is not a symmetric bivariate polynomial of degree less than or equal to
t in both x and y, then it replaces F (x, y) with a default choice of such polynomial. Lastly, it sends fi(x) = F (x, i)
to every Pi.

Functionality Fvsh

Figure 2: Functionality Fvsh

We further require a reconstruction protocol for [s]. We define two variants of reconstruction– rec for
public reconstruction and recj for private reconstruction to party Pj . recj is given below and rec can be
realized by running n copies of recj for every Pj . Both require one round. In recj , on holding si (ith share
of s), Pi sends si to Pj who applies RS error correction to correct t errors and reconstruct the underlying
polynomial f(x) and output s = f(0).

We now move on to present a TSS protocol and then building on it, a degree-2 computation protocol,
both in the Fvsh-SIFR model.

Triple Secret Sharing The goal of this protocol is to allow a dealer to share three values (a, b, c) via VSS
such that c = ab holds. Given access to an ideal VSS in the first round, we achieve our goal in 2 rounds.
We abstract out the need in a functionality Ftsh given in Fig 3 and present our protocol subsequently.

Ftsh receives fa(x), fb(x), fc(x) from D ∈ P. If any of the polynomials is not a polynomial of degree less than or
equal to t or fc(0) 6= fa(0)fb(0), then it sends ⊥ to every Pi and fa(i), fb(i), fc(i) otherwise.

Functionality Ftsh

11

Figure 3: Functionality Ftsh

Following the idea proposed in [17] and recalled in [9], the dealer chooses two polynomials of degree at most
t, fa(x) and f b(x) with fa(0) = a and f b(0) = b. It then picks a sequence of t polynomials f1(x), . . . , f t(x),
all of degree at most t such that f c(x) which is equal to fa(x)f b(x)−

∑t
α=1 x

αfα(x) is a random polynomial
of degree at most t with the constant term equalling ab. Both [17, 9] elucidate the idea of choosing the
coefficients of f1(x), . . . , f t(x) in a way that simultaneously cancels out the higher order coefficients and
randomizes the remaining coefficients of the product polynomial fa(x)f b(x). The dealer hides these t + 3
polynomials in symmetric bivariate polynomials and invokes t + 3 instances of Fvsh. At the end of the first
round the sharings are returned by the Fvsh functionalities, and the check for the product relation c = ab is
enabled by letting every party Pi verify if f c(i) = fa(i)f b(i) −

∑t
α=1 x

αfα(i). Therefore, a complaint can
be raised in round 2 and reconstruction of the shares of the complainant can be done in round 3 to enable
public verification. To conclude the verification in round 2, we need to shave a round, or compress the rounds
2 and 3 into a single one. Given that, the complaint bit (indicating whether Pi’s verification succeeds or not)
is known to Pj and the jth share-shares are known to both Pi and Pj at the end of round 1, round 2 can be
used for running (the online phase) of an SCG protocol to reveal the jth share-shares when the complaint
bit is true. So the function of our interest is f : F2 × Ft+3 → Ft+4 defined by

f(x, {xα}α∈‖t+3‖) =

{
(x, 0, . . . , 0) if x = 0,

(x, {xα}α∈‖t+3‖) otherwise,
(2)

with A := F2, B := Ft+3 and C := Ft+4 (as per Lemma 1). To conduct Pi’s verification, we plug in SCGs
between every triple (i, j, k) varying over all j, k, with Pi as Alice Pj as Bob and Pk as carol. Pi and Pj
together allow Pk to compute the jth share-shares of all the t + 3 [[·]]-sharing if Pi’s complaint bit is on.
Precisely, Pi’s inputs are the complaint bit and the share-shares, whereas Pj ’s input is just the share-shares.
The offline of the SCGs are run during the first round, and the online in round 2. An SCG instance that
leads to ⊥ for a Carol, is labelled as silent.

For an honest Pi with genuine complaint, n − t SCGs corresponding to the honest Pjs will spit out the
correct share-shares (via correctness), while the rest will either be silent or spit out correct share-shares (via
correctness with a guard for honest-Alice case). This enables public reconstruction of the ith shares of all the
t + 3 [[·]]-sharing and so subsequent public verification will instate the compliant publicly. Thus an honest
party can always convince others about its complaint and can ensure D’s disqualification. A corrupt Pi, on
the other hand, can only force the SCGs to output f on either x = 0 or 1, apart from turning them silent.
A corrupt Pi needs to keep at least n− t SCGs non-silent (which is the case for an honest Pi) for not to be
disqualified. Among these, it must allow every Pk to receive at least n−2t correct share-shares corresponding
to the SCGs with honest Pjs. Therefore, the reconstruction, if at all successful, results in reconstructing the
correct shares, ensuring a successful public verification and absolution of D. Therefore, a corrupt Pi cannot
make a false allegation against an honest D. Protocol tsh is described in Fig. 4 and is proven to realize
functionality Ftsh (Lemma 2) in the full version [7]. Finally, note that the function, that is computed using
SCG is a formula of constant multiplicative depth and therefore has an efficient realization.

Inputs: D has inputs (a, b, c) such that c = ab.
Output: By the end of R1, the parties output [[a]], [[b]], [[c]] or discards D. If D is not discarded, then by the end
of R2, the parties output [a], [b], [c] where c = ab holds or output ⊥.

R1 D and the parties do the following
– (VSS calls) D chooses t + 3 random polynomials fa(x), fb(x), fc(x), f1(x), . . . , f t(x), each of degree t such

that (a) fa(0) = a, fb(0) = b, fc(0) = c and (b) fc(x) = fa(x)fb(x)−
∑t
α=1 x

αfα(x) as discussed in [17, 9]. D

Protocol tsh

12

picks t+3 symmetric bivariate polynomials F a(x, y), F b(x, y), F c(x, y), F 1(x, y), . . . , F t(x, y) with F a(x, 0) =
F a(0, y) = fa(x), F b(x, 0) = F b(0, y) = fb(x), F c(x, 0) = F c(0, y) = fc(x) and Fα(x, 0) = Fα(0, y) = fα(x)
for every α ∈ {1, . . . , t} and invokes t+ 3 instances of Fvsh with these bivariate polynomials.

– (SCG offline calls) For every triple (i, j, k), Pi in the role of Alice, Pj in the role of Bob, and Pk in the role
of Carol, run scg.offijk, an execution of the offline phase of an SCG instance scgijk for function f as given in
Equation 2.

– (Local Computation)Upon conclusion of the instances of Fvsh, let the parties hold t+3 [[·]]-sharing {[[zα]]}α∈‖t+3‖
ready where z1 = fa(0) = a, z2 = fb(0) = b, z3 = fc(0) = c and zα = fα(0). Every Pi sets flagi = 0, if
z3
i = z1

i z
2
i −

∑t
α=1 i

αzα+3
i and 1 otherwise.

R2 The parties do the following.
– (SCG online calls) For every triple (i, j, k), Pi, as Alice, inputs x = flagi and xα = zαij (the jth share-share

of zαi) and Pj , as Bob, inputs {xα}α∈‖t+3‖ to the execution of scg.onijk (the matching online of scg.offijk).
– (Local Computation) Every Pk acts as follows. For every i and j, execution scgijk is considered to be silent if

the output of Pk is ⊥. Let for a non-silent scgijk, Pk outputs (flagij , {z
α
ij}α∈{1,...,t+3}). Pk discards D and

outputs ⊥, if there exists a party Pi such that all the following are true.
• At least n− t executions of {scgijk}j are non-silent. Let Li denote the set of all such js.
• All {flagij}j∈Li from non-silent executions are 1.
• For every α ∈ {1, . . . , t+3}, there is a unique polynomial of degree at most t that passes through {zαij}j∈Li .

Let zαi denote the constant term of the polynomial. The condition z3
i = z1

i z
2
i −
∑t
α=1 i

αzα+3
i is not satisfied.

Otherwise, Pk outputs [a], [b], [c] ignoring the second-level sharing.

Figure 4: Protocol tsh

Lemma 2 (Security). Protocol tsh realises functionality Ftsh, except with probability ε, tolerating a static,
active adversary A corrupting t parties, possibly including the dealer D. Moreover, it is a statistically-correct
and perfectly-secret protocol. Assuming the error probability of protocols scg and vsh, as εscg and respectively
εvsh, we have ε ≤ t(2t+ 1)εscg + (t+ 3)εvsh.

Lemma 3 (Efficiency). In Fvsh-SIFR model, protocol tsh has a complexity of O
(

poly(n log |F|) log (1/ε)
)
.

Simplifications in Cryptographic Setting. Protocol tsh can be simplified in the cryptographic setting signif-
icantly, using the specifics of the VSS realization. In particular, the SCGs can be avoided altogether and
further two rounds are enough to complete theTSS protocol. In fact, we prove a stronger statement– VSS and
any single-input functionality has the same round complexity in cryptographic setting. However, the latter
uses the VSS in a non-black-box way (hence does not lead to a one-round protocol in Fvsh-SIFR model). We
postpone these details to the full version [7].

Degree-2 Computation Here we show how to compute a degree-2 computation of the following form:
y = xαxβ +

∑n
k=1 r

k, where xα and xβ are the inputs of Pα and Pβ respectively and rk is an input of
Pk for k ∈ {1, . . . , n}. This extended computation was proven to be complete for any polynomial-time
computation. The goal is abstracted as a functionality Fdeg2c below and the protocol appears subsequently
for the computation of a single y. We assume the output is given to everyone for simplicity. The functionality
can be modified to take a random input from the rightful recipient Pγ and y can be sent out in blinded form
using the randomness as the blinder. The realisation of this slightly modified functionality can obtained
relying on the realisation of the below functionality and additionally asking Pγ to run a VSS on a random
polynomial (with a uniform random element mγ in the constant term). The value y is then reconstructed
in blinded form to everyone with mγ as the blinder, which only Pγ can unblind. Thus, we assume y be
dispatched to all in Fdeg2c.

13

Fdeg2c receives xα from Pα, xβ from Pβ and rk from Pk ∈ P. It computes y = xαxβ +
∑n
k=1 r

k and returns y to
every party.

Functionality Fdeg2c

Figure 5: Functionality Fdeg2c

Recall that the high-level idea our protocol is to generate 〈xαxβ +
∑n
`=1 r

`〉 from [[xα]], [[xβ]], {[[r`]]}`∈{1,...,n}
and reconstruct the secret xαxβ +

∑n
`=1 r

` via its second-level t-sharings. A bunch of VSS instances are in-
voked to generate [[xα]], [[xβ]], {[[r`]]}`∈{1,...,n} in the first round. Ignoring the additive terms, the major
task boils down to generating 〈xαxβ〉 from [[xα]] and [[xβ]]. Local product of the shares and share-shares of
these two sharings results in a non-randomized 2t-sharing in both the first and second level. To compute a
〈·〉-sharing, we (a) use the Beaver’s trick to compute t-sharing of the product-share xαi x

β
i from the t-sharing

of shares xαi and xβi and then (b) randomize the first-level 2t-degree product polynomial. For the latter, we
use the existing techniques via VSS (for example see [8]). We only recall the functionality F〈0〉 responsible
for generating a 〈0〉, and mention that it can be implemented in one round in the Fvsh-SIFR model. Let zsh
denote a one-round Fvsh-SIFR protocol for zero-sharing (these protocols are termed as ZSS protocols).

Given a set of parties C ⊂ P that are controlled by ideal adversary A, F〈0〉 receives {si}i∈C and {sij}i∈{1,...,n};j∈C.
It picks a random polynomial of degree at most 2t, f(x), such that– (i) f(0) = 0 and (ii) f(i) = si for i ∈ C.
It further picks a set of random polynomials {fi(x)}i∈{1,...,n} of degree at most t such that for each fi(x)– (a)
fi(0) = f(i) and (ii) fi(j) = sij for all j ∈ C. It sends (f(i), fi(x)) to every Pi.

Functionality F〈0〉

Figure 6: Functionality F〈0〉
To achieve the former task, every Pi generates ([ai], [bi], [ci]) such that (ai, bi, ci) are random and in-

dependent of the actual inputs and satisfy ci = aibi using an instance of protocol tsh. Recall that while
generating the sharings takes is done in the first round, the verification of the product relation takes place
in the second round. Beaver’s trick requires reconstruction of ui = (xαi − ai), vi = (xβi − bi) first to compute
[yi] = [xαi x

β
i] as uivi+ui[b

i] + vi[a
i] + [ci] and subsequently, degree-2 computation requires reconstruction of

yi (the randomized version of it) which, if correct, is a share of the first-level 2t-sharing of the product xαxβ .
Therefore, the above approach leads a 3 round protocol. To conclude within 2 rounds, we need a reconstruc-
tion mechanism that achieves– (a) for an honest Pi, the reconstruction is robust and yi is the correct share
(b) for a corrupt Pi, either the reconstruction fails or yi is the correct share. This reconstruction is enabled
via SCGs. For the reconstruction of yi, Pi in the role of Alice, Pj in the role of Bob run an SCG to allow
every Pk learn yij , the jth share-share of yi. The input of Pi is (ui, vi) and the jth share-shares, aij , bij , cij of
a, b, c. The input of Pj is jth share-shares of a, b, c. The function f computes yij = uivi+uib

i
j+via

i
j+ c

i
j and

outputs (ui, vi, yij). With all the inputs ready at the end of the first round, we compute the offline phase in
the first round as well, while the online phase can be executed in the second round. During the online phase,
we also make sure Pk, as Carol, holds ui, vi, by reconstructing these values from their t-sharing. This allows
Pk to make sure that Pi used the values ui and vi as an input to the SCG, thus making sure that the value
extracted from the SCG is either yij or ⊥, even when Pi is corrupt. The protocol appears in Fig 7 and the
proof that it realizes functionality Fdeg2c (Theorem 6) in the full version of the paper [7].

Inputs: Pα and Pβ input xα and respectively xβ . In addition, P` inputs r` for ` ∈ {1, . . . , n}.
Output: Every party outputs y = xαxβ +

∑n
`=1 r

`.

Protocol deg2c

14

R1 The parties do the following in parallel
– (VSS calls) Pα picks a symmetric bivariate polynomial of degree at most t in each variable Xα(x, y) with
Xα(0, 0) = xα and initiates an instance of Fvsh. Pβ picks Xβ(x, y) with Xβ(0, 0) = xβ and initiates an instance
of Fvsh. Each P` picks R`(x, y) with R`(0, 0) = r` and initiates an instance of Fvsh with input R`(x, y).

– (TSS calls) Every Pi initiates an instance of tsh, denoted as tshi, with inputs (ai, bi, ci), randomly chosen,
yet satisfying product relation ci = aibi.

– (ZSS call) The parties initiate an instance of zsh, which is concluded by the end of the round.
– (SCG offline calls) For every triple (i, j, k), Pi in the role of Alice, Pj in the role of Bob, and Pk in the role

of Carol execute scg.offijk for function f : F2 × Fn+4 → F3 defined by

f
(

(u, v), (a, b, c, o, {w`}`∈{1,...,n})
)

= (u, v, uv + ub + va + c + o +

n∑
`=1

w`). (3)

– (Local computation) At the end of this round, we have [[xα]], [[xβ]], {[[r`]]}`∈{1,...,n}, {[ai], [bi], [ci]}i∈{1,...,n}
from {tshi}i∈{1,...,n}, and 〈0〉 (we denote the ith share as oi and jth share-share of oi as oij).

R2 The parties do the following:
– (TSS completion) The parties run R2 of {tshi}i∈{1,...,n}.
– (SCG online calls) For every pair (i, j), we assign the arguments of f of Equation 3 as: u = (xαi − ai),

v = (xβi − bi), a = aij (jth share of ai), b = bij (jth share of bi), c = cij (jth share of ci), o = oij (jth
share-share of ith share of 0 corresponding to the generated 〈0〉), w` = r`j (jth share of r`). For every (i, j, k)
Pi, as Alice, inputs (u, v) and (a, b, c, o, {w`}), while Pj , as Bob, inputs (a, b, c, o, {w`}) to the execution of
scg.onijk.

– (Recovering u, v for all) For every Pi, the parties run two instances of rec for [xαi −ai] and [xβi − b
i] to recover

the values for all.
– (Local computation) Every Pk initiates a set L to P and acts as follows. Pk runs the local computation steps of
{tshi}i∈{1,...,n}. For every (i, j, k), run the local computation for scg.onijk using the SCG output (uij , vij , yij)

(which can be ⊥). An scgijk is called silent if the output of Pk is ⊥. For every Pi ∈ L, Pk does the following.
• Exclude Pi from L, if Pi is discarded, as a dealer, in tshi.
• Exclude Pi from L if there exists some j such that uij 6= (xαi − ai) or vij 6= (xβi − b

i).
• Exclude Pi from L, if at least t+ 1 executions of {scgijk}j are silent. Otherwise let Li denote the set of all
js (which is at least n− t) for non-silent circuits.

• Exclude Pi from L, if the values {yij}j∈Li do not lie on a polynomial of degree t.
• For every Pi ∈ L, let the the constant term of the unique polynomial defined by {yij}j∈Li be yi.
Finally, Pk uses {yi}Pi∈L to interpolate the 2t-degree polynomial holding output y in the constant term and
outputs y.

Figure 7: Protocol deg2c

Theorem 6 (Security). Protocol deg2c realises functionality Fdeg2c, except with probability ε, tolerating a
static adversary A corrupting t parties. Moreover, it is a statistically-correct and perfectly-secret protocol.
Assuming the error probability of protocols scg and vsh, as εscg and respectively εvsh, we have ε ≤ (nt+ 5n+
2)εvsh + (n+ 1)t(2t+ 1)εscg.

Theorem 7 (Efficiency). In Fvsh-SIFR model, protocol deg2c has a complexity of O
(

poly(n log |F|) log 1/ε)
)
.

4 Verifiable Secret Sharing

Here, we introduce a new statistical VSS and recall the existing cryptographic VSS of [10]. In the latter
section, we also suggest a simplified computational TSS protocol that is devoid of the SCGs.

In this section, the underlying field for sharing, F, can be taken to be an arbitrary finite field of size
q > n. We let κ denote a statistical security parameter that guarantees a correctness error of 2−Ω(κ) (and
perfect secrecy), and always take κ to be super-logarithmic in the number of parties, i.e., κ = ω(log n). We

15

assume without loss of generality that log |F| > Ω(κ), and if this is not the case, we lift F up to a sufficiently-
large extension field. Finally, we assume that basic arithmetic operations over F can be implemented with
polynomial complexity in the log |F|. As usual, we fix the resiliency t to b(n− 1)/3c.

4.1 Statistical VSS

In this section, we construct the first 2-round statistical VSS that produces [[s]] of D’s secret from F. The
existing 2-round VSS of [46, 1] does not generate [[·]]-sharing and further the set of secrets that are allowed
to be committed is F ∪ {⊥}. The latter implies that a corrupt D has the liberty of not committing to any
secret or put differently, the committed secret can be ⊥. A natural consequence of being able to produce
[[·]]-sharing is that the reconstruction turns to a mere one-round communication of shares followed by error
correction, unlike the complicated approach taken in [46, 1].

As a stepping stone towards a statistical VSS, we first build two weaker primitives– interactive signature
and weak commitment.

Interactive Signature An interactive signature protocol is a three-phase protocol (distribute, verify and
open), involving four entities– a dealer D ∈ P, an intermediary I ∈ P, a receiver R ∈ P and a set of verifiers
P. In the distribute phase, the dealer D, on holding a secret, distributes the secret and a signature on the
secret to intermediary I and private verification information to each party Pi in P. In the verify phase, I
and the verifiers P together verify if the secret and signature verify with the verification information. In the
open phase, I opens the message and signature to R and the verifiers open verification information to R
who verifies and accepts the message if it verifies correctly. Intuitively, we require four properties from the
primitive– (a) privacy of the secret till the end of execution of the three phases when D, I,R are honest
and at most t of the verifiers are corrupt; (b) unforgeability of honest D’s secret in the open phase against
the collusion of a corrupt I and at most t corrupt verifiers; (c) nonrepudiation of the secret after the verify
phase succeeds against the collusion of a corrupt D and at most t corrupt verifiers, i.e. an honest R accepts
an honest I’s secret and signature after a successful verify phase and a corrupt D, colluding with t verifiers
cannot repudiate to not have sent the message to I during distribute phase; and lastly (a) correctness i.e. R
outputs D’s secret when D and I are honest. We give the formal definition below.

Definition 6 (Interactive Signature Scheme (ISS)). In an interactive signature scheme (ISS) amongst
a set of n parties P, there is a distinguished party D ∈ P that holds an input s picked over a field F, referred
to as a secret. The scheme involves three more entities apart from D, an intermediary I ∈ P, a receiver
R ∈ P and a set of verifiers P and consists of three phases, a distribute, a verify and an open phase. In the
beginning, D holds s and each party including the dealer holds an independent random input.
- Distribute: In this phase, D sends private information (computed based on its secret and randomness) to a

designated intermediary I ∈ P and to each of the verifiers in P.
- Verify: In this phase, I and the verifiers interact to ensure that the information received from D are con-

sistent. This phase ends with a public accept or reject, indicating whether verification is successful or
not.

- Open: Here, I and each verifier in P send the the information received from D in distribute phase to a
designated receiver R ∈ P that applies a verification function to conclude if the message sent by I can be
accepted or not. The output of this phase is considered only upon a successful execution of verify phase.
A three-phase, n-party protocol as above is called a (1 − ε)-secure ISS scheme, if for any adversary A

corrupting at most t parties amongst P, the following holds:
- Correctness: If D and I are honest, the verify phase will complete with a success and an honest R accepts

and outputs s in the open phase.
- ε-nonrepudiation: If I and R are honest and the verify phase has completed with a success, then R accepts

and outputs s′ sent by I in the open phase, except with probability ε.

16

- ε-unforgeability: If D and R are honest, then R accepts and outputs s′ sent by I in the open phase only if
s′ = s, except with probability ε.

- Privacy: If D, I,R are honest, then at the end of the protocol the adversary’s view is identical for any
two secrets s and s′. Denoting Ds as A’s view during the ISS scheme when D’s secret is s, the privacy
property demands Ds ≡ Ds′ for any s 6= s′.

We would like to note that the existence of a similar primitive, known as information-checking protocol
(ICP) [51, 20, 25]. ICP is played amongst three entities a dealer D, an intermmediary INT and a receiver
R, where the verification information is held by R alone. In a variant of ICP [48, 47], R is replaced with the
set of parties P, similar to our definition, but the secret and the signature are disclosed in the public. We
introduce the definition above that suits best for our protocols using ISS as the building block.

We now present an ISS scheme where the three phases will require one round each and importantly the
verify and open phase can be run in parallel, making the whole scheme consume only two rounds. At a
very high level, D hides its secret in a high-degree polynomial and gives out the polynomial as its signature
to I. A bunch of secret evaluation points and evaluation of the signature polynomial on those points are
given out as verification information to the verifiers. The idea of using secret evaluation points dates back
to Tompa and Woll [53]. The verification is now enabled via cut-and-choose proof, though public disclosure
of a padded form of the signature polynomial by I and evaluations of it by the verifiers on a set of randomly
selected points. The high-degree of the polynomial and the padding ensure that the privacy of the secret and
signature is maintained during the verification. Lastly, the opening simply involves revealing the signature
polynomial and the remaining secret evaluation points and the evaluations to the designated receiver R
that simply checks if the polynomial and the evaluations are consistent or not. It should be noted that a
cheating I, exercising its rushing capability, may try to foil the cut-and-choose proof during the verify phase.
Nevertheless, we show that such an adversary will be caught, with overwhelming probability, during the
opening phase. We present our protocol iSig and state its properties below. For more details, see the full
version of this paper [7].

Inputs: D has input s in the beginning of distribute phase. All parties share a statistical security parameter 1κ.
Output: Every party outputs Success or Failure in the end of verify phase. R outputs s′ or ⊥ in the end of
open phase and all other parties output nothing. If D is honest, then s′ = s.

R1 (distribute phase): D does the following.
- D chooses a random polynomial f(x) over F of degree at most nκ + 1, where κ is the statistical security
parameter, with f(0) = s. It further picks a random polynomial r(x) over F of degree at most nκ+ 1.

- D picks nκ random, non-zero, distinct elements from F, denoted by αi1, . . . , αiκ for i ∈ ‖n‖.
- D sends f(x) and r(x) to I and {(αij , fi,j = f(αij), rij = r(αij))}j∈‖κ‖ to Pi.

R2 (verify phase): The parties do the following.
- I picks a random non-zero value c ∈ F and broadcasts polynomial g(x) = f(x) + cr(x) and c. Each verifier Pi
chooses a random subset of κ/2 indices Li ⊂ {κ} and broadcasts {(αij , fij , rij)}j∈Li .

- We say Pi accepts I if g(αij) = fij + crij for all j ∈ Li. Every Pj (including D, I and R) outputs Success if
at least 2t+ 1 Pi accepts and Failure otherwise.

R2 (open phase): The parties do the following.
- I sends f(x) to R. Let L̄i := ‖κ‖ \ Li denote the complement of Li. Each verifier Pi sends to R the set
{(αij , fij)}j∈L̄i

.
- We say Pi reaccepts I if (a) it accepted I in verify phase and (ii) f(αij) = fij for at least κ/8 of the indices
j ∈ L̄i.
R outputs s = f(0) if (a) at least t + 1 Pi reaccepts AND (b) it outputted Success in verify phase, and ⊥
otherwise.

Protocol iSig

17

R2 (Public open phase for non-rushing adversaries): The parties act exactly as in the private open phase,
execept that the informations are broadcasted. Every party Pk reaches at the same output as R would in the
private open phase.

Figure 8: Protocol iSig

Lemma 4. The Protocol iSig is (1 − 2−Ω(κ))-secure ISS tolerating a static adversary A corrupting t par-
ties, possibly including the dealer D, I and R. Moreover, the protocol achieves perfect privacy, and perfect
correctness, and can be implemented in time poly(n, κ, log |F|).

Weak Commitment As a stepping stone towards VSS, we first build a weaker primitive called weak
commitment (WC) [8]. WC and opening are distributed information-theoretic variant of cryptographic com-
mitment schemes. It also can be viewed as a (weaker) variant of the typical building block of VSS, known
as Weak Secret Sharing (WSS). WC has a clean goal of ensuring that– for a unique secret s, at least t + 1
honest parties must hold the shares of the secret. WSS, on the other hand, ensures that a unique secret
must be committed in the sharing phase so that either the secret or ⊥ will be reconstructed latter during
the distributed reconstruction phase. It is noted that a committed secret in WC needs the help of the dealer
for its opening, unlike the secret committed in WSS. With a simpler instantiation, weak commitment and
opening are sufficient to build a VSS scheme.

The dealer D starts with a polynomial of degree at most t and generates b·e-sharing of its constant term
through the input polynomial. For an honest D, WC in fact produces [·]-sharing of the constant term. We
abstract out the need in terms of a functionality Fwcom given in Fig 9 and present the protocol realizing the
functionality below. The dealer sends a polynomial g(x) and a set P′, indicating who should receive a share,
to the functionality. An honest D will send g(x) of degree at most t and P′ = P. When a corrupt D sends
either a polynomial which is of degree more than t or a set of size less than n− t (denying shares to at least
t+ 1 honest parties), all the parties receive ⊥ from the functionality.

Fwcom receives g(x) and a set P′ from D ∈ P.

– If g(x) has degree more than t or |P′| < n− t, it sends ⊥ to every Pi.
– Else it sends g(i) to every Pi ∈ P′ and ⊥ to everyone else.

Functionality Fwcom

Figure 9: Functionality Fwcom

At a high level, D, on holding a polynomial g(x) of degree at most t, initiates the protocol by picking a
symmetric bivariate polynomial G(x, y) of degree t in both variables uniformly at random over F such that
G(x, 0) and G(0, y) are the same as the input polynomial g(x) (with change of variable for G(0, y)). Following
some of the existing WSS/VSS protocols based on bivariate polynomials [32, 42], D sends gi(x) = G(x, i) to
party Pi and in parallel the parties exchange random pads to be used for pairwise consistency checking of
their common shares. When a bivariate polynomial is distributed as above, a pair of parties (Pi, Pj) will hold
the common share G(i, j) via their respective polynomials gi(x) and gj(x). Namely, gi(j) = gj(i) = G(i, j).
A pair (Pi, Pj) is marked to be in conflict when the padded consistency check fails. In addition, D runs
an ISS protocol for every ordered pair (i, j) with Pi as the intermediary and Pj as the receiver for secret
G(i, j). This allows D to pass a signature on G(i, j) to Pi who can later use the signature to convince Pj
of the receipt of G(i, j). (D,Pi) are marked to be in conflict when one of the n instances with Pi as the
intermediary results in failure. Now a set of non-conflicting parties, W, of size n−t, including D, is computed
(using a deterministic clique finding algorithm). Due to pair-wise consistency of the honest parties in W, their
polynomials together define a unique symmetric bivariate polynomial, say G′(x, y) and an underlying degree t
univariate polynomial g′(x) = G′(x, 0), the latter of which is taken as D’s committed input. For an honest D,

18

such a set exists and can be computed (in exponential time in n), albeit, it may exclude some honest parties.
The possibility of exclusion of some of the honest parties makes this protocol different from existing 3-round
constructions where D gets to resolve inconsistencies in round 3 and therefore an honest party is never left
out of such a set. The honest parties in W output the constant term of their gi(x) polynomials received from
D as the share of g′(x). An honest outsider recomputes its g′i(x) interpolating over the non-⊥ outcomes from
interactive signatures (as a receiver) corresponding to intermediaries residing in set W. When D is honest,
the correct gi(x) can be recovered this way, thanks to the unforgeability of the signature and as a result,
every honest party will hold a share of g(x). For a corrupt D, while non-repudiation allows honest parties in
W to convey and convince an honest outsider about their common share, the corrupt parties in W can inject
any value as their common share. As a result, the interpolated polynomial may be an incorrect polynomial
of degree more than t. In this case, an honest outsider may not be able to recover its polynomial g′i(x) and
share of g′(x). Protocol swcom, which realizes functionality Fwcom (Lemma 5) is described in Fig. 10. For
more details, see the full version of this paper [7].

We point out that the error in the outputs of the honest parties in WC are totally inherited from the
underlying ISS instances.

Inputs: D has input g(x). All parties share a statistical security parameter 1κ.
Output: The parties output [g(0)] if D is honest and bg′(0)e otherwise for some g′(x) of degree at most t. The
parties output ⊥, if D is discarded.

R1: D and every party Pi do the following in parallel.
- D chooses a random symmetric bivariate polynomial G(x, y) of degree at most t in each variable such that
G(x, 0) = g(x). D sends to each Pi the polynomial gi(x) = G(x, i).

- For every ordered pair (Pi, Pj), D initiates the distribute phase of one instance of iSig, denoted as iSigij , with
Pi as the intermediary, Pj as the receiver and G(i, j) as the secret (and with security parameter 1κ).

- Each Pi picks a random polynomial ri(x) of degree at most t and sends rij = ri(j) to every Pj .
R2: Each Pi sets its share si = gi(0). For each ordered pair (i, j), the parties Pi and Pj broadcast mi(x) =
gi(x) + ri(x) and mij = rij + gj(i) respectively. For each ordered pair (i, j), the parties execute the verify and
open phases of iSigij and let Pj outputs g′ij or ⊥ in iSigij .

Local Computation: A pair (Pi, Pj) is called conflicting pair if mi(j) 6= mij or mj(i) 6= mji. A pair (D,Pi)
is called conflicting pair if any of the iSigij instances for j ∈ ‖n‖ results in Failure. Compute a set, W, of
n − t pairwise non-conflicting parties including D deterministically (a clique finding algorithm can be used). If
no such set exists, then D is discarded and W is reset to ∅. Otherwise, every Pi 6∈ W computes a polynomial
g′i(x) interpolating over {g′ji}Pj∈W. If degree of g′i(x) is more than t, then Pi resets si to ⊥. Otherwise, Pi resets
gi(x) = g′i(x) and si = g′i(0).

Protocol swcom

Figure 10: Protocol swcom

Lemma 5. Protocol swcom realises functionality Fwcom, except with probability ε, tolerating a static adver-
sary A corrupting t parties, possibly including the dealer D. Moreover, it is a statistically-correct and perfectly-
secret protocol. Assuming the error probability of protocol iSig as εiSig, we have ε ≤ (2t+1)2εiSig = O(n2εiSig).
The communication complexity is poly(n, κ, log |F|), and the computational complexity is exponential in n
and polynomial in κ and log |F|.

While we never need to reconstruct a b·e-shared secret, non-robust reconstruction can be enabled by
allowing D to broadcast the committed polynomial and the parties their shares. The D’s polynomial is
taken as the committed one if n− t parties’ share match with it. Clearly an honest D’s opened polynomial
will be accepted and a non-committed polynomial will always get rejected.

The Statistical VSS VSS allows a dealer to distributedly commit to a secret in a way that the committed
secret can be recovered robustly in a reconstruction phase. Our VSS protocol vsh allows a dealerD to generate

19

double t-sharing of the constant term of D’s input bivariate polynomial F (x, y) of degree at most t and
therefore allows robust reconstruction via Read-Solomon (RS) error correction, unlike the weak commitment
scheme swcom.

At a high level, protocol svsh proceeds in the same way as the weak commitment scheme wcom, except
that each blinder polynomial is now committed via an instance of swcom. A happy set, V, is formed in
the same way. Two conflicting honest parties cannot belong to V, implying all the honest parties in V
are pairwise consistent and together define a unique symmetric bivariate polynomial, say F ′(x, y) and an
underlying degree t univariate polynomial f ′(x) = F ′(x, 0), the latter of which is taken as D’s committed
input. A crucial feature that vsh offers by enforcing the W set of every party in V to have an intersection
of size at least n − t with V, is that the blinded polynomial of a corrupt party from V is consistent with
F ′(x, y). This follows from the fact that the shares (pads) that the parties in W receive as a part of wcom
remain unchanged, implying n− 2t ≥ t+ 1 of the honest parties in V ensure the consistency of the blinded
polynomial of the corrupt party. This feature crucially enables an honest party Pi that lies outside V (in
case of a corrupt dealer) to extract out her polynomial f ′i(x) = F ′(x, i) and thereby completing the double
t-sharing of f ′(0). To reconstruct f ′i(x), Pi looks at the blinded polynomial of all the parties in V who kept
her happy in their respective weak commitment instances (implying her share did not change). For each
such party, the blinded polynomial evaluated at i and subtracted from Pi’s share/pad from the underlying
wcom instance, allows Pi to recover one value on f ′i(x). All the honest parties in V (which is at least t+ 1)
contribute to one value each, making sure Pi has enough values to reconstruct f ′i(x). A corrupt party in V,
being committed to the correct polynomial as per F ′(x, y), with respect to the parties in its W set, cannot
inject a wrong value. Protocol vsh, which realizes functionality Fvsh (Theorem 8), is now described in Fig. 11.
See the full version of this paper [7] for more details.

We point out that the error in the outputs of the honest parties in VSS are totally inherited from the
underlying WC and in turn the ISS instances.

Inputs: D has input F (x, y), a symmetric bivariate polynomial of degree at most t.
Output: The parties output [[F (0, 0)]] when D is honest and [[F ′(0, 0)]] otherwise where F ′(x, y) is a bivariate
polynomial of degree at most t.

R1 D and every party Pi do the following in parallel.
- D sends to each Pi the polynomial fi(x) = F (x, i).
- Each party Pi picks a random polynomial hi(x) of degree at most t and initiates an instance of swcom, denoted
as swcomi as a dealer with polynomial hi(x).

R2 For each ordered pair (i, j), Pi and Pj broadcast pi(x) = fi(x)+hi(x) and pij = hij +fj(i) respectively, where
hij is the share of Pj in swcomi. In parallel, parties execute R2 of swcomi for all i ∈ {1, . . . , n}.

Local Computation The parties execute local computation step for every swcomi for i ∈ {1, . . . , n}. A pair
(Pi, Pj) is called conflicting pair if pi(j) 6= pij or pj(i) 6= pji. Compute a set, V, of n− t pairwise non-conflicting
parties including D deterministically such that |V ∩Wi| ≥ n − t for every Pi ∈ V, where Wi denote the set
of non-conflicted parties in swcomi (a clique finding algorithm can be used). If no such set exists, then D is
discarded and a default sharing is assumed and reset V to P. Otherwise, every Pi 6∈ V resets polynomial fi(x) to
the degree t polynomial interpolated over the values {pj(i) − hji}Pj∈V;Pi∈Wj (where pj(x) was broadcasted by
Pj in R2 and Pi has its share hji from swcomj). Finally, every Pi outputs fi(0) and fi(x).

Protocol svsh

Figure 11: Protocol svsh

Theorem 8. Protocol svsh realises functionality Fvsh, except with probability ε, tolerating a static adversary
A corrupting t parties, possibly including the dealer D. Moreover, it is a statistically-correct and perfectly-
secret protocol. Assuming the error probability of protocol iSig as εiSig, we have ε ≤ n(2t + 1)2εiSig. The
communication complexity is poly(n, κ, log |F|), and the computational complexity is exponential in n and
polynomial in κ and log |F|.

20

It is easy to note that svsh generates [[F (0, 0)]] via the set of polynomials
{
F (x, 0), {fi(x)}i∈{1,...,n}

}
.

Plugging in the above VSS in the deg2c protocol, we get a 3-round MPC for degree-2 computation.

4.2 Cryptographic VSS and Computation of any single-input functions

We briefly recall the construction of [10]. In Round 1,D publicly commits to a symmetric bivariate polynomial
F (x, y) using a NICOM and delivers the opening corresponding to fi(x) = F (x, i) to Pi. The commitments
are computed in a way that simple public verification suffice for the checking of pairwise consistency between
the common points (such as fi(j) and fj(i)). To ensure that the commitments correspond to a polynomial
of degree at most t in both x and y, it suffices if the honest parties (which are n − t in number) confirm
that their received polynomials are consistent with their commitments and they are of degree at most t. If
this is not true, then Pi’s goal is to make D publicly reveal the polynomial consistent with the commitments
in the second round. Towards realizing the goal, Pi commits to a pad publicly and send the opening to D
alone during Round 1. If D finds the opening inconsistent to the public commitment, then it turns unhappy
towards Pi and opens the commitments corresponding to fi(x) publicly. Otherwise, it blinds the opening of
fi(x) using the pad and makes it public. When Pi’s check about fi(x) fails, she similarly turns unhappy with
D and opens the pad which in turn unmask the opening for fi(x). A corrupt Pi cannot change the pad and
dismiss an honest D, owing to the binding property of NICOM. A corrupt D however may choose not to
hand Pi the correct fi(x) in Round 1 and reveal fi(x) correctly in Round 2. The above technique therefore
makes the fi(x) that is consistent with the public commitment of D publicly known when D and Pi are in
conflict (and Pi is honest).

In the cryptographic setting, the VSS of [10] has the special feature of making the share (the entire uni-
variate polynomial) of a party public when they are in conflict. We can tweak the TSS protocol (Section 3.3)
so that the shares for all the t + 3 instances are made public for party Pi in round 2, if Pi is in conflict
with D (which also includes the reason that Pi’s share do not satisfy the relation). This allows the public
verification for corrupt parties in round 2 itself and thus TSS concludes in 2 rounds, like the VSS. We, in
fact, can prove a stronger version of the result– any single-input function takes 2 rounds in cryptographic
setting. TSS is a special case. We present this general result below. Plugging in the above VSS,and TSS in
the deg2c protocol, we get a 3-round MPC for degree-2 computation.

Cryptographic MPC for single-input functions In this section, we obtain a 2-round protocol for every
function whose outputs are determined by the input of a single party (single-input functions). This class of
functions include important tasks such as distributed ZK and VSS. While a VSS protocol will be implied
from our result from this section, we have separated out VSS in the previous section, as the VSS of [10] is
used in a non-blackbox way for MPC for single-input functions.

[34] reduces secure computation of a single-input function to that of degree-2 polynomials and subse-
quently show a 2-round construct to evaluate the latter with perfect security and threshold t < n/6. In
this work, we complement their reduction with a 2-round protocol to evaluate a degree-2 polynomial with
threshold t < n/3 and relying on NICOMs. Let the sole input-owner be denoted as D ∈ P, the inputs be
x1, . . . , xm and the degree-2 polynomial be p (in most general form, there can be a vector of such polyno-
mials). Broadly, the goal is to compute 2t-sharing of p(x1, . . . , xm) and reconstruct the secret relying on the
guidance of D in 2 rounds. The protocol starts with D sharing all the inputs using m instances of VSS.
For the guided reconstruction, D locally computes the shares p(x1i , . . . , xmi) (p applied on the ith shares of
the inputs) of the degree 2t polynomial holding p(x1, . . . , xm) in the constant term and broadcasts all the
n points. In Round 2, apart from the checks Pi conducts inside the VSS instances, it also verifies if the
broadcast of D is consistent with her received polynomials. If the check fails, then it becomes unhappy with
D in all the instances and opens the pads distributed in the VSS instances to expose all the polynomials
in her share. This allows public reconstruction of the correct p(x1i , . . . , xmi). The reconstruction in Round 2
is then achieved simply by fitting a degree 2t polynomial over the values p(x1i , . . . , xmi)– (i) if Pi is not in
conflict with D, this value is taken from D’s broadcast (ii) otherwise, this value is publicly recomputed as
explained. If there is no such 2t degree polynomial, then D is concluded to be corrupt and is discarded. An

21

honest D will always broadcast the correct values p(x1i , . . . , xmi) that lie on a 2t degree polynomial and a
corrupt unhappy Pi cannot open a different value than this (due to binding property of NICOM). Lastly,
since these values correspond to a non-random 2t degree polynomial, they are randomized using a 〈0〉 before
broadcast. The 〈0〉 sharing is created by D by running t additional instances of VSS.

We present the functionality and the protocol below, the security proof of the latter (Lemma 6) is deferred
to the full version of this paper [7]. We assume the output is given to everyone for simplicity. For a function
that outputs distinct values for the parties, say yi to Pi, the functionality can be modified to deliver yi to
Pi. This can be implemented by D t-sharing ([·]-sharing) a random pad, padi for every party Pi, where the
bivariate polynomial (used for sharing) and all the commitment opening are disclosed to Pi, who becomes
unhappy when there is any inconsistency. D broadcasts masked values p(x1j , . . . , xmj)+padij so that yi+padi

gets publicly reconstructed and yi gets privately reconstructed by Pi alone.

Fsif receives x1, . . . , xm from D, computes y = p(x1, . . . , xm) and returns y to every party, where p is a degree-2
polynomial in the inputs of D.

Functionality Fsif

Figure 12: Functionality Fsif

Inputs: D has input x1, . . . , xm.
Output: The parties output p(x1, . . . , xm).

R1 D picks a symmetric and random bivariate polynomial F j(x, y) with F j(0, 0) = xj and initiates an instance
of cvsh for j ∈ {1, . . . ,m}. It additionally picks a symmetric and random bivariate polynomial M j(x, y) and
initiates an instance of cvsh for j ∈ {1, . . . , t} (used for randomization). Let D sends {f ji (x),mj

i (x)}j∈{1,...,t}
to Pi in these cvsh instances. D further broadcasts yi = p(f1

i (0), . . . , fmi (0)) +
∑t
j=1 i

jmj
i (0). All the parties

participate in these instances and perform their respective steps.
R2 Run R2 of all the instances. Further Pi checks if the value yi broadcasted by D is consistent with the received
polynomials. If this check fails, it becomes unhappy withD in all the VSS instances and opens the pads to publicly
reconstruct {f ji (x),mj

i (x)}j∈{1,...,t} as per cvsh protocol. Every party recomputes yi for every Pi in conflict with
D. Let V be the set of parties who do not have conflict with D. Every party checks if {yi}i∈{1,...,n} lie on a
2t degree polynomial, where yi is broadcasted by D when Pi is not in conflict with D and yi is the publicly
recomputed value otherwise. In case of yes, then every party outputs the constant term of the polynomial.
Otherwise, D is discarded and p evaluated on default inputs is taken as output.

Protocol sif

Figure 13: Protocol sif

Lemma 6. Protocol sif realizes Fsif tolerating a static adversary A corrupting t parties, relying on NICOM.

References

1. Agrawal, S.: Verifiable secret sharing in a total of three rounds. Inf. Process. Lett. 112(22), 856–859 (2012).
https://doi.org/10.1016/j.ipl.2012.08.003, https://doi.org/10.1016/j.ipl.2012.08.003

2. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Round-optimal secure multiparty computation with honest
majority. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. pp. 395–424 (2018)

3. Ananth, P., Choudhuri, A.R., Goel, A., Jain, A.: Two round information-theoretic MPC with malicious security.
In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II. pp.
532–561 (2019)

22

https://doi.org/10.1016/j.ipl.2012.08.003
https://doi.org/10.1016/j.ipl.2012.08.003

4. Applebaum, B., Brakerski, Z., Tsabary, R.: Perfect secure computation in two rounds. In: Theory of Cryptography
- 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part I. pp. 152–174
(2018)

5. Applebaum, B., Brakerski, Z., Tsabary, R.: Degree 2 is complete for the round-complexity of malicious MPC.
In: Advances in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part II. pp.
504–531 (2019)

6. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM Journal on Computing 36(4), 845–888
(2006)

7. Applebaum, B., Kachlon, E., Patra, A.: The resiliency of mpc with low interaction: The benefit of making errors
(2020), available at the authors’ homepage

8. Applebaum, B., Kachlon, E., Patra, A.: The round complexity of perfect mpc with active security and optimal
resiliency. To appear in Proc. of 61st FOCS (2020), available at https://eprint.iacr.org/2020/581

9. Asharov, G., Lindell, Y.: A full proof of the BGW protocol for perfectly secure multiparty computation. J.
Cryptology 30(1), 58–151 (2017)

10. Backes, M., Kate, A., Patra, A.: Computational verifiable secret sharing revisited. In: Advances in Cryptology -
ASIACRYPT 2011 - 17th International Conference on the Theory and Application of Cryptology and Information
Security, Seoul, South Korea, December 4-8, 2011. Proceedings. pp. 590–609 (2011)

11. Badrinarayanan, S., Jain, A., Manohar, N., Sahai, A.: Secure MPC: laziness leads to GOD. IACR Cryptology
ePrint Archive 2018, 580 (2018), https://eprint.iacr.org/2018/580

12. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction.
In: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, Edmonton,
Alberta, Canada, August 14-16, 1989. pp. 201–209 (1989)

13. Barak, B., Ong, S.J., Vadhan, S.P.: Derandomization in cryptography. SIAM J. Comput. 37(2), 380–400 (2007).
https://doi.org/10.1137/050641958, https://doi.org/10.1137/050641958

14. Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) Advances in
Cryptology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 11-15. Lecture Notes in Computer Science, vol. 576, pp. 420–432. Springer Verlag (1991)

15. Beaver, D.: Multiparty protocols tolerating half faulty processors. In: Brassard, G. (ed.) Advances in Cryptol-
ogy - CRYPTO ’89, 9th Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings. Lecture Notes in Computer Science, vol. 435, pp. 560–572. Springer (1989).
https://doi.org/10.1007/0-387-34805-0_49, https://doi.org/10.1007/0-387-34805-0_49

16. Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication overhead. In: Advances in
Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 11-15, 1990, Proceedings. pp. 62–76 (1990)

17. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In: Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA. pp. 1–10 (1988)

18. Blum, M.: Coin flipping by telephone. In: Advances in Cryptology: A Report on CRYPTO 81, CRYPTO 81,
IEEE Workshop on Communications Security, Santa Barbara, California, USA, August 24-26, 1981. pp. 11–15
(1981)

19. Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires omega~(log n)
rounds. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece. pp. 570–579 (2001)

20. Canetti, R., Rabin, T.: Fast asynchronous byzantine agreement with optimal resilience. In: Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA, USA. pp.
42–51 (1993)

21. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In:
Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA. pp. 11–19 (1988)

22. Chor, B., Kushilevitz, E.: A zero-one law for boolean privacy. In: Proceedings of the Twenty-First Annual ACM
Symposium on Theory of Computing. p. 62–72. STOC ’89, Association for Computing Machinery, New York,
NY, USA (1989). https://doi.org/10.1145/73007.73013, https://doi.org/10.1145/73007.73013

23. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the pres-
ence of faults (extended abstract). In: 26th Annual Symposium on Foundations of Computer Science, Portland,
Oregon, USA, 21-23 October 1985. pp. 383–395 (1985)

23

https://eprint.iacr.org/2020/581
https://eprint.iacr.org/2018/580
https://doi.org/10.1137/050641958
https://doi.org/10.1137/050641958
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1007/0-387-34805-0_49
https://doi.org/10.1145/73007.73013
https://doi.org/10.1145/73007.73013

24. Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: Pro-
ceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California,
USA. pp. 364–369 (1986)

25. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against
an adaptive adversary. In: Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory
and Application of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding. pp. 311–326
(1999)

26. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing
scheme. In: Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. pp. 316–334 (2000)

27. Dolev, D., Reischuk, R.: Bounds on information exchange for byzantine agreement. J. ACM 32(1), 191–204 (1985)
28. Feige, U., Kilian, J., Naor, M.: A minimal model for secure computation (extended abstract). In: Proceedings

of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25 May 1994, Montréal, Québec,
Canada. pp. 554–563 (1994)

29. Feldman, P., Micali, S.: Byzantine agreement in constant expected time (and trusting no one). In: 26th Annual
Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985. pp. 267–276
(1985)

30. Fitzi, M., Garay, J.A., Gollakota, S., Rangan, C.P., Srinathan, K.: Round-optimal and efficient verifiable secret
sharing. In: Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006, Proceedings. pp. 329–342 (2006)

31. Garg, S., Ishai, Y., Srinivasan, A.: Two-round MPC: information-theoretic and black-box. In: Theory of Cryp-
tography - 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part I.
pp. 123–151 (2018)

32. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure
multicast. In: Proceedings on 33rd Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion,
Crete, Greece. pp. 580–589 (2001)

33. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure
multicast. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing. pp. 580–589.
ACM (2001)

34. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-round secure multiparty computation. In: Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings. pp. 178–193 (2002)

35. Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM J. Comput. 25(1),
169–192 (1996)

36. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual
ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle, Washigton, USA. pp. 25–32 (1989)

37. Ishai, Y., Kumaresan, R., Kushilevitz, E., Paskin-Cherniavsky, A.: Secure computation with minimal interaction,
revisited. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II. pp. 359–378 (2015)

38. Ishai, Y., Kushilevitz, E.: Private simultaneous messages protocols with applications. In: Fifth Israel Symposium
on Theory of Computing and Systems, ISTCS 1997, Ramat-Gan, Israel, June 17-19, 1997, Proceedings. pp.
174–184 (1997)

39. Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications to round-efficient se-
cure computation. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, 12-14 November
2000, Redondo Beach, California, USA. pp. 294–304 (2000)

40. Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing polynomials. In:
Automata, Languages and Programming, 29th International Colloquium, ICALP 2002, Malaga, Spain, July 8-13,
2002, Proceedings. pp. 244–256 (2002)

41. Ishai, Y., Kushilevitz, E., Paskin, A.: Secure multiparty computation with minimal interaction. In: Advances
in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,
2010. Proceedings. pp. 577–594 (2010)

42. Katz, J., Koo, C., Kumaresan, R.: Improving the round complexity of VSS in point-to-point networks. Inf.
Comput. 207(8), 889–899 (2009)

43. Kumaresan, R., Patra, A., Rangan, C.P.: The round complexity of verifiable secret sharing: The statistical case.
In: Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the Theory and Application
of Cryptology and Information Security, Singapore, December 5-9, 2010. Proceedings. pp. 431–447 (2010)

24

44. Lamport, L., Fischer, M.: Byzantine generals and transaction commit protocols. Tech. rep., Technical Report 62,
SRI International (1982)

45. Moran, T., Naor, M., Segev, G.: An optimally fair coin toss. J. Cryptology 29(3), 491–513 (2016).
https://doi.org/10.1007/s00145-015-9199-z, https://doi.org/10.1007/s00145-015-9199-z

46. Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of verifiable secret sharing revisited.
In: Advances in Cryptology - CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings. pp. 487–504 (2009)

47. Patra, A., Choudhary, A., Rangan, C.P.: Simple and efficient asynchronous byzantine agreement with optimal
resilience. In: Proceedings of the 28th Annual ACM Symposium on Principles of Distributed Computing, PODC
2009, Calgary, Alberta, Canada, August 10-12, 2009. pp. 92–101 (2009)

48. Patra, A., Rangan, C.P.: Communication and round efficient information checking protocol. CoRR
abs/1004.3504 (2010), http://arxiv.org/abs/1004.3504

49. Patra, A., Ravi, D.: On the power of hybrid networks in multi-party computation. IEEE Trans. Inf. Theory 64(6),
4207–4227 (2018)

50. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of faults. J. ACM 27(2), 228–234
(1980)

51. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended ab-
stract). In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA. pp. 73–85 (1989)

52. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for NC1. In: 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA. pp. 554–567 (1999)

53. Tompa, M., Woll, H.: How to share a secret with cheaters. In: Advances in Cryptology - CRYPTO ’86, Santa
Barbara, California, USA, 1986, Proceedings. pp. 261–265 (1986)

54. Unruh, D.: Everlasting multi-party computation. J. Cryptology 31(4), 965–1011 (2018).
https://doi.org/10.1007/s00145-018-9278-z, https://doi.org/10.1007/s00145-018-9278-z

55. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd Annual Symposium on
Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982. pp. 80–91 (1982)

25

https://doi.org/10.1007/s00145-015-9199-z
https://doi.org/10.1007/s00145-015-9199-z
http://arxiv.org/abs/1004.3504
https://doi.org/10.1007/s00145-018-9278-z
https://doi.org/10.1007/s00145-018-9278-z

	The Resiliency of MPC with Low Interaction: The Benefit of Making Errors (Extended Abstract)

