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Abstract. Merkle’s puzzles were proposed in 1974 by Ralph Merkle as
a key agreement protocol between two players based on symmetric-key
primitives. In order to agree on a secret key, each player makes T queries
to a random function (oracle), while any eavesdropping adversary has
to make Ω(T 2) queries to the random oracle in order to recover the key
with high probability. The quadratic gap between the query complexity
of the honest players and the eavesdropper was shown to be optimal by
Barak and Mahmoody [CRYPTO‘09].

We consider Merkle’s puzzles in a distributed setting, where the goal is
to allow all pairs among M honest players with access to a random oracle
to agree on secret keys. We devise a protocol in this setting, where each
player makes T queries to the random oracle and communicates at most
T bits, while any adversary has to make Ω(M ·T 2) queries to the random
oracle (up to logarithmic factors) in order to recover any one of the keys
with high probability. Therefore, the amortized (per-player) complexity
of achieving secure communication (for a fixed security level) decreases
with the size of the network.

Finally, we prove that the gap of T ·M between the query complexity of
each honest player and the eavesdropper is optimal.

1 Introduction

In 1974 Merkle proposed a protocol that allows a pair of players to agree on
a shared secret key without any secret shared in advance (the work was pub-
lished in 1978 [17]). We describe an idealized variant of the protocol, assum-
ing that player 1 (Alice), player 2 (Bob) and the adversary have access to a
cryptographic hash function H : [N ] → [N ′] (where [N ] = {1, . . . , N}) that is
hard to invert, modeled as a random function (oracle). Alice begins by selecting√
N elements in [N ] independently and uniformly at random (x1, . . . , x√N ), and

sends (H(x1), . . . ,H(x√N )) to Bob. Then, Bob attempts to invert one of the ele-

ments by selecting
√
N elements in [N ] independently and uniformly at random

(y1, . . . , y√N ), computing (H(y1), . . . ,H(y√N )), and comparing with the hashed
elements received from Alice. By a birthday paradox-like argument, with high
probability, the query sets {x1, . . . , x√N} and {y1, . . . , y√N} intersect, namely,
there exist i, j such that xi = yj . Thus, Bob sends i to Alice and the players
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agree on xi as the shared secret key. The properties of H should guarantee that
collisions (i.e., different inputs that hash to the same output) are unlikely inside
query sets of this size, and thus the players agree on the same key with high
probability. In terms of security, as H is a random oracle, an eavesdropping ad-
versary has to query it on essentially the entire domain [N ] in order to recover
xi with high probability.

The quadratic gap between the query complexity of the honest players and the
eavesdropper was shown to be optimal by Barak and Mahmoody [2,3] (tightening
the previous bound of Impagliazzo and Rudich [13]), assuming the symmetric-
key primitive is used as a black box. This stands in contrast to various key-
agreement protocols (notably, the Diffie–Hellman protocol [7]) that achieve a
super-polynomial gap between the complexity of the honest players and the
eavesdropper, based on stronger assumptions which imply that public-key en-
cryption schemes exist (refer to [1] for more details about such protocols).
Clearly, the security of Merkle’s puzzles is far from the ideal exponential secu-
rity. However, Biham, Goren and Ishai [4] pointed out that it is not completely
unacceptable, since the ratio between the work of the honest players and the
adversary grows as technology advances and the honest players can afford more
computation.

Key agreement protocols based on black-box use of symmetric-key primitives
are still subject to active research. For example, the recent work [12] by Haitner
et al. studied the communication complexity of such protocols. In this work we
propose a distributed model for Merkle’s puzzles and show that in this model
the gap in query complexity between each honest player and the eavesdropper
can be super-quadratic.

1.1 Distributed Key Agreement Based on Symmetric-Key
Primitives

We study key agreement protocols in a generalized (distributed) model in which
there are M honest players p1, . . . , pM that form a fully connected network.1

The goal is to allow all pairs of players to agree on secret keys. We assume that
all honest players and the eavesdropping adversary have access to a random
oracle H. We measure the query and communication complexity of the players
and the query complexity of the adversary. The problem can be easily solved if
the players already have secure communication channels with a trusted party,
which can use the channels to distribute all keys. However, in this work we do
not assume any pre-existing secure channels.

Motivation. We do not expect our protocol to be used in practice for the pur-
pose of key agreement, largely due to the small gap between the complexity of the
honest players and the eavesdropper. However, we believe that the distributed

1 Our protocol can also be made to work with small overhead in a sparse, but well-
connected network such as the hypercube or the butterfly networks [18, Chapter 4.5].
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model is a natural generalization of the basic problem of pairwise key agreement
using symmetric-key primitives, and is worth studying. Moreover, techniques
used in the protocol could potentially be useful in other settings as well. For
example, they may be used to optimize key pre-distribution schemes in highly
connected networks (see Section 1.4 for details about these schemes).

Basic protocol. In the most straightforward distributed protocol, each of the(
M
2

)
pairs of players independently carry out the standard 2-player Merkle’s

puzzles protocol. However, a closer examination reveals that this is wasteful and
it is sufficient to form O(M) secure links or edges (i.e., shared keys between
player pairs) such that the secure communication graph is connected. Thus, in
order for an arbitrary pair of players pi, pj to agree on a key, pi chooses a key
ki,j and sends it encrypted on a path to pj in the secure link graph. Namely, if
(`,m) is a secure link in the graph, then p` sends ki,j to pm encrypted with the
key shared by p` and pm. Player pm decrypts ki,j and then sends it encrypted
on the next secure link.

This protocol has the disadvantage that ki,j is not kept private from the other
players (and is thus insecure in a model which does not assume all players are
perfectly honest). It can be (partially) mitigated by pi splitting ki,j into different
secret shares, and sending the shares to pj on non-intersecting paths.

In this improved protocol, it is sufficient for each player to agree on secret keys
with O(1) other players via standard Merkle’s puzzles. Thus, every player makes
O(T ) queries to H and an eavesdropping adversary has to make Ω(T 2) queries
to recover any particular key with high probability. However, a key is now used
to encrypt (shares of) other keys, and thus if the adversary is able to recover a
few keys, the security of the entire network may collapse. Thus, we would like
security guarantees against recovering any one of the keys with high probability.
In order to achieve this, we can split the domain of H (assuming it is sufficiently
large) among the different executions of Merkle’s puzzles, such that they are
completely independent.

The main question we consider in this work is whether the quadratic gap in
query complexity in the distributed model (obtained by the basic protocol above)
between the honest players and the eavesdropping adversary is optimal.

1.2 Our Results

We show that the quadratic gap obtained by the basic protocol in the distributed
model is suboptimal.

Theorem 1 (informal). For parameters M and T such that T = Ω̃(M),2

there is a key agreement protocol based on symmetric-key primitives in the dis-
tributed model, where each honest player makes T queries to the random oracle

2 Throughout this paper, the notation Õ(·) and Ω̃(·) hide poly-logarithmic factors
in T .
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and communicates at most Õ(T ) bits, while any adversary has to make Ω̃(M ·T 2)
queries to the random oracle in order to recover any one of the keys with high
probability.

We further note that the computational complexity (in the standard word RAM
model) of each honest player in our protocol is Õ(T ). Consequently, up to small
factors, a group of about 220 players can communicate with 100-bit security after
each player performs 240 work. The complexity of the basic protocol above is
250, which is much higher.

More generally, if we fix the number of queries of the adversary (i.e., the security
level of the protocol) to TA, then the query and communication complexity of
each player in our protocol is about

√
TA/M . This gives the following (informal)

property of our protocol.

Property 1. The complexity per player for securely connecting a network de-
creases with the size of the network.

This property may seem counterintuitive, as the number of targets (secure links)
available to the adversary increases with the size of the network, so one may be
tempted to conclude that each player must work at least as hard.

We also show that the gap of T ·M obtained in our protocol between the query
complexity of each player and the adversary is optimal (up to logarithmic fac-
tors). In fact, we show that this gap is the best possible even if we set a pre-
sumably weaker goal of establishing a single key between p1 (or any other fixed
player) and any other player pj for j ∈ [M ]\{1}. In other words, we obtain the
following property of the distributed model.

Property 2. The complexity per player for securely connecting p1 to any one of
the other players is essentially the same as for securely connecting the entire
network.

Property 1 and Property 2 are due to a combination of the birthday paradox
and properties of random graphs, as described next.

1.3 Overview of the Protocol and its Analysis

Setup protocol. Instead of trying to create pre-fixed secure links between
pairs of players (as in the basic protocol described above), we start by creating
arbitrary secure links based on a setup protocol via a distributed variant of
Merkle’s puzzles. Fixing the parameters T andM , every player selects T elements
uniformly at random from [N ] (the domain of H : [N ] → [N ′]) and queries H
to obtain the corresponding T images. If we choose N ≈ M · T 2, a birthday
paradox-like argument shows that with high probability, the T elements chosen
by any player pi intersect the (M − 1) · T ≈M · T elements chosen by the other
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players. As in standard Merkle’s puzzles, two players with intersecting query
sets can agree on a shared key. However, it is not yet clear how the players can
detect such intersections with limited communication.

One way to detect intersections is to have each player send its T query images
to p1 (or any designated player) that acts as an intermediate and informs all
player pairs about the matches. However, this requires that p1 communicates
Ω(M ·T ) bits. In order to get around this problem, we distribute the role of the
intermediate among the different players: for each query x ∈ [N ], H(x) is sent to
player number H(x) mod M . This guarantees that each player receives about T
images (with high probability), and can detect matches among them and then
inform the corresponding players.

Choosing N ≈ M · T 2/ logM , ensures that the secure network formed by the
setup protocol is connected with high probability. However, in terms of security,
an adversary may invert any one of the Ω(M) images (i.e., recover any one of
the secret keys) and can succeed with high probability in doing so after making
about N/M ≈ T 2/ logM queries. Therefore, we have not yet improved upon the
basic protocol.

Amplification. In order to strengthen the security of the protocol, we perform
amplification. The goal is to connect the network via “strong links” (keys) that
the adversary has negligible probability (e.g., less than 2/N) of recovering un-
less making (about) N/2 queries. For this purpose, for a (small) parameter L,
we perform L independent executions of the setup protocol (with independent
random oracles that can be derived by splitting the domain of H). Assume we
wish to connect pi and pj by a strong link. Then, pi selects ki,j (from a suf-
ficiently large space), computes an L-out-of-L secret sharing of ki,j and sends
the `’th share on a path to pj , encrypted using the keys of the `’th execution.
In terms of security, in order to recover ki,j , the adversary has to recover one
setup key on each of the L paths. For a fixed number of queries, the probability
of the adversary to recover a setup key on a path depends on its length (which
defines the number of targets). If the paths are too long then we need to select a
large value of L to achieve the required security level, resulting in an inefficient
protocol (in terms of both query and communication complexity).

Fortunately, the secure link graph formed by an execution of the setup protocol
has diameter (i.e., maximal distance between two nodes) of O(logM) with high
probability, and thus the paths are short. A similar phenomenon occurs in the
G(n, p) graph model [6] (in which each edge in the n-node graph is present
independently with probability p ≈ logn

n ). We note, however, that the edges of
the secure link graph formed by the setup protocol are not independent.

Extension to the semi-honest model. Our basic protocol assumes that all
players are perfectly honest. However, using similar techniques used for ampli-
fication, the protocol can be extended with logarithmic overhead to the semi-
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honest model (in which some players are honest but curious), where an adversary
controls a fraction of O(1/ logM) of the players.

Analysis. The main contribution of this work is proposing a distributed key
agreement model based on symmetric-key primitives and devising a protocol
in this model. On the other hand, the analysis of the protocol is elementary
and mainly consists of basic concentration inequalities (it is easy to check that
the protocol “works on average”). The proof of optimality follows by reduction
from a 2-player protocol and is based on the result of Barak and Mahmoody [3].
Throughout the paper we aim for simplicity and make little effort to optimize
low-order terms. In particular, it seems that a logarithmic improvement can be
obtained by running the setup protocol only once with appropriate parameters,
such that it is possible to select sufficiently many short disjoint paths in the
secure link graph for the purpose of amplification. However, the analysis of such
a protocol is substantially more complicated.

We chose to analyze our protocol in an idealized (information-theoretic) model
as it simplifies the protocol and its analysis, and emphasizes its most important
differences compared to previous works. An idealized model is also necessary for
the proof of optimality. Alternatively, we could have investigated the minimal
complexity-theoretic assumptions under which our protocol could be proven se-
cure. Based on the analysis of [4] for 2-player protocols, it seems that we similarly
need a one-way function of exponential strength and a “dream version” of Yao’s
XOR lemma [11]. We leave the formal treatment of this subject to future work.

1.4 Previous Work

Since Merkle’s seminal work [17], various aspects of key agreement protocols
based on symmetric-key primitives have been studied (c.f., [2,3,4,12,13]).

Key agreement protocols among a group of players have been investigated in
numerous previous works, many of which make use of asymmetric-key primitives
(c.f., [14]).

Various works also investigated the problem of key agreement among a group of
players without using asymmetric-key primitives in models that are fundamen-
tally different from ours. Among these we mention [16] by Leighton and Micali,
that studied the problem in a model where keys are pre-assigned to players by
a trusted dealer. Another example is [10] by Fischer and Wright, where it is as-
sumed that the players have access to a particular type of correlated randomness
(specifically, each player is given a secret set of cards that are not given to any
other player).

The key agreement problem among a group of players is also related to secure
message transmission (c.f., [8]), but our adversarial model is completely different
and the relation is mostly indirect.
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To the best of our knowledge, key agreement protocols among a group of players
based on symmetric-key primitives have not been previously investigated in our
(i.e., Merkle’s) model, perhaps because it is not obvious that they offer any
advantage compared to 2-player protocols. Below we elaborate on the line of
work that seems to be the closest to ours (and is also related to [16]).

Random key pre-distribution schemes. In random key pre-distribution
schemes each player (node) is initialized with a set of symmetric keys (chosen
randomly from a group of keys, unknown to the adversary) prior to the key
agreement protocol in order to bootstrap it. This model has been mostly stud-
ied in the context of sensor networks which have limited computational power
(c.f., [5,9] and many followup works).

The random key pre-distribution model is related to ours, as our goal is also
to connect a network via secure links using symmetric-key cryptography. How-
ever, there are important differences between the models, as in random key
pre-distribution schemes, there is no random oracle (keys are pre-distributed)
and the adversarial model allows the attacker to compromise nodes and discover
their keys (but not to break cryptography). On the other hand, in our model
the adversary may break the cryptography by querying the random oracle after
eavesdropping. In addition, the network topology assumed in key pre-distribution
scheme is different than ours and it has a substantial effect on the protocols.

To demonstrate the effect of the different models, note that in key pre-distribution
schemes we can trivially establish a pre-shared key between any (fixed) pair of
nodes, and the difficulty is in deploying a large-scale system with pre-shared
keys where the adversary can compromise some of the nodes. Hence, proper-
ties 1 and 2 do not hold for these schemes. On the other hand, in our case, a
larger network allows us to make use of its collective power to agree on keys
with reduced amortized complexity, resulting in Property 1 (and indirectly, in
Property 2).

Despite the different models and analysis, there are similarities between key
pre-distribution protocols and our protocol. In particular, our setup protocol
is analogous to the initial phase in key pre-distribution protocols, where each
node discovers its neighbors by communicating identifiers of keys that it holds.
However, the setup protocol of [5,9] is similar to the basic (undistributed) pro-
tocol we considered in which suboptimal parameters are selected (each pair of
nodes share a common key with high probability). On the other hand, our ad-
vantage comes from the distributed variant of Merkle’s puzzles in which each
player shares a key only with a few other players not selected in advance. This
allows to increase the key space (and the complexity of exhaustive search) by
a factor of about M . Additionally, unlike [5,9], we match player couples (i.e.,
discover immediate neighbors in the secure link graph) via intermediate players
in order to minimize communication.
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The amplification we use is similar to the multipath-reinforcement protocol of [5]
that strengthens the security of a link between two nodes by leveraging other
secure links. However, we use paths of length about logM , while [5] mainly uses
paths of length 2, which are unlikely to exist in our case.

Open problems. An interesting open problem deals with an extended security
model in which the goal of the adversary is to recover κ of the keys (where κ ≥ 1
is an integer parameter). In our protocol, the adversary has to query the random
oracle about M · T 2 times in order to recover one key with high probability, yet
roughly the same number of queries suffice for recovering all keys. We conjecture
that this is essentially optimal, namely, in any protocol where the players agree
on Ω(M) pairwise keys, the adversary can recover a constant fraction of them
with O(M · T 2) queries.

Structure of paper. Next, we describe some preliminaries in Section 2 and
then formally define our model in Section 3. Our setup and main protocols are
described and analyzed in sections 4 and 5, respectively. In Section 6 we prove
the optimality of our protocol with respect to query complexity. Finally, we
discuss the extension to the semi-honest model and a communication-security
tradeoff in Section 7.

2 Preliminaries

For numbers x and b, we denote by log x, logb x and lnx the logarithm of x with
basis 2, b and e, respectively.

Given positive integers n, t, denote [n] = {1, . . . , n} and [n]t = [n]× [n]× . . .× [n]︸ ︷︷ ︸
t

.

We will use the following inequalities. For every positive integer n, n! >
(
n
e

)n
,

while for every positive integers n, t (such that n ≥ t),(
n
t

)
≤ nt

t! <
(
e·n
t

)t
.

2.1 Graphs

Let G = (V,E) be an undirected graph. The distance between two vertices
v, u ∈ V in G is the length of the shortest path between them. The diameter of
G is the maximal distance between any two vertices of G.

The vertex v is a neighbor of u if (v, u) ∈ E. Let U ⊆ V . We define the neigh-
borhood of U as NG(U) , {v ∈ V \U | v has neighbor in U}.

We will use the notion of (vertex) expander graphs.

Definition 1 (Expander graphs). Let G = (V,E) be an undirected graph with
n vertices and let δ > 0. The graph G is a δ-expander if |NG(U)| ≥ δ · |U | for
every vertex subset U ⊂ V with |U | ≤ n/2.
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The following result is considered folklore (c.f., [15, Corollary 3.2]).

Proposition 1 (Diameter of expander graphs). Let G = (V,E) be an
undirected graph with n vertices that is a δ-expander. Then, diam(G) ≤ 2dlog1+δ(n/2)e+
1 = Oδ(log n).

Proof. Let v ∈ V . For an integer t ≥ 0, denote by Bt(v) the set of vertices within
distance t from v in G. We prove by induction on t that

|Bt(v)| ≥ min(n/2, (1 + δ)t).

For t = 0, we have Bt(v) = {v} and |Bt(v)| = 1. For the induction step, as-
sume that |Bt−1(v)| ≥ min(n/2, (1 + δ)t−1) and note that Bt−1(v) ⊆ Bt(v). If
|Bt−1(v)| ≥ n/2, we are done. Otherwise, |Bt−1(v)| ≥ (1+δ)t−1 and |Bt−1(v)| <
n/2. Denote U = Bt−1(v). We have Bt(v) = U ∪NG(U) and |NG(U)| ≥ δ · |U |
since G is a δ-expander. Therefore, |Bt(v)| ≥ (1 + δ)|U | ≥ (1 + δ)t as claimed.

In particular, for t = dlog1+δ(n/2)e, for any v, u ∈ V we have Bt(v) ≥ n/2 and
Bt(u) ≥ n/2. Thus, Bt+1(v) > n/2 intersects Bt(u), proving the result. �

2.2 Random Functions and Encryption

A random function (oracle) can be thought of as an idealization of a crypto-
graphic hash function. For positive integers N,N ′, a random function H : [N ]→
[N ′] is random variable, where for each x ∈ [N ], H(x) is selected independently
uniformly at random from [N ′].

We also make use of an idealization of an encryption scheme using a random
function. There are various ways to implement such an encryption scheme and
we choose the following one that resembles the counter mode-of-operation: let
F : [N ] → [N ′] be a random function such that N = N1 × N2 (i.e., we can
write F : [N1] × [N2] → [N ′]). Given a key k ∈ [N1] and a counter ct ∈ [N2], a
message m ∈ [N ′] is encrypted as F (k, ct)+m mod N ′. Decryption is performed
by computing F (k, ct) and subtracting it modulo N ′ from the ciphertext.

Assuming a pair (k, ct) is not reused to encrypt different messages and the ad-
versary does not query F with the key k, then the scheme essentially acts as a
one-time pad and no information is revealed about the encrypted messages from
the ciphertexts and the values of F queried to the adversary.

3 Distributed Key Agreement Protocols Based on
Random Oracles

We consider a complete network with M players p1, . . . , pM that have access to
a random oracle H. The players run a protocol whose the goal is to establish
keys between a fixed set of pairs of players Es ⊆ [M ]× [M ]. We do not assume a
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broadcast channel, and thus broadcasting a bit requires M bits of communica-
tion. We note that if a broadcast channel is assumed, then the communication
restrictions in the protocols we devise are essentially trivial to satisfy.

All probabilities are computed with respect to the random oracle and the coin
tosses of the players and adversary (whenever relevant).

Definition 2 (Distributed key agreement protocol). A (M,α, T, β)-DKAP
is a protocol between M players p1, . . . , pM with access to a random oracle H.
Each player receives as input the same set of edges Es ⊆ [M ]× [M ]. For i ∈ [M ],
denote the total number of queries of player pi to H by Ti and the total commu-
nication of pi by Ci. The protocol satisfies the following properties:

– For each (i, j) ∈ Es, player pi outputs ki,j and player pj outputs kj,i such
that Pr[∀(i, j) ∈ Es : ki,j = kj,i] ≥ α.

– Pr[∀i ∈ [M ] : Ti ≤ T ] = 1, and Pr[∀i ∈ [M ] : Ci ≤ T ] ≥ β.

A variant of this definition places a worst-case upper bound on the commu-
nication complexity of each player. For sufficiently large α and β this variant
is essentially equivalent to the one above, since a (M,α, T, β)-DKAP can eas-
ily be converted into a (M,α + β − 1, T, 1)-DKAP: a player that exceeds the
communication bound simply aborts and outputs a random value.

Another potential variant also places a bound of Õ(T ) on the total computation
performed by each player (in some standard computational model). Our protocol
satisfies this additional constraint.

As in standard Merkle’s puzzles, security is defined with respect to a passive
adversary that has access to the complete transcript of the protocol. The adver-
sary makes a bounded number of queries to H and outputs a string of the form
((i, j), k). The adversary wins if (i, j) ∈ Es and k = ki,j .

Definition 3 (Security of a distributed key agreement protocol). A
(M,α, T, β)-DKAP is (TA, αA)-secure if for any adversary A with access to the
communication (transcript) of the protocol Λ that makes at most TA queries to
H, Pr[(i, j) ∈ Es ∧ k = ki,j | AH(Λ)→ ((i, j), k)] ≤ αA.

The security definition does not restrict the keys on which the players agree. In
particular, a protocol in which all players agree on the same key can potentially
satisfy the definition. However, in our specific protocol the players agree on
independent keys. This allows to easily extend it to the semi-honest model, as
described in Section 7.

Supporting Es = [M ] × [M ]. In general, the parameters of a key agreement
protocol may depend on (be a function of) Es. Ultimately, we would like to
design a protocol that allows all pairs of players to exchange keys, namely, Es =
[M ]× [M ]. However, as we outline below, a protocol for Es = [M ]× [M ] can be
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easily obtained (with a small loss in parameters) from a protocol in which Es is
much sparser.

Specifically, assume we have a protocol that supports inputs Es where G =
(V,Es) is a sparse network with |Es| = Õ(M) for which there exist routing
protocols with small congestion (such as the hypercube or the butterfly net-
works [18, Chapter 4.5]). Then, we can extend it to allow all

(
M
2

)
pairs of players

to agree on keys such that each player performs Õ(M) additional encryptions
(i.e. oracle queries) and communicates additional Õ(M) bits almost surely: for
each (i, j) ∈ [M ]× [M ] such that i < j, pi picks a key k′i,j uniformly at random

and sends it encrypted to pj along a short path in (V,Es).
3 If the exchanged keys

are in a sufficiently large space (of size Ω̃(M ·T 2) in our case) and perfect encryp-
tion with domain separation is used (as described in Section 2), then recovering
any k′i,j requires recovering at least one key in Es and hence the advantage of an
adversary (with a fixed upper bound on the number of queries) does not increase
due to the additional key agreements. Therefore, we may restrict ourselves to
designing distributed key agreement protocols in which |Es| = Õ(M).

4 The Setup Protocol

Algorithm 1 describes the setup protocol for player pi (for any i ∈ [M ]), assuming
the M players have access to a random oracle H : [N ] → [N ′]. The protocol
first establishes keys between various pairs of players and then propagates the
information about which players share keys.

Parameter Selection. We assume for simplicity that M divides N ′. We choose

N = b T
2·M

25 lnM c, N
′ = T 6 and D = 4 logM . We further denote R , T 2·M

N .

We assume that M ≥ 64, T ≥ 20000 and note that 25 lnM ≤ R ≤ 26 lnM .
Moreover, we assume M ≤ T , which is reasonable as otherwise, iterating over
the list of players requires more than T time (and broadcasting a bit has com-
munication complexity of M bits).

We now analyze the setup protocol with respect to correctness, query and com-
munication complexity, connectivity of the secure link graph G and security.

4.1 Correctness

Proposition 2. Assume that for all (i, j) ∈ Es, pi outputs ki,j player pj outputs
kj,i. Then, Pr[∀(i, j) ∈ Es : ki,j = kj,i] ≥ 1− T−2.

3 This exposes k′i,j to the players along the path, and is therefore insecure in the
semi-honest model. However, the protocol can be patched by secret sharing k′i,j and
sending multiple shares encrypted along disjoint paths. We use a somewhat similar
protocol for the purpose of amplification.
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Algorithm 1: Setup protocol (pi’s algorithm)

Parameters: M,T,N,N ′, D
1 For all j ∈ [M ]\{i}, set ki,j = ⊥
2 Choose (x1, . . . , xT ) ∈ [N ]T uniformly at random (with replacement)

3 Compute (H(x1), . . . , H(xT )) ∈ [N ′]T and store the T pairs (xj , H(xj)) in a
table T1, sorted by the second column

4 For each j ∈ [T ], send (i,H(xj)) to player number H(xj) mod M ∈ [M ]
5 Receive messages from other players: (u1, y1), (u2, y2), . . . and store them in a

table T2, sorted by the second column
6 forall collisions in T2: {(uj , yj), (u`, y`) | yj = y` ∧ uj 6= u`} do
7 send (u`, yj) to player number uj

8 send (uj , yj) to player number u`

9 Receive messages from other players: (v1, z1), (v2, z2), . . .
10 For each message (vj , zj), search for zj in T1. If there exists an entry

(x`, H(x`)) in T1 such that zj = H(x`), set

ki,vj =

{
x` if ki,vj = ⊥ or H(ki,vj ) < H(x`),

ki,vj otherwise

. Distribute secure link graph

11 Broadcast the elements of the set {(i, j) | ki,j 6= ⊥ ∧ i < j}
12 Receive and store messages (f1, g1), (f2, g2), . . . from other players
13 Construct a graph G = (V,E), where V = [M ], E = {(f1, g1), (f2, g2), . . .}
14 Run breadth-first search on G from node i and calculate the minimal distance

to each j ∈ [V ]. If there exists j ∈ [V ] whose distance from i is larger than D,
broadcast “fail” and output ⊥.

15 If a “fail” message is received, then output ⊥. Otherwise, output G and
{(j, ki,j) | ki,j 6= ⊥}

Proof. Note that if the players output ⊥ the protocol is still formally correct.
Therefore, the only event that may cause a pair of players to output non-
matching keys is that their joint query set contains a collision in H, namely
a pair of elements qi, qj ∈ [N ] such that H(qi) = H(qj) but qi 6= qj .

Based on the randomness of H, a pair of different queries collide with probability
1/N ′. By a union bound over all query pairs, the probability of a collision in the

M · T queries made by the players is bounded by (T ·M)2

N ′ ≤ T 4

N ′ = T−2. �

4.2 Query and Communication Complexity

Proposition 3. Each player makes at most T queries to H and communicates
Õ(T ) bits, except with probability at most M · 2−T + (36 log T · T )−1 + T−2.

Clearly, each player makes T queries to H. It remains to bound the communica-
tion complexity by Õ(T ). First, all the messages are in a space of size polynomial
in T , hence the length of each message is Õ(1) bits. Propositions 4 and 5 below

12



bound the number of messages sent and received by each player. Given that
G contains Õ(T ) edges (which is guaranteed with high probability by Propo-
sition 5), then the communication of all players for propagating the edges is
bounded by Õ(T ). Therefore, it remains to prove propositions 4 and 5 in order
to complete the proof of Proposition 3.

Proposition 4. In lines 4-5 of the setup protocol, each player communicates at
most 8T messages, except with probability at most M · 2−T .

Proposition 5. In lines 6-9 of the setup protocol, all players (collectively) com-
municate at most 130 log T ·T messages, except with probability at most (36 log T ·
T )−1 + T−2.

The probability bound in Proposition 5 is rather loose, but it is sufficient for our
purpose.

Proof (of Proposition 4). In Line 4, each player sends at most T messages. It
remains to analyze the number of messages each player receives in Line 5.

The number of received messages by pi is determined by the number of images
of H computed by the M players that are equal to i modulo M . As we assume
that M divides N ′ and each image of H is uniform in [N ′], the probability that
each query to H results in a message sent to pi is 1/M .

Overall, the players make M · T queries to H, each is uniform in [N ]. We order
them arbitrarily and denote them by q1, . . . , qM ·T . The query q` results in a
message to pi if H(qj`) mod M = i and we bound the probability that this
happens for many queries below.

Claim. Consider any ordered subset of 7T queries qj1 , . . . , qj7T . Then,

Pr[∀` ∈ [7T ] : H(qj`) mod M = i] <
(

2
M

)7T
.

Proof. For some positive integer r < 7T , assume thatH(qjr ) mod M = i for all ` ∈
[r]. Then,H(qjr+1) mod M = i holds if either qjr+1 ∈ {qj1 , . . . , qjr} (which occurs
with probability at most r/N), or qjr+1 /∈ {qj1 , . . . , qjr} and H(qjr+1) mod M = i
(which occurs with probability at most 1/M). Therefore H(qjr+1

) mod M = i
holds with probability at most

1
M + r

N ≤
1
M + 7T

N < 1
M + 1

M = 2
M ,

as N = M ·T 2

R ≥ 7M · T (given that T ≥ 20000). The claim follows by induction
on r. �

There are (
M ·T
7T

)
≤
(
e·M ·T
7T

)7T
=
(
e·M
7

)7T
13



different query subsets of size 7T . By a union bound over all of them, the prob-
ability that at least 7T messages are sent to pi in Line 5 is at most(

e·M
7

)7T · ( 2
M

)7T
< 2−T .

The results follows by a union bound over all M players. �

Proof (of Proposition 5). The number of messages sent in lines 6-8 and re-
ceived in Line 9 is upper bounded by twice the number of collisions in the tables
of the players. Consider the queries made by the players in arbitrarily order
q1, . . . , qM ·T . We will make a distinction between two types of collisions. A col-
lision in H was shown in Proposition 3 to occur with probability at most T−2.
We assume such a collusion does not occur and use a union bound to obtain the
final result. A query collision occurs if qj = q` for j 6= ` and it results in a shared
key (assuming the queries are issued by different players).

We denote the total number of query collisions by Col and bound Pr [Col ≥ 65 log T · T ]
to finish the proof.

For all j, ` ∈ [M · T ] such that j 6= `, define an indicator random variable Cj,`
that is equal to 1 if qj = q`. We have

E[Cj,`] = Pr[Cj,` = 1] = N−1, and

Var[Cj,`] = E[(Cj,`)
2]− (E[Cj,`])

2 = N−1 −N−2 < N−1.

Hence,

E[Col] = E

∑
j,`

Cj,`

 =
∑
j,`

E[Cj,`] <
(M ·T )2

N = R ·M.

Note that the random variables {Cj,`} are pairwise independent. Hence,

Var[Col] = Var

∑
j,`

Cj,`

 =
∑
j,`

Var[Cj,`] <
(M ·T )2

N = R ·M.

For a parameter c > 0, Chebyshev’s inequality gives

Pr
[
Col − E[Col] ≥ c ·

√
Var[Col]

]
≤ c−2.

Recalling that T ≥M and 25 logM ≤ R ≤ 26 logM , we obtain

Pr [Col ≥ 65 log T · T ] ≤ Pr [Col −R ·M ≥ 39 log T · T ] ≤

Pr
[
Col −R ·M ≥ 6

√
log T · T ·

√
R ·M

]
≤ (36 log T · T )−1,

as required. �
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4.3 Connectivity

We prove that the secure link graph formed by the setup protocol is a good
expander with high probability, and therefore it has small diameter.

Let U be a group of players of size k > 0. We call U useful if the players in U
make at least T · k/2 distinct queries to H.

Proposition 6. Any group of players is useful, except with probability at most
2−2T .

Proof. Fix a group U of size k. There are k ·T queries made by the players in U .
Consider them in some order. We call the j’th query useful if it does not collide
with the previous j − 1 queries (and not useful otherwise). For each j ∈ [k · T ],
the probability that query number j is not useful is at most k·T

N .

Consider an arbitrary subset of k·T2 queries made by players in U . The probability

that they are all not useful is at most
(
k·T
N

)(k·T )/2
. Taking a union bound over all

such sets (whose number is less than 2k·T ), the probability that there is a set of

size k·T/2 of non-useful queries is at most 2k·T ·
(
k·T
N

)k·T/2
=
(
4·k·T
N

)k·T/2 ≤ 2−2T ,

given that N = M ·T 2

R ≥ 64M · T (as T ≥ 20000). Hence U is useful, except with
probability at most 2−2T .

�

Proposition 7. Consider the secure link graph G = (V,E) formed by the setup
protocol. Let U ⊂ V be a set of size k for 1 ≤ k ≤M/2. Then,

Pr[|NG(U)| ≤ k
2 ] ≤ e−R·k/12 + 2−2T .

Proof. We first prove that

Pr[|NG(U)| ≤ k
2 | U is useful] ≤ e−R·k/12 (1)

Combined with Proposition 6, this implies

Pr[|NG(U)| ≤ k
2 ] ≤

Pr[|NG(U)| ≤ k
2 | U is useful] + Pr[U is not useful] ≤ e−R·k/12 + 2−2T ,

as required.

We now prove (1). Given that U is useful, we fix a set Q of T · k/2 distinct
queries made by the players in this group.

Note that if |NG(U)| ≤ k
2 then there exists a set V ′ ⊆ V \U of size at least

M−k− k
2 = M−3k/2 ≥M/4 such that V ′∩NG(U) = ∅. Hence the intersection

of the queries of the players in V ′ (whose number is at least T ·M/4) with Q is

15



empty. The probability of a query hitting Q is |Q|/N . Since all the T ·(M−3k/2)
queries are independent, the probability none of them hits Q is at most(

1− |Q|N
)T ·M/4

≤ e−|Q|·T ·M/4N = e−T
2·k·M/8N = e−R·k/8.

where for the inequality we have used in inequality 1−x ≤ e−x (which holds for
any real x).

The number of sets V ′ ⊆ V \U of size M − 3k/2 is(
M−k

M−3k/2
)

=
(
M−k
k/2

)
≤
(
M
k/2

)
≤
(
2eM
k

)k/2
= ek(1+ln 2+lnM−ln k)/2.

Taking a union bound over all of them, we conclude

Pr[|NG(U)| ≤ k
2 | U is useful] ≤ e−R·k/8+k(1+ln 2+lnM−ln k)/2 ≤

e−k(R/8−1−lnM/2) ≤ e−R·k/12,

where the last inequality follows since R ≥ 25 lnM . �

Proposition 8. The secure link graph G = (V,E) formed by the setup protocol
satisfies Pr[diam(G) > 4 logM ] ≤ 2e ·M−1.

Proof. We show that G is a δ-expander for δ = 1/2, except with probability
at most 2e ·M−1. Then, by Proposition 1, diam(G) ≤ 2dlog3/2(M/2)e + 1 ≤
2 log3/2(M/2) + 3 ≤ 3.42 log2M + 3 ≤ 4 logM (as M ≥ 64).

Let U ⊂ V be of size k ≤ M/2. By Proposition 7, |NG(U)| > k/2 except with
probability at most e−R·k/12 + 2−2T . Taking union bound over all subsets of size

k, whose number is
(
M
k

)
≤
(
eM
k

)k
= ek(lnM+1−ln k), we conclude that for all of

them |NG(U)| > k/2, except with probability at most

ek(lnM+1−ln k−R/12) +
(
M
k

)
2−2T ≤

ek(lnM+1−ln k−24 lnM/12) +
(
M
k

)
2−2T ≤

M−k · ek(− ln k+1) +
(
M
k

)
2−2T ≤

e ·M−k +
(
M
k

)
2−2T ,

where we have used the inequality R ≥ 25 lnM ≥ 24 lnM .

Taking a union bound over all k ∈ [M/2], we conclude that all groups U of size
at most M/2 satisfy |NG(U)| > k/2, except with probability at most 2M ·2−2T +∑M/2
k=1 e ·M−k ≤ 2e ·M−1, since M ≥ 64 and T ≥M . �

4.4 Security

Proposition 9. Fix any pair of players (pi, pj) for which ki,j 6= ⊥. Then, any
adversary (with access to the full transcript of the protocol) that makes at most
TA queries to H, makes the query ki,j with probability at most TA

N .
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The security proof is essentially identical to the proof for standard Merkle’s
puzzles.

Proof. Let Λ be a random variable for the transcript of the protocol, which in-
cludes H(ki,j), as well as other images. The query sets of the players are uniform,
and H is a random function for which images do not give any information about
their preimages.4 Consequently, ki,j | Λ = λ is uniformly distributed in [N ] for
any λ (for which the images of H computed by pi and pj intersect).

Fix an adversary for Algorithm 1 that receives Λ as input. Let Γt be a random
variable for the first t (adaptive) queries of the adversary and their answers. Since
H is a random function, any query q 6= ki,j to H may only give the information
that q 6= ki,j (in case H(q) 6= H(ki,j)). Thus, by induction on the number of
queries t, they either hit ki,j with probability at most t/N , or ki,j | Λ = λ, Γt = γ
remains uniformly distributed in a set which contains (at least) the remaining
N − t inputs to H. Setting t = TA gives the result. �

5 The Distributed Key Agreement Protocol

We describe our key agreement protocol in Algorithm 2, where every player
receives as input the same set of edges Es. We set L = d16 log T e (the other
parameters are set as in the setup protocol).

Algorithm 2: Distributed key agreement protocol

Parameters: M,T,N,N ′, D, L
Input: Es

1 Run the setup protocol (with parameters M,T,N,N ′, D) 2L times with
independent random oracles (derived from H)

2 If more than L executions fail (i.e., output ⊥), then each player outputs an
independent and uniform value in [N ]. Otherwise, for the first L successful
executions, denote the corresponding random oracles and secure graphs by
H(1), . . . , H(L) and G(1), . . . , G(L)

3 For each (i, j) ∈ Es, run the strong secure link protocol (Algorithm 3), after
which pi outputs ki,j and pj outputs kj,i

It remains to describe the strong secure link protocol. We assume that the play-
ers have access to a perfect encryption scheme: for ` ∈ [L] given access to an
(independent) random function F (`) : [N ] × [M ] × [M ] × [T 2] → [N ], play-

ers f, g that share a key k
(`)
f,g ∈ [N ], encrypt the ct’th message m ∈ [N ] as

4 The transcript reveals information about the equalities (and inequalities) among
different queries made by the players, yet any individual query remains uniform in
[N ].

17



F (`)(k
(`)
i,j , f, g, ct) + m mod N . We embed f and g into the input of F in order

to make sure that it is not invoked twice on the same input.

In the protocol, pi chooses L independent and uniform values r1, . . . , rL ∈ [N ]

and computes ki,j =
∑L
`=1 r` mod N (i.e, ki,j is split into L shares using a

standard additive L-out-of-L secret sharing scheme). Then, pi sends the `’th
share r` on a short path to pj , encrypted with the keys of G(`). Specifically,
for each edge (f, g) on the selected path, pf encrypts r` with counter ct as

F (`)(k
(`)
f,g, f, g, ct) + r` mod N (pf and pg then increment the counter). Player

g decrypts the message (by subtracting F (`)(k
(`)
f,g, f, g, ct) modulo N from the

encryption) and encrypts it using the next key on the path. Finally, pj receives
the (encrypted) values r1, . . . , rL and computes kj,i (which should equal ki,j) by
decrypting and summing the values mod N .

The algorithm of pi is given below.

Algorithm 3: Strong secure link protocol (pi’s algorithm)

Parameters: M,N,L
Input: j such that (i, j) ∈ Es

1 Select L uniform and independent values r1, . . . , rL ∈ [N ] and define

ki,j =
∑L

`=1 r` mod N .
2 forall ` ∈ [L] do

3 Find the shortest path between i and j in G(`) via breadth-first search,

and send r` on that path (encrypted with the corresponding keys of G(`))

5.1 Security Analysis

Proposition 10. Fix an adversary A that makes TA ≤ N/4 queries to H(1), . . . ,H(L)

and F (1), . . . , F (L). Then, given the view of the adversary viewA (the transcript
of the protocol of Algorithm 2 and the oracle queries and answers), each ki,j for
(i, j) ∈ Es is uniformly distributed in [N ], except with probability at most T−6.
Namely, Pr[(∀(i, j) ∈ Es : ki,j is uniformly distributed in [N ]) | viewA] ≤ T−6.

Proof. Let Λ be a random variable for the transcript of Algorithm 2. The ad-
versary for Algorithm 2 receives Λ as input. Let Γ be a random variable for the
(adaptive) queries of the adversary to H(1), . . . ,H(L), and F (1), . . . , F (L) and
their answers.

Fix (i, j) ∈ Es. For ` ∈ [L], let K(`) be the set of keys under which r` is encrypted

in Algorithm 3. Namely, K(`) contains k
(`)
f,g for all edges (f, g) on the path in

G(`) selected by pi. Define the random variable E` as an indicator for the event

that Γ contains a query F (`)(k
(`)
f,g, f, g, ct) for some k

(`)
f,g ∈ K(`) and counter ct.
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Claim. For any values λ, γ (that occur with positive probability),

ki,j | Λ = λ, Γ = γ,∧`∈[L]E` = 0

is distributed uniformly in [N ].

In other words, if ∧`∈[L]E` = 0 occurs, then ki,j is distributed uniformly in [N ]
given the view of the adversary.

Proof. Given that ∧`∈[L]E` = 0, then there exists ` ∈ [L] such that E` = 0. We
fix any such `.

For each k
(`)
f,g ∈ K(`), denote by c

(`)
f,g = F (`)(k

(`)
f,g, f, g, ct) + r` mod N the encryp-

tion (ciphertext) of r`, and denote C(`) = {c(`)f,g | k
(`)
f,g ∈ K(`)}. Since we assume

the adversary did not query F (`)(k
(`)
f,g, f, g, ct) for any k

(`)
f,g ∈ K(`), and since F (`)

is a random function, then r` | C(`), E` = 0 remains uniformly distributed in
[N ]. As the additional values in the adversary’s view are independent of r` (and

of all F (`)(k
(`)
f,g, f, g, ct)), then

r` | Λ = λ, Γ = γ, E` = 0

is also uniform in [N ]. Recall that ki,j =
∑L
`=1 r` mod N , where each share is

selected independently and uniformly at random from [N ]. Since r` is uniform
in [N ] given the view of the adversary, then ki,j is uniform in [N ] given the view
of the adversary regardless of the other shares. �

It remains to upper bound Pr[∧`∈[L]E` = 1]. A bound on this quantity in the
information theoretic model essentially follows from Proposition 9.

Recall that for each ` ∈ [L], the path length in G(`) between i and j is at most
D = 4 logM , and hence |K(`)| ≤ 4 logM .

Assume without loss of generality that the adversary makes exactly TA queries
to H(`) (and F (`)) for each ` ∈ [L]. Recall that the L executions of the setup pro-
tocol are independent. Therefore, as in the proof of Proposition 9, by induction
on the number of queries to H(`) (and F (`)) (denoted by t), they either hit K(`)

with probability at most |K(`)| · t/N ≤ 4 logM · t/N , or only give the informa-

tion that K(`) does not intersect these queries. Hence, Pr[E` = 1] ≤
(

4 logM ·TA

N

)
holds for each ` ∈ L independently of all Ef for f 6= `. Thus,

Pr[∧`∈[L]E` = 1] =
∏
`∈[L]

Pr[E` = 1 | ∧f∈[`−1]Ef = 1] ≤
(

4 logM ·TA

N

)L
. (2)

Remark 1. We also need to condition on the success of the protocol that con-
structs G(`), i.e., on the event that the graph G(`) is of diameter at most
D = 4 logM . However, the diameter of the graph (or its structure in general)
does not reveal any information about the individual queries of the players to
H(`) (each one remains uniformly distributed). Hence the event is independent
of the success probability of the adversary.
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We can obtain a slightly better bound as follows. Consider a restricted adversary
that before making any query to the oracles, fixes some subset L′ ⊆ L of size
L/2 and makes at most 2TA/L queries to H(`) (and F (`)) for each ` ∈ L′. For
such an adversary,

Pr[∧`∈[L]Ē` = 1] ≤ Pr[∧`∈[L′]Ē` = 1] ≤
(

8 logM ·TA

L·N

)L/2
similarly to (2) (where Ē` are random variables associated with the restricted
adversary). For an arbitrary adversary that makes a total of at most TA queries,
there is always such a subset L′ ⊆ L of size L/2, but L′ may depend on the
oracle queries. Yet, we can build a restricted adversary from an arbitrary one
by guessing the subset L′ uniformly at random in advance. Since our guess is
correct with probability at least 2−L, we have

Pr[∧`∈[L]E` = 1] ≤ 2L · Pr[∧`∈[L]Ē` = 1] ≤ 2L
(

8 logM ·TA

L·N

)L/2
=
(

32 logM ·TA

L·N

)L/2
.

Since L ≥ 16 log T and TA ≤ N/4, we get Pr[∧`∈[L]E` = 1] ≤ 2−L/2 ≤ T−8.

The proposition follows by a union bound over all (i, j) ∈ Es (whose size is less
than M2 ≤ T 2). �

5.2 Main Theorem

The formal version of Theorem 1 is given below.

Theorem 2. Assume that M ≥ 64, T ≥ 20000, T ≥ M and |Es| = Õ(M). Let
T̂ = Õ(T ) be sufficiently large. Then, Protocol 2 is a(

M,α = 1− Õ(T̂−1), T̂ , β = 1− Õ(T̂−1)
)

-DKAP

which is (
TA = Θ̃(M · T̂ 2), αA = Õ

(
1

M ·T̂ 2

))
-secure.

Proof. We prove the equivalent statement that Protocol 2 is a(
M,α = 1− Õ(T−1), Õ(T ), β = 1− Õ(T−1)

)
-DKAP

which is (
TA = Θ̃(M · T 2), αA = Õ

(
1

M ·T 2

))
-secure.

Correctness. The protocol is correct if at least L of the setup protocol executions
do not fail and all pairs of players agree on consistent keys. By Proposition 2
and a union bound over the 2L executions, a pair of players output inconsistent
keys with probability at most 2L · T−2.
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By Proposition 8, each execution of the setup protocol fails (the players output
⊥) with probability at most 2e ·M−1 ≤ 1/8 (since M ≥ 64). In a sequence of
L independent executions, all fail with probability at most 2−3L. Hence, there
exists such a sequence among the 2L executions of the protocol with probability
at most 22L · 2−3L = 2−L.

Therefore, the protocol is correct, except with probability at most

2L · T−2 + 2−L ≤ T−1 = Õ(T−1)

(as T ≥ 20000).

Queries and communication. The setup protocol is executed 2L = 2d16 log T e <
34 log T times. By Proposition 3, in each execution each player makes at most T
queries with probability 1 and communicates Õ(T ) bits, except with probability
M · 2−T + (36 log T ·T )−1 +T−2. Moreover, each edge in Es results in at most L
additional queries (and L messages) per player in the strong secure link protocol
(Algorithm 3).

Thus, each player makes less than

34 log T · T + 17 log T · |Es| = Õ(T )

queries, and communicates Õ(T ) bits, except with probability at most

2L · (M · 2−T + (36 log T · T )−1 + T−2) ≤ T−1 = Õ(T−1)

(since T ≥ 20000).

Security. By Proposition 10, any adversary that makes at most

TA = N
8 ≥

M ·T 2

208 lnM = Θ̃(M · T 2)

queries to the random oracle outputs ((i, j), ki,j) for (i, j) ∈ Es with probability
at most

T−6 · 1 + (1− T−6) · 1/N ≤ 2
N ≤

52 lnM
M ·T 2 = Õ

(
1

M ·T 2

)
.

�

6 Optimality of the Distributed Key Agreement Protocol

We prove the optimality of our key agreement protocol (up to logarithmic fac-
tors) with respect to the ratio of the number of queries made by each honest
player and the adversary. We use the following result.

Theorem 3 ([3], Theorem 3.1, adapted). Let Π be a 2-player key agree-
ment protocol between p1 and p2 using a random oracle H in which:

– p1 makes at most T1 queries to H and outputs k1,2.
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– p2 makes at most T2 queries to H and outputs k2,1.

– Pr[k1,2 = k2,1] ≥ α

Then, for every 0 < δ < α, there is an adversary with access to the transcript
of the protocol that makes at most 400 · T1 · T2/δ2 queries to H and outputs k2,1
with probability at least α− δ.

Proposition 11. Let Π be a protocol between M players using a random oracle
H in which:

– Every player makes at most T queries to H.

– p1 outputs j ∈ [M ]\{1} and k1,j, and pj outputs kj,1.

– Pr[k1,j = kj,1] ≥ α.

Then, for every 0 < δ < α, there is an adversary with access to the transcript
of the protocol that makes at most 400 ·M · T 2/δ2 queries to H and outputs kj,1
with probability at least α− δ.

Proof. Given an M -player protocol Π as above with players p1, . . . , pM , we devise
a 2-player protocol Π ′ with players p′1 and p′2 as follows: player p′1 simulates
p1 by sending all messages intended for p2, . . . , pM to p′2. Player p′2 simulates
p2, . . . , pM by sending all messages intended for p1 to p′1 (messages sent among
p2, . . . , pM do not require communication). Finally, if p1 outputs j and k1,j , then
p′1 outputs k′1,2 = k1,j and sends j to p′2 that outputs k′2,1 = kj,1.

We have Pr[k1,j = kj,1] ≥ α, and hence Pr[k′1,2 = k′2,1] ≥ α. Moreover, p′1 makes
at most T queries to H, while p′2 makes at most (M − 1) · T < M · T queries
to H. Therefore, by Theorem 3, there exists an adversary A′ with access to the
transcript of Π ′ that makes at most 400 ·M · T 2/δ2 queries to H and outputs
k′2,1 with probability at least α− δ.

We devise an adversary A for Π using A′: A gives to A′ only the messages
sent and received by p1 (so that the transcript is identical to the corresponding
execution of Π ′) and outputs the same value. Thus, A makes at most 400 ·M ·
T 2/δ2 queries to H and outputs kj,1 = k′2,1 with probability at least α− δ. �

Theorem 4. Any (M,α, T, β)-DKAP that is (TA, αA)-secure for non-empty Es ⊆
[M ]× [M ] such that α ≥ 3/4 and TA ≥ 6400M · T 2, satisfies αA ≥ 1/2.

Proof. Apply Proposition 11 for an edge (j, 1) ∈ Es (by renaming the players)
and δ = 1/4. Since Pr[k1,j = kj,1] ≥ 3/4, and TA ≥ 6400M · T 2 = 400M · T 2/δ2,
there exists an adversary that makes at most TA queries to H and outputs kj,1
with probability at least 3/4− 1/4 = 1/2. �

7 Extensions

We briefly discuss two extensions of the protocol.
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7.1 The Semi-Honest Model

We consider security in a model where adversarial players execute the protocol
as designed, but try to learn the secret keys of the honest players.

With small overhead, the protocol can be extended to provide resistance against
an adversary that controls a fraction of O(1/ logM) of the players in the semi-
honest model, which are chosen in advance (i.e., static corruptions). In particular,
such an extension allows any two honest players to communicate securely, except
with negligible probability (unless the adversary makes Ω̃(M ·T 2) queries to the
random oracle).

The extension is simple. Fix some edge (i, j) ∈ Es between two honest players.
Note that the only advantage of the corrupted players (over an eavesdropping
adversary) is in the strong secure link protocol. Specifically, in this protocol pi
chooses ki,j and sends each of its shares on a path to pj , encrypted using secure
links created by a setup protocol execution. In order to maintain security, we
must ensure that with high probability, there is at least one path in which all
players are honest.

Recall that each path chosen by pi to encrypt ki,j is of length at most D =
4 logM . Therefore, each path does not include any corrupted player with con-
stant probability. Repeating the setup protocol independently Ω(log T ) times
(while choosing among shortest paths independently via randomization), en-
sures that Ω(log T ) paths do not include a corrupted player (except with small
probability) and the analysis of the original protocol applies to these paths with
small modifications. Thus, the only change required is to repeat the setup pro-
tocol according to the fraction of adversarial players we wish to tolerate. On the
other hand, we conjecture that it is not possible to tolerate a constant fraction
of adversarial players with a small overhead of Õ(1) in query complexity.

7.2 Communication-Security Tradeoff

For a parameter B ≥ 1 such that T = Ω̃(M · B), it is possible to extend the
protocol such that each player makes T queries and communicates Õ(T/B) bits,

while any adversary has to make Ω̃
(
M ·T 2

B

)
queries to recover any key with high

probability. As for standard Merkle’s puzzles, this can done by defining a new
random oracle H ′ based on H by partitioning its domain into groups of size B.
The output of a query to H ′ is computed by summing (modulo N ′) the outputs
of the corresponding group (consisting of B queries to H).
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