
Secure Software Leasing Without Assumptions

Anne Broadbent1, Stacey Jeffery2, Sébastien Lord1, Supartha Podder1, and
Aarthi Sundaram3

1 University of Ottawa, Ottawa, Canada.
{abroadbe,slord050,spodder}@uottawa.ca

2 QuSoft and CWI, Amsterdam, Netherlands. jeffery@cwi.nl
3 Microsoft Quantum, Redmond, USA. aarthi.sundaram@microsoft.com

Abstract. Quantum cryptography is known for enabling functionalities
that are unattainable using classical information alone. Recently, Secure
Software Leasing (SSL) has emerged as one of these areas of interest.
Given a target circuit C from a circuit class, SSL produces an encoding
of C that enables a recipient to evaluate C, and also enables the orig-
inator of the software to verify that the software has been returned —
meaning that the recipient has relinquished the possibility of any further
use of the software. Clearly, such a functionality is unachievable using
classical information alone, since it is impossible to prevent a user from
keeping a copy of the software. Recent results have shown the achiev-
ability of SSL using quantum information for a class of functions called
compute-and-compare (these are a generalization of the well-known point
functions). These prior works, however all make use of setup or compu-
tational assumptions. Here, we show that SSL is achievable for compute-
and-compare circuits without any assumptions.
Our technique involves the study of quantum copy protection, which is
a notion related to SSL, but where the encoding procedure inherently
prevents a would-be quantum software pirate from splitting a single copy
of an encoding for C into two parts, each of which enables a user to
evaluate C. We show that point functions can be copy-protected without
any assumptions, for a novel security definition involving one honest
and one malicious evaluator; this is achieved by showing that from any
quantum message authentication code, we can derive such an honest-
malicious copy protection scheme. We then show that a generic honest-
malicious copy protection scheme implies SSL; by prior work, this yields
SSL for compute-and-compare functions.

1 Introduction

One of the defining features of quantum information is the no-cloning principle,
according to which it is not possible, in general, to take an arbitrary quan-
tum state and produce two copies of it [13, 22,25]. This principle is credited for
many of the feats of quantum information in cryptography, including quantum
key distribution (QKD) [7] and quantum money [24]. (For a survey on quan-
tum cryptography, see [9]). The quantum no-cloning principle tells us that, in a

1

certain sense, quantum information behaves more like a physical object than a
digital one: there are situations where quantum information can be distributed
and used, but it cannot be duplicated. One such example is quantum money [24],
in which a quantum system is used to encode a very basic type of information —
the ability to verify authenticity. However, we can envisage quantum encodings
that achieve richer levels of applicability. We thus define a hierarchy of “un-
cloneable” objects, where the basic notion provides only authenticity, and the
topmost notion provides functionality. The uncloneability hierarchy includes:

– Authenticity. In the first (most basic) level, the uncloneability property
can be used to verify authenticity.

– Information. Next, information is made uncloneable, meaning that there
is some underlying data that can be decoded, but there are limitations on
the possibility of copying this data while it is encoded.

– Functionality. At the top level of the hierarchy, a functionality is made
uncloneable, meaning that there are limitations on how many users can si-
multaneously evaluate the functionality.

For both the case of information and functionality, a type of verification is
possible (but optional): this verification is a way to confirm that a message or
functionality is returned; after such verification is confirmed, further reading/use
of the encoded information is impossible.

We emphasize that none of the concepts in the hierarchy are possible in a
conventional digital world, since classical information can be copied. Thus the
hierarchy is best understood intuitively at the level of a physical analogy where,
for example, authenticity is verified by physical objects and functionalities are
distributed in hardware devices.

Achieving the hierarchy. We summarize below the known results on achievability
of the hierarchy.

1. The authenticity level of the hierarchy is the most well-understood, and it
includes quantum money [24], quantum coins [20], and publicly-verifiable
quantum money [2].

2. Next, the information level includes tamper-evident encryption [18] and un-
cloneable encryption [8]. We comment here on a technique of Gottesman [18]
that is relevant to our work. In [18], it is shown that tamper-evident encryp-
tion can be achieved using the primitive of Quantum Message Authentication
(QMA) [6] — in other words, the verification of quantum authentication not
only gives a guarantee that the underlying plaintext is intact, but also that
no adversary can gain information on the plaintext, even if the key is revealed.
Uncloneable encryption is a notion that is complementary to tamper-evident
encryption, and it focuses on preventing duplication of an underlying plain-
text. In [8], it is shown to be achievable in the Quantum Random Oracle
Model (QROM).

3. Finally, the functionality level of the hierarchy was first discussed in terms of
quantum copy protection by Aaronson [1]: here, a quantum encoding allows

2

the evaluation of a function on a chosen input, but in a way that the number
of simultaneous evaluations is limited. In [1], copy protection for a class of
functions is shown to exist assuming a quantum oracle; this was improved
(for a more restricted family of circuits) to a classical oracle in [3]. Further
work in [11] improved the assumption to the QROM.4

A related concept, also at the functionality level of the hierarchy, was recently
put forward: Secure Software Leasing (SSL), where a quantum encoding
allows evaluation of a circuit, while also enabling the originator to verify
that the software is returned (meaning that it can no longer be used to
compute the function). SSL was first studied by Ananth and La Placa [5]5

where it was shown that SSL could be achieved for searchable compute-and-
compare circuits6; in order to achieve their result (which is with respect to
an honest evaluation), they make use of strong cryptographic assumptions:
quantum-secure subspace obfuscators, a common reference string, and the
difficulty of the Learning With Errors (LWE) problem. Further work [11]
improved the result on achievability for the same class of circuits, this time
against malicious evaluations, and in the QROM. Very recently, [19] showed
the achievability of SSL, based on LWE, against honest evaluators, and for
classes of functions beyond evasive functions.7

1.1 Summary of Contributions

Due to their foundational role in the study of uncloneability as well as for poten-
tial applications, SSL and copy protection are emerging as important elements
of quantum cryptography. In this work, we solve two important open problems
related to SSL and quantum copy protection.

Secure Software Leasing. We show how to construct an SSL scheme for compute-
and-compare circuits, against a malicious evaluator. Ours is the first scheme that
makes no assumptions — there are no setup assumptions, such as the QROM or
a common reference string and no computational assumptions, such as one-way
functions or the LWE assumption. We thus show for the first time that SSL is
achievable, unconditionally. A compromise we make in order to achieve this is the

4 This is an improvement, as a QROM does not depend on the circuit to be computed.
5 Two notions are actually introduced in [5]: finite-term and infinite-term SSL. In

this work, SSL refers to finite-term SSL. Furthermore, in [5] all the evaluators in the
security game are assumed to behave honestly. In this work, we do not make this
assumption and our SSL evaluators can behave maliciously.

6 A circuit class C is a compute-and-compare circuit class if for every circuit in C, there
is an associated circuit C and string α such that on input x, the circuit outputs 1
if and only if C(x) = α. Searchability refers to the fact that there is an efficient
algorithm that, on input C ∈ C, outputs an x such that C(x) = α. From this point
on, searchability is an implicit assumption throughout this work.

7 Informally, evasive functions are the class of functions such that it is hard to find
an accepting input, given only black-box access to a functions. Note that compute-
and-compare functions are evasive.

3

use of a natural but weaker notion of correctness with respect to a distribution.
We note that general SSL was shown to be impossible [5], and that [1] mentions
how learnable functions cannot be copy-protected. It is thus natural that we
focus our efforts on achieving SSL for compute-and-compare circuits, which is a
family of functions that is not learnable.

In more detail, we follow the security notion of [11], which postulates a game
between a challenger, and a pirate Pete. Upon sampling a circuit from a given
distribution, the challenger encodes the circuit and sends it to Pete. Pete then
produces a register that he returns to the challenger who performs a verifica-
tion; upon successful verification, we continue the game (otherwise, we abort),
by presenting to Pete a challenge input x ∈ {0, 1}n (chosen according to a given
distribution). The scheme is ε-secure if we can bound the probability that Pete
correctly evaluates the circuit on the challenge input x, to be within ε of his
trivial guessing probability. Here, trivially guessing means that Pete answers the
challenge by seeing only x, i.e., disregarding all other information obtained by
interacting with the challenger. Thus, security is defined relative to the distri-
bution on the circuits and on the challenges. For SSL, η-correctness is defined
with respect to an input distribution, and means that, up to some error term η,
the honest evaluation on an encoded circuit produces the correct outcome, in
expectation.8

We show how to achieve SSL with respect to the uniform distribution on
point functions, and the challenge distribution which samples uniformly from
the distribution where the correct response is 0 or 1 (with equal probability) —

denoted T
(1/2)
p . Our technique is a reduction from SSL to honest-malicious copy

protection, as well as a new construction for quantum honest-malicious copy
protection (with respect to essentially the same distributions as stated above).
Prior work noted, informally, that copy protection implies SSL [5]. Here, we
formally show that our new and weaker (and thus easier-to-achieve) notion of
copy protection (see below) implies SSL. Our work focuses on achieving SSL for
point functions; by applying our result with [11] this implies SSL for compute-
and-compare circuits.

Honest-Malicious Copy Protection. We define a new security model for copy
protection: honest-malicious copy protection.9 Here, we consider a game between
a challenger, a pirate (Pete), and two evaluators. Importantly, the first evaluator,
Bob, is honest (meaning that he will execute the legitimate evaluation procedure)
and the second evaluator, Charlie, is malicious. In copy protection, we want to
bound the probability that, after each receiving a quantum register from Pete,

8 This notion is weaker than the more common notion of correctness that holds for
all inputs. However, in Section 4, we give evidence that achieving this stronger
notion of correctness may be possible, by showing that for the standard notion of
copy protection (against two malicious evaluators), correctness in expectation implies
worst-case correctness, which would then imply worst-case correctness for SSL.

9 This is a stronger notion of security than infinite term SSL as defined in [5], which
is a form of copy protection where both evaluators are honest, and is achieved in [5]
under strong assumptions.

4

who takes as input a single copy-protected program, the two evaluators (who
cannot communicate), are both able to correctly evaluate the encoded circuit.
Following [11], this is formalized by a game, parameterized by a distribution
on the input circuits, and a corresponding challenge distribution on pairs of n-
bit strings. A challenger samples a circuit, encodes it using the copy protection
scheme and sends the encoding to Pete who creates the two registers. Then a
challenge pair (x1, x2) is sampled from the challenge distribution; Bob receives x1
while Charlie receives x2. They win if they each produce the correct output of
the original circuit evaluated on x1 and x2, respectively. An honest-malicious
copy protection scheme is ε-secure for the given distributions if the probability
that the evaluators win the game is within ε of the success probability of the
trivial strategy that is achievable when Bob gets the full encoding and Charlie
guesses to the best of his ability without interacting with Pete. As in the case
of SSL, η-correctness for copy protection is defined with respect to an input
distribution, and means that, up to some constant η, the honest evaluation on
an encoded circuit produces the correct outcome, in expectation.10

We establish the relevance of honest-malicious copy protection by showing
that, for general functions, honest-malicious copy protection implies SSL.

Honest-Malicious
Copy Protection
(Point Functions)

Total Quantum
Authentication

SSL
(Point Functions)

SSL
(Compute & Compare)

Section 5

Section 4

[11]

Fig. 1. Relations between various notions considered in this work.

In order to complete our main result, we show how to achieve honest-malicious
copy protection for point functions, where the challenge distribution is given

by (T
(1/2)
p × T (1/2)

p), and correctness is also with respect to T
(1/2)
p . To the best

of our knowledge, this is the first unconditional copy protection scheme; via
the above reduction, it yields the first SSL scheme without assumptions. See
Figure 1 for a pictorial representation of the sequence of results. Our idea is
to use a generic quantum message authentication scheme (QAS) that satisfies
the total authentication property [17]. Briefly, a QAS is a private-key scheme
with an encoding and decoding procedure such that the probability that the
decoding accepts and the output of the decoding in not the original message is
small. Security of a total QAS is defined in terms of the existence of a simulator
that reproduces the auxiliary register that an adversary has after attacking an
encoded system, whenever the verification accepts. An important feature of a
total QAS is that essentially no information about the key is leaked if the client
accepts the authentication.

10 See Footnote 8.

5

The main insight for the construction of honest-malicious copy protection for
point functions from a total QAS is to associate the key to the QAS with the
point p in the point function. A copy-protected program is thus an encoding of
an arbitrary (but fixed) state |ψ〉 into a total QAS, using p as the key. Given p′,
the evaluation of the point function encoding is the QAS verification with the
key p′. We thus get correctness in the case p′ = p from the correctness of the
QAS; correctness in expectation for p′ 6= p follows with a bit more work. Impor-
tantly, the total security property of the QAS gives us a handle on the auxiliary
register that an adversary holds, in the case that the verification accepts. Since
Bob is honest, his evaluation corresponds to the QAS verification map; in the
case that Bob gets the challenge x1 = p, we use the properties of the total QAS
to reason about Charlie’s register, and we are able to show that Charlie’s register
cannot have much of a dependence on p, which is to say that Charlie’s outcome is
necessarily independent of p. This is sufficient to conclude that Bob and Charlie
cannot win the copy protection game for a uniform point with probability much
better than the trivial strategy in which Charlie makes an educated guess, given
the challenge x2. We note that total authentication is known to be satisfied by a
scheme based on 2-designs [4], as well as by the strong trap code [14]. Putting all
of the above together, we obtain our main result, which is an explicit SSL scheme
for point functions Pp : {0, 1}n → {0, 1} which is O(2−

n
16)-correct (on average)

and O(2−
n
32)-secure, under uniform sampling of p and where the challenge dis-

tribution is T
(1/2)
p .11 We note the similarity between our approach for achieving

honest-malicious copy protection and the approach in [18] in achieving tamper-
evident encryption, based on quantum authentication codes. We also mention a
similarity with the blueprint in [11], which also produces a copy-protected pro-
gram starting from a private-key encryption scheme (in this case, the one of [8]),
associates a point with the key, and uses a type of verification of the integrity
of the plaintext after decryption as the evaluation method.

Too good to be true? We emphasize that our results require no assumptions at
all, which is to say that the result is in the standard model (as opposed to, say
the QROM), and does not rely on any assumption on the computational power
of the adversary. That either copy protection or SSL should be achievable in
this model is very counter-intuitive, hence we explain here how we circumvent
related impossibility results. In short, our work strikes a delicate balance between
correctness and security, in order to achieve the best of both worlds.

Prior work [1] defines quantum copy protection assuming the adversary is
given multiple identical copies of the same copy-protected state. Under this
model, it is possible to show how an unbounded adversary can distinguish be-
tween the copy-protected programs for different functions [1], which makes un-
conditionally secure copy protection impossible. In our scenario, we allow only
a single copy of the program state, hence this reasoning is not applicable.

11 This is achieved by instantiating the copy protection scheme from Section 5 with
a total quantum authentication scheme given by Lemma 3 and using it in the SSL
construction of Section 4.3.

6

Next, consider a scheme (either copy protection or SSL) that is perfectly
correct, meaning that the outcome of the evaluation procedure is a deterministic
bit. Clearly, such a scheme cannot be secure against unbounded adversaries, since
in principle, there is a sequence of measurements that an unbounded adversary
can perform (via purification and rewinding), in order to perfectly obtain the
truth table of the function. We conclude that perfectly correct schemes cannot
satisfy our notion of unconditional security for copy protection.

We note that our scheme is, by design, not perfectly correct. This can be
seen by reasoning about the properties of the QAS: in any QAS, it is neces-
sary that, for a fixed encoding with key k, there are a number of keys on which
the verification accepts. The reason why this is true is similar to the argument
above regarding perfect correctness: if this were not true, then the QAS (which
is defined with respect to unbounded adversaries) would not be secure, since
an adversary could in principle find k by trying all keys (coherently, so as to
not disturb the quantum state) until one accepts. Somewhat paradoxically, it
is this imperfection in the correctness that thus allows the unconditional se-
curity. Another way to understand the situation is that the honest evaluation
in our copy protection (or SSL) scheme will unavoidably slightly damage the
quantum encoding (even if performed coherently). In a brute-force attack, these
errors necessarily accumulate to the point of rendering the program useless, and
therefore the brute-force attack fails.

1.2 Open Problems

Our work leaves open a number of interesting avenues. For instance: (i) Could we
show the more standard notion of correctness of our scheme, that is, correctness
with respect to any distribution? (ii) Is unconditional SSL achievable for a richer
class of functions? (iii) Can our results on copy protection be extended to hold
against two malicious evaluators? In Section 4, we show that (i) and (iii) are
related, by establishing that a point function copy protection scheme that is
secure against two malicious evaluators and satisfies average correctness can be
turned into a scheme that also satisfies the more standard notion of correctness.

1.3 Outline

The remainder of this document is structured as follows. In Section 2, we give
background information on notation, basic notions and quantum message au-
thentication. In Section 3, we define correctness and security for quantum copy
protection and SSL. In Section 4, we show the connection between malicious-
malicious security and standard correctness, as well as links between honest-
malicious copy protection and SSL. Finally, our main technical construction of
honest-malicious copy protection from any total QAS is given in Section 5. Note
that some technical details can be found in the full version12.

12 The full version is available at: arXiv:2101.12739.

7

https://arxiv.org/abs/2101.12739

2 Preliminaries

2.1 Notation

All Hilbert spaces in this work are complex and of finite dimension. We will
usually denote a Hilbert space using a sans-serif font such as S or H. We will
often omit the tensor symbol when taking the tensor product of two Hilbert
spaces, i.e.: A⊗B = AB. We use the Dirac notation throughout, which is to say
that |ψ〉 ∈ H denotes a vector and 〈ψ| : H→ C denotes the corresponding linear
map in the dual space. Finally, Hilbert spaces may be referred to as “registers”,
acknowledging that they sometimes model physical objects which may be sent,
kept, discarded, etc., by participants in quantum information processing tasks.

The set of linear operators, unitary operators, and density operators on a
Hilbert space H are denoted by L(H), U(H), and D(H) respectively. A linear op-
erator may be accompanied by a subscript indicating the Hilbert space on which
it acts. This will be useful for bookkeeping and to omit superfluous identities.
For example, if LA ∈ L(A) and |ψ〉AB ∈ AB, then LA |ψ〉AB = (LA ⊗ IB) |ψ〉AB.

We recall [23] that the trace norm, or Schatten 1-norm, of a linear operator
is given by ‖X‖1 = maxU∈U(A) |〈U |X〉| where 〈U |X〉 = Tr

[
U†X

]
. The trace

distance between two linear operators is then given by ∆(X,Y) = 1
2‖X − Y ‖1.

If ∆(X,Y) ≤ ε, we write X ≈ε Y . We also give a technical lemma pertaining to
the trace distance between bipartite states of a particular form. For completeness,
a proof is given in the full version.

Lemma 1. Let A and B be Hilbert spaces and {|ψj〉}j∈J ⊆ A be a set of or-
thonormal vectors. Then, for any sets of linear operators {Xj}j∈J and {Yj}j∈J
on B, we have that

∆

∑
j∈J
|ψj〉〈ψj | ⊗Xj ,

∑
j∈J
|ψj〉〈ψj | ⊗ Yj

 =
∑
j∈J

∆ (Xj , Yj) . (1)

For a distribution D on a set S, we will use the notation x ← D to denote
that variable x is sampled from D, and D(x) to denote the probability that a
given x ∈ S is sampled. If S is finite, for a given map f : S → C we write

E
x←D

f(x) =
∑
x∈S

D(x)f(x). (2)

If no distribution is specified or clear from context, we assume a uniform distri-
bution, which is to say that Ex f(x) = |S|−1 ·

∑
x∈S f(x).

Two classes of functions will be of particular interest in this work: point
functions and compute-and-compare functions. For any p ∈ {0, 1}n, the map
Pp : {0, 1}n → {0, 1} satisfying Pp(x) = 1 ⇐⇒ x = p is called the point
function for p. For any function f : {0, 1}n → {0, 1}m and bit string y ∈ {0, 1}m,
the map CCfy : {0, 1}n → {0, 1} which satisfies CCfy(x) = 1 ⇐⇒ f(x) = y is the
compute-and-compare function of f and y. We note that point functions can be
seen as compute-and-compare functions where f is the identity.

8

An n-bit Boolean circuit is a circuit taking as input an element of {0, 1}n
and producing as output a single bit. Throughout this work, we will denote a
family of Boolean circuits on n bits as C.

2.2 Quantum Authentication

We recall the definition of a total quantum authentication scheme [17] and high-
light a few properties of such schemes.

Definition 1. An authentication scheme QAS = {(QAS.Authk,QAS.Verk)}k∈K
for the Hilbert space M is a pair of keyed CPTP maps

QAS.Authk : L(M)→ L(Y) and QAS.Verk : L(Y)→ L(MF) (3)

and where F admits {|Acc〉 , |Rej〉} as an orthonormal basis. Moreover, these
maps are such that for all states ρ ∈ D(M) and all keys k ∈ K we have that

QAS.Verk ◦ QAS.Authk(ρ) = ρ⊗ |Acc〉〈Acc| . (4)

We assume throughout this work that the keys for an authentication scheme
are generated uniformly at random.

To facilitate our analysis, we will make the same simplifying assumptions as
in [17] on any quantum authentication scheme considered in this work.

1. We assume that QAS.Authk can be modeled by an isometry. Specifically, we
assume that

QAS.Authk(ρ) = AkρA
†
k (5)

for some isometry Ak ∈ L(M,Y).

2. For all keys k ∈ K, as Ak is an isometry, AkA
†
k is the projector onto the

image of Ak. In other words, it projects onto valid authenticated states for
the key k. We then assume that QAS.Verk is given by the map

ρ 7→ A†kρAk ⊗ |Acc〉〈Acc|+ Tr
[(
I −AkA†k

)
ρ
]
· I

dim(M)
⊗ |Rej〉〈Rej| . (6)

In other words, QAS.Verk verifies if the state is a valid encoded state. If it
is, then it inverts the authentication procedure and adds an “accept” flag.
If it is not, then it outputs the maximally mixed state and adds a “reject”
flag.

Finally, we will also define the map QAS.Ver′k : L(Y)→ L(M) by

ρ 7→ (IM ⊗ 〈Acc|F)QAS.Verk(ρ) (IM ⊗ |Acc〉F) = A†kρAk. (7)

Essentially, this map outputs a subnormalized state corresponding to the state
of the message register M conditioned on the verification procedure accepting
the state. In particular, note that the probability that the verification procedure
accepts the state ρ when using the key k is given by Tr

(
QAS.Ver′k(ρ)

)
.

9

Definition 1 does not make any type of security guarantee on an authenti-
cation scheme. It only specifies a syntax, Eq. (3), and a correctness guarantee,
Eq. (4). The following definition describes the security guarantee of an ε-total
quantum authentication scheme. Note that this security definition differs from
some early notions of security for quantum authentication schemes [6, 15].

Definition 2. An authentication scheme QAS is an ε-total authentication scheme
if for all CPTP maps Φ : L(YZ)→ L(YZ) there exists a completely positive trace
non-increasing map Ψ : L(Z)→ L(Z) such that

E
k∈K
|k〉〈k|⊗QAS.Ver′k◦Φ◦QAS.Authk(ρ) ≈ε E

k∈K
|k〉〈k|⊗QAS.Ver′k◦Ψ◦QAS.Authk(ρ)

(8)
for any state ρ ∈ D(MZ).

A key difference between the “total” security definition given in [17] and
previous security definitions for authentication schemes is the explicit |k〉〈k|
state which appears in Eq. (8). This key register will be used, with the help
of Lemma 1, in some of our technical arguments, such as the proof of Lemma 5.

Note that our discussion, unlike the one in [17], omits adding another regis-
ter S to model all other information that a sender and receiver could share as part
of a larger protocol but which is not directly implicated in the authentication
scheme. Such a register is not needed in our analysis.

Next, we give a lemma which upper bounds the probability that any fixed
state is accepted by the verification procedure, when averaged over all possible
keys. This allows us to make statements on what happens if an authenticated
state is verified with the wrong key—a scenario which is not usually considered
for authentication schemes. Intuitively, no quantum authentication scheme can
admit such a fixed state ρ that is accepted with high probability over all keys,
since otherwise an adversary could insert such a ρ in place of any authenticated
message, and this modification would go undetected with high probability. The
formal proof of Lemma 2 is given in the full version.

Lemma 2. Let QAS be an ε-total authentication scheme on the Hilbert space M
of dimension greater or equal to 2. Then, for any ρ ∈ D(Y), we have that

E
k∈K

Tr
[
QAS.Ver′k(ρ)

]
≤ 2ε. (9)

Finally, we give an existence lemma for total quantum authentication schemes
satisfying certain parameters (Lemma 3). The proof is given in the full version.
It essentially follows from a theorem describing how unitary 2-designs (as intro-
duced in [12]) can be used to construct total quantum authentication schemes [4]
and then choosing a suitable unitary 2-design [10]. A few additional technical
arguments are needed to ensure that the key set is precisely the bit strings of a
given length.

Lemma 3. For any strictly positive integers n and k, there exists a
(

5 · 2 5n−k
16

)
-

total quantum authentication scheme on n qubits with key set {0, 1}k.

10

3 Definitions

Here, we define quantum copy protection (Section 3.1) and secure software leas-
ing (Section 3.2), along with their correctness and security notions. All of our
definitions are for Boolean circuits only, where the input is a binary string, and
the output is a single bit. Finally, we define distributions on circuits and inputs
which will often be used in this work in Section 3.3.

3.1 Quantum Copy Protection

We present our definition of a copy protection scheme, following the general lines
of [11]. We first define the functionality (Definition 3) and correctness (Defini-
tion 4) of a copy protection scheme. We then define honest-malicious security in
Definition 6, which can be contrasted with the usual definition of security (which
we call malicious-malicious security) given in Definition 7. We note that we have
rephrased the definition in [11] in terms of the more standard cryptographic
notion where the parameter in the definition (here, we use ε) characterizes the
insecurity of a game (and hence, we strive for schemes where ε is small).

First, we define the functionality of quantum copy protection.

Definition 3 (Quantum copy protection scheme). Let C be a set of n-bit
Boolean circuits. A quantum copy protection scheme for C is a pair of quantum
circuits CP = (CP.Protect,CP.Eval) such that for some space Y:

1. CP.Protect(C): takes as input a Boolean circuit C ∈ C, and outputs a quan-
tum state ρ ∈ D(Y).

2. CP.Eval(ρ, x): takes a quantum state ρ ∈ D(Y) and string x ∈ {0, 1}n as
inputs and outputs a bit b.

We will interpret the output of CP.Protect and CP.Eval as quantum states
on Y and C2, respectively, so that, for example, for any bit b, string x and
program ρ, Tr[|b〉〈b|CP.Eval(ρ, x)] is the probability that CP.Eval(ρ, x) outputs b.

Definition 4 (η-Correctness of copy protection). A quantum copy pro-
tection scheme for a set of n-bit circuits C, CP, is η-correct with respect to a
family of distributions on n-bit strings {TC}C∈C, if for any C ∈ C and ρ =
CP.Protect(C), the scheme satisfies

E
x←TC

Tr[|C(x)〉〈C(x)|CP.Eval(ρ, x)] ≥ 1− η. (10)

Our notion of correctness differs from that of [11] and other previous work by
being defined with respect to a family of distributions (see Section 1.2). However,
if the scheme is η-correct with respect to all families of distributions, then we
recover the more standard definition of correctness.

We now define the notion of security for a copy protection scheme against an
adversary A = (P,A1,A2), where P (Pete) is the pirate, and A1 (Bob) and A2

11

(Charlie) are users (see Fig. 2). We use the PiratingGame from [11] as the basis of
our security game between a challenger and A. The game is parametrized by: (i)
a distribution D on the set of circuits C, and (ii) a set of distributions {DC}C∈C
over pairs of input strings in {0, 1}n×{0, 1}n, called the challenge distributions.

The CP game PiratingGameA,CP

1. The challenger samples C ← D and sends ρ = CP.Protect(C) to P.
2. P outputs a state σ on registers A1,A2 and sends A1 to A1 and A2 to A2.
3. At this point, A1 and A2 are separated and cannot communicate. The

challenger samples (x1, x2)← DC and sends x1 to A1 and x2 to A2.
4. A1 returns a bit b1 to the challenger and A2 returns a bit b2.
5. The challenger outputs 1 if and only if b1 = C(x1) and b2 = C(x2), in

which case, we say that A wins the game.

C ← D

ρ = CP.Protect(C)

(x1, x2)← DC

x1

ρ

x2

Y P
(Pete)

A1

A2

A1

(Bob)

A2

(Charlie)

b1

b2

Winning Conditions:

b1 = C(x1)
b2 = C(x2)

Fig. 2. The pirating game PiratingGameA,CP

In previous work on copy protection, the adversary is assumed to control P,
A1 andA2, whose behaviour can be arbitrary (or, in some cases, computationally
bounded). This models a setting where the potential users of pirated software are
aware that the software is pirated, and willing to run their software in some non-
standard way in order to make use of it. We refer to this setting as the malicious-
malicious setting. In this setting, the action of the adversary A = (P,A1,A2)
can be specified by:

1. an arbitrary CPTP map ΦP : L(Y) → L(A1A2), representing the action of
P, where A1 and A2 are arbitrary spaces;

2. arbitrary two-outcome projective measurements {Πx}x∈{0,1}n on A1, such
that A1 (Bob) performs the measurement {Πx1 , I − Πx1} on input x1 to
obtain his output bit b1; and

3. arbitrary two-outcome projective measurements {Π ′x}x∈{0,1}n on A2, such
that A2 (Charlie) performs the measurement {Π ′x2

, I −Π ′x2
} on input x2 to

obtain his output bit b2.

Note that we restrict our attention to projective measurements forA1 andA2.
Indeed, by a purification argument, any strategy using non-projective measure-

12

ments is equivalent to a strategy with projective measurements and the extra
auxillary states needed by A1 and A2 can be provided by P.

In contrast, one could also imagine a scenario in which users are honest,
and will therefore try to evalute the program they receive from P by running
CP.Eval. In that case, while P can still perform an arbitrary CPTP map, A1

and A2 are constrained to run CP.Eval. It is potentially easier to design copy
protection in this weaker setting, which we call the honest-honest setting, since
the adversary is more constrained. We will consider an intermediate setting.

Diverging from previous work, we will focus on a special type of adversary,
where A1 (Bob) performs the honest evaluation procedure, while A2 (Charlie)
performs an arbitrary measurement. (See Section 1.1 for a discussion of this
model). Specifically, we consider the following type of adversary.

Definition 5. An honest-malicious adversary for the pirating game is an ad-
versary of the form Â = (P,CP.Eval,A2), where P implements an arbitrary
CPTP map ΦP : L(Y) → L(YA2), A2 is any space, and A2 is specified by a set
of arbitrary two-outcome measurements {Πx}x∈{0,1}n on A2.

For a fixed scheme CP = (CP.Protect,CP.Eval) for a set of n-bit circuits C, we
define honest-malicious security with respect to distributions D and {DC}C∈C
in terms of the best possible winning probability, Pr

[
PiratingGameÂ,CP

]
, over

honest-malicious adversaries Â. Observe that there is one strategy that P can
always facilitate, which is to pass the intact program to Bob and then let Charlie
locally produce his best guess of the output, based on prior knowledge of D and
{DC}C∈C13. This leads to a winning probability for the above game which is
truly trivial to achieve, in the sense that Charlie is using a strategy that does
not take any advantage of the interaction with the pirate P. In fact, assuming the
scheme is η-correct with respect to the distribution family {TC}C∈C where TC is
Bob’s marginal of DC , Bob will always produce the correct answer, except with
probability η. Indeed, Charlie simply considers the most likely output, given his
input, thereby upper bounding the winning probability with Charlie’s maximum
guessing probability14.

Formally, we define pmarg
D,{DC}C∈C as follows. The distributions D and {DC}C∈C

yield a joint distribution D̃ on C×{0, 1}n by first sampling C ← D and then sam-
pling (x1, x2)← DC and only taking the x2 component. Let D̂ be the marginal
distribution of x2 from D̃ and, for every x, let D̂x be the marginal distribution
of C from D̃, conditioned on x2 = x. Then,

pmarg
D,{DC}C∈C = E

x←D̂
max
b∈{0,1}

Pr
C←D̂x

[C(x) = b]. (11)

13 There are other trivial strategies, e.g., where Charlie gets an intact program reg-
ister and Bob does not, but this is a more restricted trivial strategy, since Bob is
constrained to evaluate the program honestly.

14 The winning probability may be less than this. By the union bound, even though
Bob’s and Charlie’s inputs are not independent, the overall success probability will
be at least pmarg − η, and we will be considering situations where η is small.

13

This is different from the security notion in [11] where the trivial guessing
probability is optimized over both users. For intuition, note that pmarg is always
at least 1/2, since Charlie can always output a random bit that is correct with
probability 1/2. Depending on the specific input and challenge distributions, it
may be larger. We now state the main security notion for this work.

Definition 6 (Honest-malicious security). A copy protection scheme CP =
(CP.Protect,CP.Eval) for a set of n-bit circuits C is ε-honest-malicious secure
with respect to the distribution D and challenge distributions {DC}C∈C if for
all honest-malicious adversaries Â,

Pr
[
PiratingGameÂ,CP

]
≤ pmarg + ε , (12)

where pmarg = pmarg
D,{DC}C∈C .

We re-iterate that our definition for honest-malicious security is statistical :
it makes no assumption on the computational power of Â (see Section 1.1).

Finally, if we modify the above definition by allowing arbitrary adversaries
A = (P,A1,A2), and letting p̄marg denote the optimal trivial guessing probabil-
ity, as in Eq. (11) but over both adversaries (see also [11]), we recover the more
standard security definition, which we call malicious-malicious security:

Definition 7 (Malicious-malicious security). A copy protection scheme CP
for a set of n-bit circuits C is ε-malicious-malicious secure with respect to the
distribution D and challenge distributions {DC}C∈C if for all adversaries A,

Pr
[
PiratingGameA,CP

]
≤ p̄marg + ε. (13)

3.2 Secure Software Leasing

We define Secure Software Leasing (SSL) below. As with copy protection, the
basic scheme and security game mirror [11] but we diverge from them in our
exact notions of correctness and security. We first define the functionality (Defi-
nition 8) and correctness (Definition 9) of an SSL scheme, followed by its security
(Definition 10).

Definition 8 (Secure software leasing (SSL)). Let C be a set of n-bit
Boolean circuits. A secure software leasing scheme for C is a tuple of quantum
circuits SSL = (SSL.Gen, SSL.Lease, SSL.Eval, SSL.Verify) such that for some
space Y:

1. SSL.Gen: outputs a secret key sk.
2. SSL.Lease(sk, C): takes as input a secret key sk and a circuit C ∈ C, and

outputs a quantum state ρ ∈ D(Y).
3. SSL.Eval(ρ, x): takes as input a quantum state ρ ∈ D(Y) and input string

x ∈ {0, 1}n and outputs a bit b.
4. SSL.Verify(sk, σ, C): takes a secret key sk, a circuit C ∈ C and a quantum

state σ ∈ D(Y), and outputs a bit v indicating acceptance or rejection.

14

Definition 9 (η-Correctness of SSL). A secure software leasing scheme
for C, SSL, is η-correct with respect to a family of distributions on n-bit strings
{TC}C∈C, if for any C ∈ C, sk← SSL.Gen, and ρ = SSL.Lease(sk, C), the scheme
satisfies:

– Correctness of Evaluation: E
x←TC

Tr (|C(x)〉〈C(x)|SSL.Eval(ρ, x)]) ≥ 1− η,

– and Correctness of Verification: Tr (|1〉〈1|SSL.Verify(sk, ρ, C)) ≥ 1− η.

In the above definition, recall that for b ∈ {0, 1}, Tr (|b〉〈b|SSL.Verify(sk, ρ, C))
is the probability that SSL.Verify(sk, ρ, C) outputs the bit b, and similarly for
Tr (|b〉〈b|SSL.Eval(ρ, x)).

When a scheme SSL is η-correct with respect to every distribution, we recover
the more standard notion of correctness.

sk← SSL.Gen

C ← D

ρ = SSL.Lease(sk, C)

x← D′
C

ρ

x

Y ΦA

Y

A

SSL.Verify(sk, ·, C)

{Πx, I −Πx}

v

b

A
Winning Conditions:

v = 1
b = C(x)

Fig. 3. The SSL game SSLGameA,SSL, where the behaviour of A is specified by a CPTP
map ΦA and a set of two-outcome measurements {Πx}x∈{0,1}n .

We base our security game, between a challenger (in this case a Lessor) and
an adversary A, on the SSLGame from [11]. The game is parametrized by a
distribution D over circuits in C, and a set of challenge distributions {D′C}C∈C
over inputs {0, 1}n.

The SSL game SSLGameA,SSL

1. The Lessor samples C ← D and runs SSL.Gen to obtain a secret key sk.
She then sends ρ = SSL.Lease(sk, C) to A.

2. A produces a state σ on registers YA and sends register Y back to the
Lessor and keeps A.

3. (Verification phase.) The Lessor runs SSL.Verify on Y, the circuit C and
the secret key sk and outputs the resulting bit v. If SSL.Verify accepts
(v = 1), the game continues, otherwise it aborts and A loses.

4. The Lessor samples an input x← D′C and sends x to A.
5. A returns a bit b to the Lessor.
6. The Lessor outputs 1 if and only if b = C(x) and v = 1, in which case,

we say A “wins” the game.

An adversary A for SSLGame can be described by: an arbitrary CPTP map
ΦA : L(Y) → L(YA) for some arbitrary space A, representing the action of A

15

in Step 2; and a set of two-outcome measurements {Πx}x∈{0,1}n on A such that
given challenge x in Step 4, A obtains the bit b in Step 5 by measuring A with
{Πx, I −Πx} (see Fig. 3).

As in Section 3.1, we define security with respect to the trivial strategy
where A returns the program ρ to the Lessor in Step 2, and tries to guess the
most likely value for b, given input x.

Formally, we define ptrivD,{DC}C∈C as follows. The distributions D and {DC}C∈C
yield a joint distribution D̃ on C × {0, 1}n by first sampling C ← D and then
sampling x ← DC . Let D̂ be the marginal distribution of x from D̃ and, for
every x′, let D̂x′ be the marginal distribution of C from D̃, conditioned on
x = x′. Then,

ptrivD,{D′C}C∈C
= E
x←D̂

max
b∈{0,1}

Pr
C←D̂x

[C(x) = b]. (14)

The above equation is very similar to pmarg given in Equation (11). However,
we point out that they are defined and used in different contexts. Specifically,
in PiratingGame there are two parties, Bob and Charlie, who must be challenged
with inputs on which to evaluate the function. However, there is only a single
party attempting to evaluate the function at the end of SSLGame. Thus, pmarg is
defined with respect to the marginal distribution on Charlie’s challenge generated
by the joint challenge distribution. On the other hand, ptriv can be directly
defined with respect to the single challenge issued in SSLGame.

We now define the security of SSL as follows.

Definition 10 (Security of SSL). An SSL scheme SSL for a set of n-bit cir-
cuits C is ε-secure with respect to the distribution D and challenge distributions
{D′C}C∈C if for all adversaries A,

Pr[SSLGameA] ≤ ptriv + ε , (15)

where ptriv = ptrivD,{D′C}C∈C
.

Observe that, as in the case with Definition 6, our definition provides statis-
tical guarantees for security as we impose no conditions on the adversaries.

3.3 Distributions for Point Functions

The definitions of correctness and security for copy protection and secure soft-
ware leasing presented earlier in this section are parametrized by various distri-
butions on the circuits that are encoded and the challenges that are issued.

In this section, we define notation for the distributions we will consider in
the setting of point functions. First, we will consider security in the setting when
the point function is chosen uniformly at random.

Definition 11. We let R be the uniform distribution on the set of point func-
tions {Pp : p ∈ {0, 1}n}. For simplicity, we will also use R to simply refer
to the uniform distribution on {0, 1}n, as we often conflate a point p with its
corresponding point function Pp.

16

For a fixed point p, we will consider the distribution of inputs where p is
sampled with probability 1/2, and otherwise, a uniform x 6= p is sampled.

Definition 12. For any bit string p ∈ {0, 1}n, we define T
(1/2)
p to be the distri-

bution on {0, 1}n such that

– p is sampled with probability 1
2 and

– any x 6= p is sampled with probability 1
2 ·

1
2n−1 .

This is a natural distribution in the setting of point functions, since it means
that the function evaluates to a uniform random bit. This ensures that the
output is non-trivial to guess — an adversary’s advantage against challenge
distributions of this form can be quantified by comparing it with their probability
of correctly guessing a random bit. Furthermore, η-correctness with respect to
this distribution, for some small η, ensures that evaluating the point is correct
except with small probability, and that all but a small fraction of the other
inputs are evaluated correctly except with small probability.

4 Generic Results on Definitions

Here, we give some generic results concerning definitions given in Section 3.
We first discuss the reusability of program states generated by copy pro-

tection or SSL schemes in Section 4.1. In Section 4.2, we outline how a copy
protection scheme satisfying malicious-malicious security and average correct-
ness can be used to obtain a scheme satisfying malicious-malicious security and
the more standard definition of correctness. Next, in Section 4.3, we describe
how an honest-malicious copy protection scheme for any set of circuits C can be
turned into an SSL scheme for C (Theorem 2). In particular, this means that the
copy protection scheme for point functions presented in Section 5 implies an SSL
scheme for point functions. Finally, in Section 4.4, we refine a result from [11]
(tailoring it to our definitions), to show that an SSL scheme for point functions
can be used to construct an SSL scheme for compute-and-compare programs
(Theorem 3).

4.1 Reusability of the Program

For ease of notation, we define both CP.Eval(ρ, x) and SSL.Eval(ρ, x) to take a
quantum state ρ ∈ D(Y) and a string x ∈ {0, 1}n as inputs and output a bit b.
This can be extended [5] to a reusable scheme in a straightforward way, so that
the evaluation procedure outputs a bit b together with a post-evaluated state ρ̃,
which approximates ρ. In more details, we purify the evaluation procedure, and
copy the output bit, before then undoing the evaluation procedure.

We claim that the above procedure, used to sequentially evaluate n inputs
sampled from the same distribution with respect to which the scheme is η-
correct, will produce all the n correct answers with a probability of at least
(1−n√η)(1−4n

√
η). We highlight that this bound is sufficient to show that, in an

17

asymptotic regime, a program state with negligible errors evaluated polynomially
many times on randomly sampled inputs will give all the correct values with
overwhelming probability.

We give the above probabilistic statement because it is impossible to give a
precise figure for the number of times a program can be evaluated before it stops
working altogether. Indeed, in some cases the evaluation of the program state
could leave it unchanged. This is the case for our authentication-based scheme,
where purified evaluation of the program for the point function for the point p
on the point p will not cause any change, as the evaluation produces the correct
outcome with certainty. So, in this case, it is possible to correctly evaluate on p
an arbitrary number of times. It follows that to give a meaningful answer on how
many times a program state can be used, we must specify how the inputs to the
program are selected. We believe it is reasonable to sample them according to
the same distribution for which correctness is guaranteed.

We sketch the proof of our claim. It follows from one concentration inequal-
ity, one application of the classical union bound, and one application of Gao’s
quantum union bound. First: A simple concentration inequality shows that if the
expectation, over the choice of inputs, that the program produces the correct
output is 1− η, then, with probability at least 1−√η, a randomly chosen input
will be evaluated to the correct output with probability at least 1−√η. Second:
By the classical union bound, the probability that n sampled inputs are correctly
evaluated with probability at least 1 − √η is at least 1 − n√η. Third: We can
model the evaluation of the program state as projective measurements where
the input to the program determines the measurement. Given n measurements,
each producing the correct outcome with probability 1−√η on the original state,
Gao’s quantum union bound [16] yields that the sequential application of all of
these measurements will all give the correct answers with probability at least
1 − 4n

√
η. Multiplying this with the probability that all chosen inputs satisfy

the necessary condition yields our bound of (1− n√η)(1− 4n
√
η).

4.2 Malicious-Malicious Security and Correctness

In the full version, we show that any copy protection scheme for point functions
that is secure in the malicious-malicious setting but only satisfies correctness

with respect to the distribution family {T (1/2)
p }p, in which T

(1/2)
p samples p with

probability 1/2 and all other strings uniformly, can be combined with a pairwise
independent permutation family [21] to get a scheme that is still secure in the
malicious-malicious setting but is also correct with respect to any distribution.
We recall that the malicious-malicious security setting is the standard security
definition considered in previous works, and correctness with respect to any dis-
tribution is the standard notion of correctness. Thus, our construction given in
Section 5, while it has its advantages, falls short of achieving the standard secu-
rity and correctness notions by being secure only in the honest-malicious setting,

and by being correct only with respect to {T (1/2)
p }p. Our results (Theorem 1)

show that solving the former problem would also solve the latter.

18

Theorem 1. If there exists a copy protection scheme for point functions which
is ε-malicious-malicious secure with respect to the uniform distribution on points R

and challenge distribution {T (1/2)
p × T (1/2)

p }p and η-correct with respect to the

distribution family {T (1/2)
p }p, then there exists a copy protection scheme for

point functions which is ε-malicious-malicious secure with respect to the distri-

butions R and {T (1/2)
p ×T (1/2)

p }p and 2η-correct with respect to any distribution.

4.3 Secure Software Leasing and Honest-Malicious Copy Protection

Following Figure 1, we outline how an honest-malicious copy protection scheme
for some set of functions C can be used to create an SSL scheme for C (The-
orem 2). Specifically, we use a copy protection scheme for a set of Boolean
circuits C on n-bits that is correct with respect to two families of distributions,
{TC}C∈C and {T ′C}C∈C , and honest-malicious secure with respect to the circuit
distribution D on C, and the challenge distributions {T ′C×T ′′C}C∈C , to construct
an SSL scheme for C that is correct with respect to {TC}C∈C and secure with
respect to D and {T ′′C}C∈C . Here, T ′C × T ′′C denotes the product distribution of
the two distributions T ′C and T ′′C , which are both distributions on {0, 1}n.

Let CP = (CP.Protect,CP.Eval) be a copy protection scheme for a set of n-bit
Boolean circuits C. We define the secure software leasing scheme SSL for C as:

SSL.Gen: Output an empty secret key sk = ∅.
SSL.Lease(C): As the secret key is empty, the only input is the circuit C. On

input C, output ρ = CP.Protect(C).
SSL.Eval(ρ, x): On input ρ ∈ D(Y) and x ∈ {0, 1}n, run CP.Eval.
SSL.Verify(C, σ): As the secret key is empty, the only inputs are the circuit C

and a state σ ∈ Y. Sample x← T ′C and output 1 if and only if CP.Eval(σ, x)
is C(x).

Formally, we obtain the following.

Theorem 2. Suppose the scheme CP is a copy protection scheme for circuits C,
that is η-correct with respect to {TC}C∈C, η-correct with respect to {T ′C}C∈C, and
ε-honest-malicious secure with respect to the distribution D on C and challenge
distributions {T ′C × T ′′C}C∈C. Then the scheme SSL, constructed from CP as de-
scribed above, is an SSL scheme for C that is η-correct with respect to {TC}C∈C
and ε-secure with respect to the distributions D and {T ′′C}C∈C.

The proofs for correctness and security are given in the full version. Cor-
rectness of SSL follows from the correctness of CP directly as the encoding and
evaluating procedures for the programs are the same.

The main intuition for the security proof is to map the honest evaluation
in the scheme CP to the Lessor’s verification procedure in the scheme SSL. The
ε-correctness of CP.Eval ensures that the verification is accepted with sufficiently
high probability. Next, we map the malicious user Charlie’s (A2) evaluation in
PiratingGame to the adversary’s evaluation in SSLGame. Assuming that CP is
secure, we can bound Charlie’s probability of guessing the right answer, which

19

in turn bounds the adversary’s probability of guessing the right answer. Putting
it together, we can conclude that the corresponding SSL scheme SSL is secure.

We remark that this previous proof does not make any assumptions about
the abilities of the adversaries. Hence, if the copy protection scheme CP achieves
statistical security guarantees, then so does the corresponding SSL scheme SSL.

4.4 Secure Software Leasing of Compute-and-Compare Circuits

In this section we present a restatement of a theorem due to [11], which states
that an SSL scheme for point functions that is ε-secure with respect to a family
of distributions can be modified to get an SSL scheme for compute-and-compare
programs that is also ε-secure with respect to a related family of distributions.
We state this result with a more precise relationship between the distributions
used for the point functions and the compute-and-compare programs.

Let F denote any set of functions from {0, 1}n to {0, 1}m. We then let the
set F = {(f, y) : f ∈ F, y ∈ {0, 1}m} be the set of compute-and-compare circuits
for F , where as with point functions, we conflate (f, y) with a circuit CCfy for
the function that outputs 1 on input x if and only if f(x) = y.

Let PF = (PF.Gen, PF.Lease, PF.Eval, PF.Verify) be an SSL scheme for m-bit
point functions. Using the same construction as in [11], we obtain an SSL scheme
for compute-and-compare functions F , CC, from the scheme PF.

Formally, we show the following theorem.

Theorem 3. We fix the following distributions.
– D: A distribution over compute-and-compare functions CCfy , or equivalently,

over (f, y) ∈ F . Fixing a function f ∈ F induces a marginal distribution Df

over y ∈ {0, 1}m, or equivalently, over m-bit point functions Py.
– {TCCf,y }f,y and {DCC

f,y }f,y: Families of distributions over inputs x ∈ {0, 1}n

to compute-and-compare functions CCfy .
– {TPFf,y }f,y and {DPF

f,y }f,y: Families of distributions over inputs z ∈ {0, 1}m

to m-bit point functions Py, where TPFf,y is defined from TCCf,y by sampling

x← TCCf,y and outputting f(x); and DPF
f,y is defined similarly from DCC

f,y .

Suppose that PF is a secure software leasing scheme for point functions such
that, for every f ∈ F , PF is η-correct with respect to the distribution family
{TPFf,y }y∈{0,1}m and εf -secure with respect to the circuit distribution Df and

challenge distributions {DPF
f,y }y∈{0,1}m where

εf =
(
ptrivD,{DCCf,y }(f,y)

− ptrivDf∗ ,{DPFf∗,y}y

)
+ ε. (16)

Then the scheme CC, constructed from PF as described above, is an SSL scheme
for compute-and-compare programs in F that is η-correct with respect to the
family {TCCf,y }(f,y)∈F and ε-secure with respect to program distribution D and

challenge distributions {DCC
f,y }(f,y)∈F .

The proof of correctness follows directly from definitions and the security
proof follows the same lines as the one presented in [11]. For completeness, the
construction and proofs are given in the full version.

20

5 Authentication-based Copy Protection Scheme

In this section, we show how to construct a copy protection scheme for point
functions, with honest-malicious security, from a total authentication scheme.

Recall that we assume that our circuits are searchable, which, for point func-
tions, implies that there is an efficient algorithm which can produce the point p
from a circuit which computes its point function. Thus, we will freely identify
circuits for the point function Pp simply with p. Specifically, our copy protection
scheme will take as input a point p instead of a circuit.

5.1 Construction and Correctness

Let QAS = (QAS.Auth,QAS.Ver) be an ε-total quantum authentication scheme,
as in Definition 1, with ε ≤ 1

2 for a message space M of dimension greater than
or equal to two with key set K = {0, 1}n. Fix some state |ψ〉 ∈ M.

We recall that we assume that for every key k, the action of QAS.Auth with
this key can be modeled by an isometry Ak : M → Y. Note that since Ak is an
isometry, AkA

†
k is the projector onto im(Ak). Further, let Vk : Y→ MFX be an

isometry which purifies the CPTP map QAS.Verk defined in Eq. (6), where the
register X corresponds to the Hilbert space used for this purification. To simplify
our notation, we will absorb X into the flag register, which we no longer assume
to be two-dimensional. We can still assume that there is a unique accepting state
|Acc〉 ∈ F.15 Thus, from here on, we assume that Vk : Y → MF is an isometry,
and F has dimension at least two (but possibly larger) with |Acc〉 the accepting
state, and all orthogonal states rejecting.

Finally, we will write V k = (〈Acc|F ⊗ IM)Vk to denote the map which ap-
plies the verification, but only outputs the state corresponding to the verification
procedure accepting, corresponding to the procedure QAS.Ver′k described in Sec-

tion 2.2. Then note that V k = A†k.
From this authentication scheme and fixed state |ψ〉, which can be assumed

without loss of generality to be |0〉, we construct a copy protection scheme for
point functions of length n, AuthCP, as follows:

AuthCP.Protect(p): On input p ∈ {0, 1}n, do the following:

1. Output Ap |ψ〉.
AuthCP.Eval(σ, x): On input σ ∈ D(Y) and x ∈ {0, 1}n, do the following:

1. Compute ξ = VxσV
†
x . Recall that ξ is a state on registers F, the flag

register, and M, the message register.
2. Measure the F register of ξ in {|Acc〉〈Acc| , I−|Acc〉〈Acc|}. If the outcome

obtained is “Acc”, output 1. Otherwise, output 0.

15 This follows from correctness, since for every state |ψ〉, we necessarily have
VkAk |ψ〉 = |Acc〉F |ψ〉M |Xψ〉X for some state |Xψ〉, and by the fact that VkAk must
preserve inner products, we necessarily have |Xψ〉 = |X〉 independent of |ψ〉. Thus,
we can let |Acc〉F |X〉X be the accepting state on FX.

21

We recall that correctness is parametrized by a family of input distributions
to each point function, and security is parametrized by a distribution on the
possible functions to be encoded and by a family of distributions on challenges
to send the users Bob and Charlie. Our correctness and security are proven with
respect to the following distributions:

– Our correctness will be with respect to the distribution T
(1/2)
p , as defined in

Definition 12, which we recall is the distribution on {0, 1}n in which p is sam-
pled with probability 1/2, and all other strings are sampled with probability

1
2(2n−1) .

– In our security proof, we will assume that the point p of the challenge function
is chosen uniformly at random. This corresponds to the distribution R given
in Definition 11.

– If the challenge function is specified by the point p, the challenges will be

sampled independently according to the distribution T
(1/2)
p . We will refer to

this as T
(1/2)
p × T (1/2)

p .

We first prove the correctness of the scheme AuthCP.

Theorem 4. If the scheme QAS is an ε-total authentication scheme, then the
scheme AuthCP described above is ε-correct with respect to the family of distri-

butions {T (1/2)
p }p.

Proof. For all p ∈ {0, 1}n, it suffices to compute a lower bound on

1

2

∥∥V pAp |ψ〉∥∥2 +
1

2
· 1

2n − 1

∑
x∈{0,1}n
x 6=p

(
1−

∥∥V xAp |ψ〉∥∥2) . (17)

By the correctness of the authentication scheme, we have that
∥∥V pAp |ψ〉∥∥2 = 1.

On the other hand, by Lemma 2, we have that∑
x∈{0,1}n
x 6=p

∥∥V xAp |ψ〉∥∥2 ≤ 2n · 2ε− 1 (18)

by expanding the expectation and removing the term corresponding to x = p.
Thus, a lower bound for Eq. (17) is given by

1

2
+

1

2
· 1

2n − 1

2n − 1−
∑

x∈{0,1}n
x 6=p

∥∥V xAp |ψ〉∥∥2
 ≥ 1

2
+

1

2

(
1− 2n · 2ε− 1

2n − 1

)
≥ 1−ε,

as long as ε ≤ 1/2, and so the scheme is ε-correct with respect to the given
distribution family.

22

5.2 Honest-Malicious Security

In this section, we prove the security of the scheme AuthCP in the honest-
malicious setting. Formally, we prove the following theorem.

Theorem 5. If the scheme QAS is an ε-total authentication scheme, then the
scheme AuthCP described above is (3

2ε +
√

2ε)-honest-malicious secure with re-
spect to the uniform distribution R on point functions and challenge distributions

{T (1/2)
p ×T (1/2)

p }p∈{0,1}n , where R and T
(1/2)
p are as defined in Definition 11 and

Definition 12.

In fact, we can prove security with respect to a slightly more general set of

challenge distributions. If we let T
(r)
p be the distribution that samples p with

probability r, and any other point uniformly, then for any r ∈ [1/2, 1], our proof

holds when Bob’s input is chosen according to T
(r)
p and Charlie’s input is chosen

according to T
(1/2)
p . (See Remark 1 following the proof of Theorem 5). If Bob

gets the point with probability less than 1/2, then it becomes easier for the
adversary to win. Pete can simply send the program to Charlie, and give Bob
a maximally mixed state. In that case, Bob will probably output 0, which is
correct more than 1/2 the time.

For the challenge distributions R and {T (1/2)
p × T

(1/2)
p }p, it is easy to see

that Charlie’s maximum guessing probability if he has no interaction with Pete,
against which we measure security (see Definition 6), is pmarg = 1/2. We will
use this fact in our security proof, which could likely be generalized to other
distributions of Charlie’s challenge with a different value of pmarg, but we do not
analyze such cases.

x1

Ap |ψ〉

|0〉

x2

Y

Z

UP

Y

Z

Pete
Vx1

F

M

Bob

{Πx2 , I −Πx2}

Charlie

b1

b2

Fig. 4. The pirating game specified to the AuthCP scheme.

The idea of the proof is the following. In the setting of the scheme AuthCP,
the pirating game PiratingGameÂ,AuthCP (see Fig. 2) that an honest-malicious
adversary must win is expressed in Fig. 4. Without loss of generality, we can
assume Pete’s behaviour is modeled by a unitary UP on the space YZ for an
arbitrary auxiliary space Z initialized to a fixed state, which we will denote |0〉.
(Note that this state can be composed of more than one qubit.)

23

Since the adversary is honest-malicious, we can assume that Bob is honestly
evaluating the program, meaning he runs the verification procedure of the un-
derlying authentication scheme, using the point he receives as the key, on the
register Y, outputting 1 if and only if the flag register F is measured as “Acc”.

Charlie’s behaviour can be arbitrary, but without loss of generality, we can
assume that it is specified by a family of two-outcome measurements on Z,
{Πx, I−Πx}x∈{0,1}n . Charlie uses his challenge input x2 to select a measurement
to perform to obtain his output b2.

We will break the proof into two cases. First, consider the case where x1 = p.
We can consider Pete’s output in two orthogonal parts:

UP(Ap |ψ〉 ⊗ |0〉) = |Γ pAcc〉+ |Γ pRej〉 , (19)

where |Γ pAcc〉 is the part of the state that leads to Bob outputting 1 on input p,
which is the correct bit for Bob to produce in this case. That is, |Γ pAcc〉 is the
projection of Pete’s output onto states where the Y register is supported on the
image of Ap. When x1 = p, only |Γ pAcc〉 contributes to a winning outcome. We
show (Lemma 5) that this state is close (on average over p) to a state of the form
Ap |ψ〉〈ψ|A†p⊗ξZ for some subnormalized state ξ independent of p. Since Charlie’s
input is essentially independent of p, his winning probability is not much more
than 1/2, so the total winning probability in this case is not much more than
1/2 (Lemma 4), which is scaled down by the trace of the subnormalized state
ξ, representing the fact that the probability that Bob outputs the correct bit is
‖|Γ pAcc〉‖

2
.

The other case is when x1 6= p. In that case, we need to consider the con-

tribution of both terms |Γ pAcc〉 and
∣∣∣Γ pRej

〉
, as well as their cross term. We can

bound the contribution of the first term to just over 1
2 Tr(ξ) because Charlie’s

input is close to p-independent. As for the contribution of the second term, in
the worst case, the second term is of the form α |0〉Y ⊗ Ap |ψ〉 for some scaling
factor α. This corresponds to the strategy that Pete just sends Charlie the pro-
gram. Charlie can evaluate the program and be correct with probability close
to 1, and Bob will output 0 with probability close to 1, which is the correct bit in
this case, since x1 6= p. So we trivially upper bound the contribution of this term

by
∥∥∥∣∣∣Γ pRej

〉∥∥∥2. However, as this increases, the size of |Γ pAcc〉 and thus Tr(ξ) de-

creases, so the probability of being correct in the x1 = p case goes down. We find
that the total contribution, ignoring the cross term, is at most negligibly more
than 1/2. Finally, we show that the cross-term is negligible by the correctness
of the scheme AuthCP.

We first state and prove the necessary lemmas, before formalizing the above
argument. The following lemma is simply stating that if Charlie gets an input
state that is independent of the point p, then his guess as to whether x2 = p will
be independent of p, and so will be correct with probability 1/2.

Lemma 4. Suppose p is chosen uniformly at random, and x2 ← T
(1/2)
p , so that

with probability 1/2, x2 = p, and otherwise x2 is uniform on {0, 1}n \ {p}. Let

24

Π1
x2

= Πx2
and Π0

x2
= I −Πx2

, so Π
Pp(x2)
x2 = Πx2

when x2 = p, and otherwise

Π
Pp(x2)
x2 = I −Πx2

. Then, for any density matrix σ, Ep,x2
Tr
(
Π
Pp(x2)
x2 σ

)
= 1

2 .

Proof. It suffices to compute:

E
p,x2

Tr
(
ΠPp(x2)
x2

σ
)

=
1

2n

∑
p∈{0,1}n

1

2
Tr(Πpσ) +

1

2

1

2n − 1

∑
x2 6=p

Tr((I −Πx2
)σ)

=

1

2

1

2n

∑
p∈{0,1}n

Tr(Πpσ) +
1

2

1− 1

2n

∑
x2∈{0,1}n

Tr(Πx2
σ)

 =
1

2
.

The following lemma tells us that in the part of Pete’s output that will be
accepted by Bob in the x1 = p case, Bob’s input from Pete is essentially Ap |ψ〉,
and Charlie’s input from Pete is almost independent of p. Recall that Ap is an
isometry, so ApA

†
p is the projector onto im(Ap).

Lemma 5. Let |Γ pAcc〉YZ = (ApA
†
p ⊗ IZ)UP(Ap |ψ〉 ⊗ |0〉) be the projection of

Pete’s output onto states supported on im(Ap) in the Y register. Then, there
exists a subnormalized state ξ ∈ D(Z) such that

E
p
∆
(
|Γ pAcc〉〈Γ

p
Acc| , Ap |ψ〉〈ψ|A

†
p ⊗ ξ

)
≤ ε. (20)

Proof. By the security of the total authentication scheme, there exists a com-
pletely positive trace non-increasing map Ψ : L(Z)→ L(Z) such that

E
p
|p〉〈p| ⊗ (V p ⊗ IZ)(UP)YZ(Ap |ψ〉〈ψ|A†p ⊗ |0〉〈0|Z)(UP)†YZ(V

†
p ⊗ IZ)

≈ε E
p
|p〉〈p| ⊗ (V pAp) |ψ〉〈ψ|M (A†pV

†
p)⊗ Ψ(|0〉〈0|).

(21)

Using the fact that V p = A†p = A†p(ApA
†
p) (that is, project onto states in the

image of Ap, and then invert Ap), we have

(V p ⊗ IZ)UP(Ap |ψ〉 ⊗ |0〉Z) = (V p ⊗ IZ)(ApA
†
p ⊗ IZ)UP(Ap |ψ〉 ⊗ |0〉Z)

= (V p ⊗ IZ) |Γ pAcc〉 .

Then by Lemma 1, and letting ξ = Ψ(|0〉〈0|), we can continue from Eq. (21) to
get:

E
p
∆
(
V p |Γ pAcc〉〈Γ

p
Acc|V

†
p, V pAp |ψ〉〈ψ|A†pV

†
p ⊗ ξ

)
≤ ε

E
p
∆
(
|Γ pAcc〉〈Γ

p
Acc| , Ap |ψ〉〈ψ|A

†
p ⊗ ξ

)
≤ ε,

where we used the fact that |Γ pAcc〉 and Ap |ψ〉 are both orthogonal to the kernel
of V p, so the isometry V p preserves the distance between them.

25

We now proceed to prove our main theorem of this section, Theorem 5.

Proof of Theorem 5. For a fixed p, x1 and x2, let qp,x2

1 be the adversary’s winning
probability when x1 = p, and let qp,x1,x2

0 be the winning probability when x1 6= p.
Then the total winning probability is given by

1

2
E

p←R,
x2←T (1/2)

p

qp,x2

1 +
1

2
E

p←R,
x1←{0,1}n\p,
x2←T (1/2)

p

qp,x1,x2

0 . (22)

If |Γ p〉 := UP(Ap |ψ〉 ⊗ |0〉) is Pete’s output for a fixed p, and Π
Pp(x2)
x2 is defined

to be Πp when x2 = p and I −Πx2 otherwise, we have that

qp,x2

1 =
∥∥∥(|Acc〉〈Acc|F ⊗ IM ⊗ (ΠPp(x2)

x2
)Z)(Vp ⊗ 1Z) |Γ p〉

∥∥∥2
and qp,x1,x2

0 =
∥∥∥((IF − |Acc〉〈Acc|F)⊗ IM ⊗ (ΠPp(x2)

x2
)Z)(Vx1

⊗ 1Z) |Γ p〉
∥∥∥2.

We will upper bound qp,x2

1 and qp,x1,x2

0 separately.

Recall that we can write Pete’s output as

|Γ p〉 = |Γ pAcc〉+
∣∣∣Γ pRej

〉
, (23)

where

|Γ pAcc〉 = (ApA
†
p ⊗ IZ) |Γ p〉

and
∣∣∣Γ pRej

〉
= ((IY −ApA†p)⊗ IZ) |Γ p〉 .

(24)

The x1 = p case. We begin by upper bounding qp,x2

1 . We first show there is no
contribution from the second term:

(|Acc〉〈Acc|F ⊗ IM ⊗Π
Pp(x2)
x2

)(Vp ⊗ IZ)
∣∣∣Γ pRej

〉
= (|Acc〉〈Acc|F ⊗ IM ⊗ (ΠPp(x2)

x2
)Z)(Vp(IY −ApA†p)⊗ IZ) |Γ p〉

= 0

(25)

because

(〈Acc| ⊗ IM)Vp(IY −ApA†p) = V p(IY −ApA†p)
= A†pApA

†
p(IY −ApA†p)

= 0.

(26)

Above we used the fact that V p = A†p = A†p(ApA
†
p) which is to say that V p simply

projects onto states in the image of Ap, and then inverts Ap. Thus (omitting

26

implicit tensored identities):

qp,x2

1 = Tr
(

(|Acc〉〈Acc|F ⊗Π
Pp(x2)
x2

)Vp |Γ pAcc〉〈Γ
p
Acc|V

†
p

)
= Tr

(
V †p (|Acc〉〈Acc|F ⊗Π

Pp(x2)
x2

)Vp(Ap |0〉〈0|A†p ⊗ ξ + δp)
)

≤ Tr
(
V †p |Acc〉〈Acc|VpAp |0〉〈0|A†p ⊗ΠPp(x2)

x2
ξ
)

+∆
(
|Γ pAcc〉〈Γ

p
Acc| , Ap |0〉〈0|A

†
p ⊗ ξ

)
= Tr

(
ΠPp(x2)
x2

ξ
)

+∆
(
|Γ pAcc〉〈Γ

p
Acc| , Ap |0〉〈0|A

†
p ⊗ ξ

)
,

(27)

where δp = |Γ pAcc〉〈Γ
p
Acc| −Ap |0〉〈0|A†p ⊗ ξ.

By Lemma 4, we have Tr(ξ)Ep,x2
Tr
(
Π
Pp(x2)
x2

ξ
Tr(ξ)

)
= Tr(ξ)/2. Combining

this with Lemma 5, we conclude with:

E
p,x2

qp,x2

1 ≤ Tr(ξ)

2
+ ε. (28)

The x1 6= p case: We will analyze the probability in three parts, as follows:

qp,x1,x2

0 =
∥∥∥((IF − |Acc〉〈Acc|F)⊗ (ΠPp(x2)

x2
)Z)Vx1

|Γ p〉
∥∥∥2

≤
∥∥∥((IF − |Acc〉〈Acc|F)⊗ΠPp(x2)

x2
)Vx1 |Γ

p
Acc〉

∥∥∥2︸ ︷︷ ︸
=T

p,x1,x2
1

+
∥∥∥((IF − |Acc〉〈Acc|F)⊗ΠPp(x2)

x2
)Vx1

∣∣∣Γ pRej

〉∥∥∥2︸ ︷︷ ︸
=T

p,x1,x2
2

+ 2
∣∣∣〈Γ pRej

∣∣∣ (V †x1
(IF − |Acc〉〈Acc|F)Vx1 ⊗ΠPp(x2)

x2
) |Γ pAcc〉

∣∣∣︸ ︷︷ ︸
=T

p,x1,x2
cross

.

(29)

We begin with the first term, whose analysis is similar to the x1 = p case.
We have:

T p,x1,x2

1 = Tr
(

(V †x1
(I − |Acc〉〈Acc|)Vx1 ⊗ΠPp(x2)

x2
)(Ap |0〉〈0|A†p ⊗ ξ + δp)

)
≤ Tr

(
ΠPp(x2)
x2

ξ
)

+∆(|Γ pAcc〉〈Γ
p
Acc| , Ap |0〉〈0|A

†
p ⊗ ξ).

(30)

Thus, just as we concluded with Eq. (28), we can conclude

E
p,x1,x2

T p,x1,x2

1 ≤ Tr(ξ)

2
+ ε, (31)

again, by Lemma 4 and Lemma 5.

27

For the second term, we will use the naive bound:

T p,x1,x2

2 ≤
∥∥∥∣∣∣Γ pRej

〉∥∥∥2
= 1− ‖|Γ pAcc〉‖

2

≤ 1− Tr
(
Ap |0〉〈0|A†p ⊗ ξ

)
+∆

(
|Γ pAcc〉〈Γ

p
Acc| , Ap |0〉〈0|A

†
p ⊗ ξ

)
= 1− Tr(ξ) +∆

(
|Γ pAcc〉〈Γ

p
Acc| , Ap |0〉〈0|A

†
p ⊗ ξ

)
.

(32)

Then by Lemma 5, we have

E
p,x1,x2

T p,x1,x2

2 ≤ 1− Tr(ξ) + ε. (33)

Finally, we upper bound the cross-term. The idea is that |Γ pAcc〉 and
∣∣∣Γ pRej

〉
are orthogonal in the Y register. This is, of course, also true once we apply

Π
Pp(x2)
x2 to the Z register. Applying the projector V †x1

(IF − |Acc〉〈Acc|F)Vx1 to
the Y register could change this, however, we will argue that, by correctness of
the scheme, this projector cannot change the state |Γ pAcc〉 very much, because
its first register is in im(Ap), and trying to decode with a different key, x1 6= p,
should result in rejection with high probability. More formally, we have:

T p,x1,x2
cross

= 2
∣∣∣〈Γ pRej

∣∣∣ (IY ⊗ΠPp(x2)
x2

) |Γ pAcc〉 −
〈
Γ pRej

∣∣∣ (V †x1
|Acc〉〈Acc|Vx1

⊗ΠPp(x2)
x2

) |Γ pAcc〉
∣∣∣

= 2
∣∣∣〈Γ pRej

∣∣∣ (V †x1
|Acc〉〈Acc|Vx1

⊗ΠPp(x2)
x2

) |Γ pAcc〉
∣∣∣

≤ 2
∥∥∥(〈Acc|Vx1

⊗ΠPp(x2)
x2

)
∣∣∣Γ pRej

〉∥∥∥ · ∥∥∥(〈Acc|Vx1
⊗ΠPp(x2)

x2
) |Γ pAcc〉

∥∥∥
≤ 2‖(〈Acc|Vx1

⊗ IZ) |Γ pAcc〉‖ = 2
∥∥(V x1 ⊗ IZ) |Γ pAcc〉

∥∥,
where we use the orthogonality on the Y register of |Γ pAcc〉 and

∣∣∣Γ pRej

〉
to ob-

tain the second equality and the Cauchy-Schwarz inequality to obtain the first
inequality. Since |Γ pAcc〉 is supported on im(Ap) in the first register, it has a
Schmidt decomposition of the form:

|Γ pAcc〉 =
∑
`

β`(Ap |u`〉)Y ⊗ |v`〉Z . (34)

Taking the expectation and applying Jensen’s inequality, we have:

E
p,x1,x2

T p,x1,x2
cross ≤ 2 E

p,x1

√∑
`

|β`|2
∥∥V x1

Ap |u`〉
∥∥2

≤ 2

√∑
`

|β`|2 E
p,x1

∥∥V x1
Ap |u`〉

∥∥2 (35)

We next want to appeal to Lemma 2, which implies that for any pure state |u〉
we have that Ep,x1←{0,1}n

∥∥V x1
Ap |u〉

∥∥2 ≤ 2ε, however, notice that p and x1 are

28

not uniformly distributed, because while p is uniform, x1 is uniform over the

set {0, 1}n \ {p}. However, since for any p we have
∥∥V pAp |u〉∥∥2 = 1, we have:

E
p←{0,1}n,

x1←{0,1}n\{p}

∥∥V x1Ap |u`〉
∥∥2

=
22n

2n(2n − 1)

 E
p←{0,1}n,
x1←{0,1}n

∥∥V x1Ap |u`〉
∥∥2 − 1

22n

∑
p∈{0,1}n

∥∥V pAp |u`〉∥∥2

≤ 2ε+
1

2n − 1
2ε− 1

2n − 1

(36)

which is at most 2ε as long as ε ≤ 1/2. Thus we can continue:

E
p,x1,x2

T p,x1,x2
cross ≤ 2

√∑
`

|β`|2
√

2ε

= 2
√

2ε.

(37)

Combining Eq. (31), Eq. (33), and Eq. (35) into Eq. (29), we conclude the
x1 6= p case with:

E
p,x1,x2

qp,x1,x2

0 ≤ E
p,x1,x2

T p,x1,x2

1 + E
p,x1,x2

T p,x1,x2

2 + E
p,x1,x2

T p,x1,x2
cross

≤ 1

2
Tr(ξ) + ε+ 1− Tr(ξ) + ε+ 2

√
2ε.

(38)

Conclusion. We can now combine Eq. (28) and Eq. (38) to get an upper bound
on the total winning probability of:

1

2
E
p,x2

qp,x2

1 +
1

2
E

p,x1,x2

qp,x1,x2

0

≤ 1

2

(
1

2
Tr(ξ) + ε

)
+

1

2

(
1− 1

2
Tr(ξ) + 2ε+ 2

√
2ε

)
=

1

2
+

3

2
ε+
√

2ε.

(39)

Noting that pmarg

R,{T (1/2)
p ×T (1/2)

p }p
= 1

2 completes the proof.

Remark 1. We note that if our challenge distribution instead chooses Bob’s input
so that x1 = p with probability r, for r ≥ 1/2, and all other points uniformly,

29

then Eq. (39) would instead give us:

r E
p,x2

qp,x2

1 + (1− r) E
p,x1,x2

qp,x1,x2

0

≤ r
(

1

2
Tr(ξ) + ε

)
+ (1− r)

(
1− 1

2
Tr(ξ) + 2ε+ 2

√
2ε

)
=

1

2
(2r − 1) Tr(ξ) + 1− r + (2− r)ε+ 2(1− r)

√
2ε

≤ 1

2
(2r − 1) + 1− r + (2− r)ε+ 2(1− r)

√
2ε

=
1

2
+ (2− r)ε+ 2(1− r)

√
2ε.

(40)

We therefore have ((2− r)ε+ 2(1− r)
√

2ε)-honest-malicious security under this

more general challenge distribution, where Bob’s input is distributed as T
(r)
p and

Charlie’s input is distributed as T
(1/2)
p .

Acknowledgements. We would like to thank Christian Majenz and Martti
Karvonen for related discussions. This material is based upon work supported
by the Air Force Office of Scientific Research under award number FA9550-
17-1-0083, Canada’s NFRF and NSERC, an Ontario ERA, and the University
of Ottawa’s Research Chairs program. SJ is a CIFAR Fellow in the Quantum
Information Science program.

References

1. Aaronson, S.: Quantum copy-protection and quantum money. In: 24th An-
nual Conference on Computational Complexity—CCC 2009. pp. 229–242 (2009).
https://doi.org/10.1109/CCC.2009.42

2. Aaronson, S., Christiano, P.: Quantum money from hidden subspaces. In: 44th
Annual ACM Symposium on Theory of Computing—STOC 2012. pp. 41–60 (2012).
https://doi.org/10.1145/2213977.2213983

3. Aaronson, S., Liu, J., Liu, Q., Zhandry, M., Zhang, R.: New approaches for quan-
tum copy-protection. In: Advances in Cryptology—CRYPTO 2021. vol. 1, pp. 526–
555 (2021). https://doi.org/10.1007/978-3-030-84242-0 19

4. Alagic, G., Majenz, C.: Quantum non-malleability and authentication. In:
Advances in Cryptology—CRYPTO 2017. vol. 2, pp. 310–341 (2017).
https://doi.org/10.1007/978-3-319-63715-0 11

5. Ananth, P., La Placa, R.L.: Secure software leasing. In: Advances in Cryptology—
EUROCRYPT 2021. vol. 2, pp. 501–530 (2021). https://doi.org/10.1007/978-3-
030-77886-6 17

6. Barnum, H., Crépeau, C., Gottesman, D., Smith, A., Tapp, A.: Au-
thentication of quantum messages. In: 43rd Annual Symposium on
Foundations of Computer Science—FOCS 2002. pp. 449–485 (2002).
https://doi.org/10.1109/SFCS.2002.1181969

7. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and
coin tossing. In: International Conference on Computers, Systems and Signal Pro-
cessing. pp. 175–179 (1984)

30

https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.1145/2213977.2213983
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-319-63715-0_11
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1109/SFCS.2002.1181969

8. Broadbent, A., Lord, S.: Uncloneable Quantum Encryption via Ora-
cles. In: 15th Conference on the Theory of Quantum Computation,
Communication and Cryptography—TQC 2020. pp. 4:1–4:22 (2020).
https://doi.org/10.4230/LIPIcs.TQC.2020.4

9. Broadbent, A., Schaffner, C.: Quantum cryptography beyond quantum
key distribution. Designs, Codes and Cryptography 78(1), 351–382 (2016).
https://doi.org/10.1007/s10623-015-0157-4

10. Cleve, R., Leung, D., Liu, L., Wang, C.: Near-linear constructions of exact uni-
tary 2-designs. Quantum Information and Computation 16(9-10), 721–756 (2016).
https://doi.org/10.26421/QIC16.9-10-1

11. Coladangelo, A., Majenz, C., Poremba, A.: Quantum copy-protection of compute-
and-compare programs in the quantum random oracle model. arXiv preprint
arXiv:2009.13865 (2020)

12. Dankert, C., Cleve, R., Emerson, J., Livine, E.: Exact and approximate unitary 2-
designs and their application to fidelity estimation. Physical Review A 80, 012304
(2009). https://doi.org/10.1103/PhysRevA.80.012304

13. Dieks, D.: Communication by EPR devices. Physics Letters A 92(6), 271–272
(1982). https://doi.org/10.1016/0375-9601(82)90084-6

14. Dulek, Y., Speelman, F.: Quantum Ciphertext Authentication and Key Recy-
cling with the Trap Code. In: 13th Conference on the Theory of Quantum Com-
putation, Communication and Cryptography—TQC 2018. pp. 1:1–1:17 (2018).
https://doi.org/10.4230/LIPIcs.TQC.2018.1

15. Dupuis, F., Nielsen, J.B., Salvail, L.: Actively secure two-party evaluation of any
quantum operation. In: Advances in Cryptology—CRYPTO 2012. pp. 794–811
(2012). https://doi.org/10.1007/978-3-642-32009-5 46

16. Gao, J.: Quantum union bounds for sequential projective measurements. Physical
Review A 92(5), 052331 (2015). https://doi.org/10.1103/PhysRevA.92.052331

17. Garg, S., Yuen, H., Zhandry, M.: New security notions and feasibility results for
authentication of quantum data. In: Advances in Cryptology—CRYPTO 2017.
vol. 2, pp. 342–371 (2017). https://doi.org/10.1007/978-3-319-63715-0 12

18. Gottesman, D.: Uncloneable encryption. Quantum Information & Computation
3(6), 581–602 (2003). https://doi.org/10.26421/QIC3.6-2

19. Kitagawa, F., Nishimaki, R., Yamakawa, T.: Secure software leasing from standard
assumptions. arXiv preprint arXiv:2010.11186 (2020)

20. Mosca, M., Stebila, D.: Quantum coins. In: Error-Correcting Codes, Finite Geome-
tries and Cryptography. pp. 35–47 (2010)

21. Naor, M., Reingold, O.: On the construction of pseudorandom permuta-
tions: Luby—rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999).
https://doi.org/10.1007/PL00003817

22. Park, J.L.: The concept of transition in quantum mechanics. Foundations of Physics
1(1), 23–33 (1970). https://doi.org/10.1007/BF00708652

23. Watrous, J.: The Theory of Quantum Information. Cambridge University Press,
1st edn. (2018)

24. Wiesner, S.: Conjugate coding. ACM SIGACT News 15(1), 78–88 (1983).
https://doi.org/10.1145/1008908.1008920

25. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,
802–803 (1982). https://doi.org/10.1038/299802a0

31

https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://doi.org/10.1007/s10623-015-0157-4
https://doi.org/10.26421/QIC16.9-10-1
https://arxiv.org/abs/2009.13865
https://doi.org/10.1103/PhysRevA.80.012304
https://doi.org/10.1016/0375-9601(82)90084-6
https://doi.org/10.4230/LIPIcs.TQC.2018.1
https://doi.org/10.1007/978-3-642-32009-5_46
https://doi.org/10.1103/PhysRevA.92.052331
https://doi.org/10.1007/978-3-319-63715-0_12
https://doi.org/10.26421/QIC3.6-2
https://arxiv.org/abs/2010.11186
https://doi.org/10.1007/PL00003817
https://doi.org/10.1007/BF00708652
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1038/299802a0

	Secure Software Leasing Without Assumptions

