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Abstract. We revisit one of the most fundamental hardness amplifica-
tion constructions, originally proposed by Yao (FOCS 1982). We present
a hardness amplification theorem for the direct product of certain games
that is simpler, more general, and stronger than previously known hard-
ness amplification theorems of the same kind. Our focus is two-fold.
First, we aim to provide close-to-optimal concrete bounds, as opposed to
asymptotic ones. Second, in the spirit of abstraction and reusability, our
goal is to capture the essence of direct product hardness amplification
as generally as possible. Furthermore, we demonstrate how our amplifi-
cation theorem can be applied to obtain hardness amplification results
for non-trivial interactive cryptographic games such as MAC forgery or
signature forgery games.

1 Introduction

1.1 Security Amplification

Security amplification is a central theme of cryptography. Turning weak objects
into strong objects is useful as it allows to weaken the required assumptions.

Almost all cryptographic constructions rely on the hardness of a certain prob-
lem, often modeled as games. As such, hardness amplification is of fundamental
importance. Direct product theorems are one of the most natural and intuitive
ways to amplify hardness: If a game can be won with probability at most δ, one
would expect that n parallel instances of the game can be won with probabil-
ity at most δn. While intuitive and usually trivial in an information-theoretic
setting, these results are often surprisingly difficult to establish in a typical com-
putational setting.

The main challenge of computational direct product hardness amplification
statements is that they are essentially always based on a reduction, trying to turn
any winner (or solver) for the direct product with some small winning probability
into a winner for a single instance with much larger winning probability. Even
though the instances of the direct product are all independent, a winner is not
restricted to solving these instances independently. The main difficulty is usually
to work around such potential dependencies.

1.2 Hardness of the Direct Product of two Games

Consider two probabilistic games G and H, i.e., probability distributions over
deterministic instances of games from sets G and H, respectively. Let [G,H]∧



denote the independent parallel composition of the two games that is won exactly
if both G and H are won. Consider a winner (or player) W winning the two games
[G,H]∧ in parallel with probability δ.

Intuitively, we would like to argue that if W wins [G,H]∧ with probability δ,
then we can (by a simple reduction) use W to win at least one of the games G
or H with much higher probability, say,

√
δ. Note that this is trivially possible

if W played both games G and H completely independently.
If W was known to play deterministically1, certain instances S ⊆ G ×H are

(always) solved successfully, while none of the other instances S are ever solved.
How does the set S look like? Suppose that S = SG × SH for some SG ⊆ G and
SH ⊆ H. This would, for example, be the case if W solved both given instances
independently. Visually, this means that S forms a rectangle as depicted in Fig. 1.

SH

SG

G

H

Fig. 1. The considered winner W is deterministic and wins exactly the instances SG ×
SH (marked in green) of the game [G,H]∧.

If we want to use W to win, say, the game G, we need to simulate an instance of
H towards W . In general, the only easy way to do this is simply by sampling an
independent instance from the distribution of H, resulting in a winner we denote
by W(·,H). However, it is easy to see (in our example) that it is necessary that
we hit into the set SH in order to win G. This means that the winner W(·,H) for
G might have the exact same winning probability that W has for [G,H]∧.

For many types of games2 such as one-way function inversion or collision-
finding for hash functions, we can overcome this problem by repeating the given
winner, such that we are overall successful if only a single one of our attempts
has been successful. It is important to note that this property for itself does

1 Of course, this is not without loss of generality.
2 Such games are called clonable in [9].
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not allow to amplify the winning probability of any winner. In particular, if
the winning probability on any instance is always either 0 or 1 (i.e., never in-
between), no amplification is achieved. However, one can argue that in the given
scenario, at least one of W(·,H) or W(G,·) must be amplifiable to a certain degree.
A typical analysis such as in [5,9] would achieve this as follows.

1. First, it is argued that if W wins [G,H]∧ with probability δ, the following
statement is proved3 for any ε > 0:

With probability at least
√
δ − 2ε over G, the winner W(·,H) wins

the sampled instance of G with probability at least ε, or otherwise
the analogue is true for W(G,·) on H.

2. Second, it is argued that repeating W(·,H) for some q number of times, we
obtain a winning probability of at least

√
δ − 2ε · (1− (1− ε)q),

approaching
√
δ as desired.

For example, to amplify a winning probability of δ = 0.01 to close to
√
δ = 0.1,

say to 0.099, we need about q ≈ 76′600 repetitions (with the optimal choice of
ε ≈ 8.65 · 10−5). Even for a much less ambitious amplification to 0.09 only, we
need q = 4′981 repetitions (choosing ε ≈ 7.56 · 10−4).

In the above two-step analysis, it seems that both steps are (essentially)
optimal. Yet, their composition is, at least in certain regimes, quite far from
optimal. We present a combined analysis that takes into account how the winning
set S behaves under the amplification, proving the very same reduction to be
more efficient. In the above example, the desired amplification is achieved with
only q = 90 and q = 45 repetitions, respectively (instead of q ≈ 76′600 and
q = 4′981).

It is easy to verify that if the winning set S was a perfect square (similar
to the rectangle in Fig. 1), we would need q = 44 and q = 22 repetitions. A
consequence of our results is that a rectangle as in Fig. 1, even though it may
seem to be a naively optimistic perspective, is actually close to the worst that
can happen for the amplification.

1.3 Contributions and Outline

We briefly state our main contributions in a simplified manner. In Sect. 3, we
present amplification theorems at the level of probability theory. We start by
showing a basic amplification theorem (Theorem 2) that yields an amplification
similar to the known results [5,2,9]. Then, we show an improved analysis of the
same type of statement, obtaining stronger amplification (Theorem 4).

In Sect. 4, we discuss that the proved amplification result is close to op-
timal, though still not perfect. We state a conjecture for a perfectly optimal
amplification bound.

3 See our proof of Theorem 1.
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Finally, in Sect. 5, we demonstrate how the presented type of amplification
theorem can be applied to non-trivial interactive games. We prove hardness
amplification results for a general type of game (which includes the MAC forgery
and the signature forgery game, and the simpler one-way function inversion as
well as the hash function collision finding game), and give a comparison to related
results of [3].

1.4 Related work

There exists a vast amount of literature on hardness amplification. We just men-
tion some of them. Yao [10] originally proposed the direct product construction
for one-way functions. Goldreich [5] showed an asymptotic hardness amplifica-
tion result, stating that the direct product of weak one-way functions is a strong
one-way function. Canetti et. al [2] studied the amplification of hash function
collision resistance. They analyze a direct product construction similar to [5],
mainly to provide a baseline to compare against other constructions. [9] intro-
duced the notion of clonable games, and proved a bound similar to [5] but for
concrete parameters (non-asymptotic).

A related line of research [1,7,8,3,6] studies hardness amplificication via the
direct product for games that are weakly-verifiable, i.e., where a solver may not
be able to verify itself (efficiently) whether a given answer is correct. Some of
these results are based on (a variant of) the XOR-Lemma.

In [4], it is shown that direct product hardness amplification “beyond neg-
ligible” is in general impossible (under certain plausible assumptions), meaning
that for any negligible function ε(n), there exist cryptographic games such that
their direct product can always be won with probability ε(n), no matter how
many copies one takes.

2 Preliminaries

Notation. For n ∈ N, we let [n] denote the set {1, . . . , n} with the convention
[0] = ∅. The set of sequences (or strings) of length n over the alphabet A is
denoted by An. An element of An is denoted by an = (a1, . . . , an) for ai ∈ A.

In this paper, we assume all probability distributions to be over a finite
set (or at least to have finite support). We let supp(X) denote the support of a
probability distribution X. Moreover, for two probability distributions X and Y ,
we let XY denote the independent joint distribution of X and Y . For example,
we have EXY [f(X,Y )] =

∑
x∈X

∑
y∈Y PrX(X = x) · PrY (Y = y) · f(x, y).

We will need the following lemma.

Lemma 1. For some γ ∈ R+, let ψ : [0, γ]→ R+ be a concave function. Then,
we have for any 0 ≤ a ≤ b ≤ γ

aψ(b) ≤ bψ(a).
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Proof. Assume without loss of generality b 6= 0 (since otherwise a = 0, so the
inequality holds trivially). We have

aψ(b) = b · a
b
· ψ(b)

≤ b ·
(a
b
ψ(b) +

(
1− a

b

)
ψ(0)

)
≤ b · ψ

(a
b
· b+

(
1− a

b

)
· 0
)

= bψ(a).

In the third step, we have used that ψ is concave. ut

3 The Amplification Theorem

3.1 The Setting

In order to justify the type of amplification theorems we will prove (and in order
to provide some intuition), we briefly explain the typical way they can be used.

We assume two finite sets G and H, representing the deterministic instances
of games4. Since the actual games are probabilistic, they are (not necessarily uni-
form) probability distributions G and H over the sets G and H. Wherever a joint
distribution of G and H is needed, we mean the independent joint distribution
(i.e., the product distribution).

We further consider a winner W for the product game [G,H]∧, and let the
function µ : G × H → [0, 1] denote the winning probability of W . This means
that for each pair of instances (g, h) ∈ G ×H, the probability that W wins both
g and h is µ(g, h). Hence, the probability that W wins the game [G,H]∧ is the
expected value

EGH [µ(G,H)].

In order to use W as a winner for G, we simulate (or absorb) an instance of H
towards W to obtain a winner W(·,H). On a sampled instance g ∈ supp(G) we
want to win, we then apply an amplification to our winner W(·,H), such that if its
original success probability is5 ε on this fixed instance g, we obtain an amplified
success probability of ψ(ε) (for some amplification function ψ : [0, 1] → [0, 1]).
This means that our winning probability on G is (at least) the nested expectation

EG[ψ(EH [µ(G,H)])].

In the most straightforward applications, the amplification is achieved by re-
peating the winner q times independently, such that we are successful exactly

4 For the amplification theorem itself, it will not be important what exact (type of)
object the games (i.e., the elements of G and H) are. For example, they may be
Turing machines (of a certain kind).

5 Of course, this probability will depend on the sampled instance g ∈ supp(G), so we
will not actually know the value of ε in general.
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if one repetition has been successful, resulting in the amplification function
ψ(x) = 1− (1−x)q. This works for example for one-way function inversion [5] or
for hash function collision finding [2], where the winner needs to provide a solu-
tion (such as a pre-image of a given value) and we can efficiently verify whether
an obtained solution is correct or not.

Loosely speaking, the amplification statements we will prove are of the fol-
lowing type:

If EG[ψ(EH [µ(G,H)])] and EH [ψ(EG[µ(G,H)])] are both “somewhat
small”, then EGH [µ(G,H)] must be “much smaller”.

Turned around this means that

If EGH [µ(G,H)] is at least “somewhat large”, then at least one of
EG[ψ(EH [µ(G,H)])] or EH [ψ(EG[µ(G,H)])] is “much larger”.

3.2 Amplification for Monotonic ψ

We first present a basic amplification theorem that works whenever the am-
plification function ψ is monotonically increasing. Technically, the proof is a
simplified version of the main idea in the amplification theorems of [5,9].

Theorem 1. Let µ : X × Y → [0, 1] be any function, and let X and Y be
probability distributions over X and Y, respectively. Moreover, let ψ and ψ′ be
monotonically increasing on [0, 1], and assume that

EX [ψ(EY [µ(X,Y )])] ≤ εψ(δ) and EY [ψ′(EX [µ(X,Y )])] ≤ ε′ψ′(δ′)

for some ε, δ, ε′, δ′ ∈ [0, 1]. Then we have

EXY [µ(X,Y )] ≤ εε′ + δ + δ′.

Proof. We first define the two sets

X≥δ := {x ∈ X | EY [µ(x, Y )] ≥ δ} and Y≥δ′ := {y ∈ Y | EX [µ(X, y)] ≥ δ′}.

The assumption implies that

PrX(X ∈ X≥δ) ≤ ε and PrY (Y ∈ Y≥δ′) ≤ ε′.

Now, observe that

EXY [µ(X,Y )]

≤ PrXY ((X,Y ) ∈ X≥δ × Y≥δ′) · EXY [µ(X,Y ) | (X,Y ) ∈ X≥δ × Y≥δ′ ]
+ PrX(X /∈ X≥δ) · EX [EY [µ(X,Y )] | X /∈ X≥δ]
+ PrY (Y /∈ Y≥δ′) · EY [EX [µ(X,Y )] | Y /∈ Y≥δ′ ]
≤ PrX(X ∈ X≥δ) · PrY (Y ∈ Y≥δ′)

+ EX [EY [µ(X,Y )] | X /∈ X≥δ] + EY [EX [µ(X,Y )] | Y /∈ Y≥δ′ ]
≤ εε′ + δ + δ′.

This concludes the proof. ut
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A generalized n-fold version of Theorem 1 is as follows.

Theorem 2. Let µ : Xn → [0, 1] be any function, and let {Xi}i∈[n] be proba-
bility distributions over X . Moreover, let {ψi}i∈[n] be a family of monotonically
increasing functions on [0, 1], and assume that for all i ∈ [n] we have

EXi
[ψi(EX1,...,Xi−1,Xi+1,...,Xn

[µ(X1, . . . , Xn)])] ≤ εi · ψi(δi)

for some εi, δi ∈ [0, 1]. Then we have

EX1...Xn
[µ(X1, . . . , Xn)] ≤

∏
i∈[n]

εi +
∑
i∈[n]

δi.

As mentioned in the introduction, the typical amplification function is of the
form ψ(x) = 1− (1− x)q for some q ∈ N. This motivates the following corollary
that is proved in Appendix A.

Corollary 1. For arbitrary ε ∈ (0, 1) and δi ∈ (0, 1), let ψ(x) = 1− (1−x)q for
q such that

q ≥ n · νn,ε ·
∏
i∈[n]

δ−1i ,

where νn,ε := infc∈(0,1)
− ln(1−(1−ε)1−c)

1−(1−ε)cn ∈
[

ln(1/ε)
1−(1−ε)n ,

ln(2/ε)
1−(1−ε/2)n

]
.

Assume that for all i ∈ [n]

EXi
[ψ(EX1,...,Xi−1,Xi+1,...,Xn

[µ(X1, . . . , Xn)])] ≤ (1− ε)δi.

Then, we have

EX1...Xn
[µ(X1, . . . , Xn)] ≤

∏
i∈[n]

δi.

3.3 Amplification for Monotonic and Concave ψ

As mentioned in Sect. 3.1, the standard amplification function for such theorems
is ψ(x) = 1−(1−x)q, which is concave. In the following, we exploit the concavity
of ψ to obtain a stronger amplification.

Theorem 3. Let µ : X × Y → [0, 1] be any function, and let X and Y be
probability distributions over X and Y, respectively. Moreover, let ψ and ψ′ be
monotonically increasing and concave on [0, 1], and assume that

EX [ψ(EY [µ(X,Y )])] ≤ εψ(δ) and EY [ψ′(EX [µ(X,Y )])] ≤ ε′ψ′(δ′)

for some ε, δ, ε′, δ′ ∈ [0, 1]. Then we have

EXY [µ(X,Y )] ≤ max(εε′, εδ + ε′δ′).
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Before proving the theorem, we remark that at first glance, one might expect the
proof to rely on Jensen’s inequality. For concave ψ, Jensen’s inequality would
give us

EX [ψ(EY [µ(X,Y )])] ≤ ψ(EXY [µ(X,Y )])

⇐⇒ ψ−1(EX [ψ(EY [µ(X,Y )])]) ≤ EXY [µ(X,Y )].

However, our goal is to upper bound EXY [µ(X,Y )]. Observe that by consid-
ering one dimension only, say EX [ψ(EY [µ(X,Y )])], no non-trivial bound on
EXY [µ(X,Y )] can be obtained, as we might have

EXY [µ(X,Y )] = EX [ψ(EY [µ(X,Y )])].

To consider both dimensions EX [ψ(EY [µ(X,Y )])] and EY [ψ(EX [µ(X,Y )])] is
what will enable us to obtain a good upper bound on EXY [µ(X,Y )].

Proof (of Theorem 3). Just as in the proof of Theorem 1, we first define the two
sets

X≥δ := {x ∈ X | EY [µ(x, Y )] ≥ δ} and Y≥δ′ := {y ∈ Y | EX [µ(X, y)] ≥ δ′}.

We derive

EX [ψ(EY [µ(X,Y )]) |X /∈ X≥δ] = EX
[δ
δ
· ψ(EY [µ(X,Y )]) |X /∈ X≥δ

]
≥ EX

[ψ(δ)

δ
· EY [µ(X,Y )] |X /∈ X≥δ

]
=
ψ(δ)

δ
EX [EY [µ(X,Y )] |X /∈ X≥δ].

The second step is due to Lemma 1. This implies that

EX [ψ(EY [µ(X,Y )])] = PrX(X ∈ X≥δ) · EX [ψ(EY [µ(X,Y )]) |X ∈ X≥δ]
+ PrX(X /∈ X≥δ) · EX [ψ(EY [µ(X,Y )]) |X /∈ X≥δ]
≥ PrX(X ∈ X≥δ) · ψ(δ)

+ PrX(X /∈ X≥δ) ·
ψ(δ)

δ
EX [EY [µ(X,Y )] |X /∈ X≥δ].

Since we have εψ(δ) ≥ EX [ψ(EY [µ(X,Y )])] by assumption, we obtain

PrX(X /∈ X≥δ) · EX [EY [µ(X,Y )] |X /∈ X≥δ] ≤ δ · (ε− PrX(X ∈ X≥δ)).

Analogously, we obtain

PrY (Y /∈ Y≥δ′) · EY [EX [µ(X,Y )] |Y /∈ Y≥δ′ ] ≤ δ′ · (ε′ − PrY (Y ∈ Y≥δ′)).
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Now, observe that

EXY [µ(X,Y )]

≤ PrXY ((X,Y ) ∈ X≥δ × Y≥δ′) · EXY [µ(X,Y ) | (X,Y ) ∈ X≥δ × Y≥δ′ ]
+ PrX(X /∈ X≥δ) · EX [EY [µ(X,Y )] | X /∈ X≥δ]
+ PrY (Y /∈ Y≥δ′) · EY [EX [µ(X,Y )] | Y /∈ Y≥δ′ ]
≤ PrX(X ∈ X≥δ) · PrY (Y ∈ Y≥δ′)

+ δ · (ε− PrX(X ∈ X≥δ)) + δ′ · (ε′ − PrY (Y ∈ Y≥δ′)).

By assumption we must have PrX(X ∈ X≥δ) ≤ ε and PrY (Y ∈ Y≥δ′) ≤ ε′, so
let PrX(X ∈ X≥δ) = γε and PrY (Y ∈ Y≥δ′) = ωε′ for γ, ω ∈ [0, 1]. Then we get

EXY [µ(X,Y )] ≤ γωεε′ + εδ(1− γ) + ε′δ′(1− ω)

≤ γωεε′ + εδ(1− γω) + ε′δ′(1− γω)

= γωεε′ + (1− γω)(εδ + ε′δ′)

≤ max(εε′, εδ + ε′δ′).

ut

In the symmetric case, the optimal choice is ε = ε′ = 2δ = 2δ′. This gives the
following bound.

Corollary 2. For any µ : X ×Y → [0, 1] and any monotonically increasing and
concave function ψ : [0, 1]→ [0, 1], let ξ(x) := x · ψ(x). We have

EXY [µ(X,Y )] ≤ 4 · ξ−1
(

max
(
EX [ψ(EY [µ(X,Y )])], EY [ψ(EX [µ(X,Y )])]

)
2

)2

.

Equivalently,

max
(
EX [ψ(EY [µ(X,Y )])], EY [ψ(EX [µ(X,Y )])]

)
≥ 2ξ(

√
EXY [µ(X,Y )]/2).

A generalized n-fold version of Theorem 3 is as follows.

Theorem 4. Let µ : Xn → [0, 1] be any function, and let {Xi}i∈[n] be proba-
bility distributions over X . Moreover, let {ψi}i∈[n] be a family of monotonically
increasing and concave functions on [0, 1], and assume that for all i ∈ [n] we
have

EXi
[ψi(EX1,...,Xi−1,Xi+1,...,Xn

[µ(X1, . . . , Xn)])] ≤ εi · ψi(δi)

for some εi, δi ∈ [0, 1]. Then we have

EX1...Xn
[µ(X1, . . . , Xn)] ≤ max

∏
i∈[n]

εi,
∑
i∈[n]

εiδi

.
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The following corollary is proved in Appendix A.

Corollary 3. For any i ∈ [n], let `i ≥ 1, εi ∈ (0, 1), δi ∈ (0, 1), and

qi ≥ n · `i · ln(1/εi) ·
∏

j∈[n],j 6=i

δ−1j

be arbitrary, and assume that for ψi(x) = 1− (1− x/`i)qi we have

EXi [ψi(EX1,...,Xi−1,Xi+1,...,Xn [µ(X1, . . . , Xn)])] ≤ (1− εi)δi.

Then,

EX1...Xn
[µ(X1, . . . , Xn)] ≤

∏
i∈[n]

δi.

Note that Corollary 3 is a strictly stronger version of Corollary 1, where (assum-
ing all εi are equal to ε, and `i = 1) we needed

q ≥ n · νn,ε ·
∏
i∈[n]

δ−1i .

The improvements of the new bound are two-fold:

1. First, the weaker version has a factor of (at least)

νn,ε ≥
ln(1/ε)

1− (1− ε)n
≥ ln(1/ε)

nε
instead of just ln(1/ε).

For fixed n, this means that q is proportional to (1/ε) ln(1/ε) instead of just
ln(1/ε). It is easy to see that, at least in certain regimes, the value νn,ε is
significantly larger than ln(1/ε). For example, for n = 2 and ε = 0.001 we
have νn,ε ≈ 5118.5, and ln(1/ε) ≈ 6.9.
Moreover, this means that how close one can efficiently amplify δn to δ does
not depend any more on n.

2. Second, the weaker version has a factor of∏
j∈[n]

δ−1j instead of just
∏

j∈[n],j 6=i

δ−1j .

Technically, the difference may seem to be small (in particular for large n
and all δj close to 1). Conceptually, however, the new term is exactly what
one would naturally expect, and the best one can hope for in an amplification
theorem of a very general type: If we want to boost the winning probability of
a winner W from δn to δ by running W q times with a success probability of
at most δn in each run, we need q ·δn ≥ δ ⇐⇒ q ≥ (1/δ)n−1. Put differently:
When amplifying the hardness from δ to δn, the cost of the reduction is
inversely proportional to the hardness increase (which is unavoidable), as
opposed to the target hardness δn.
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4 The Square is not (Always) Optimal

How tight are the bounds shown in the previous section, in particular those for
concave amplification function (Theorem 3 and Theorem 4)? It is easy to see
that the rectangle (or, in the symmetric case, the square) is optimal within a
factor of at most 2 (see the discussion in Sect. 1.2).

Corollary 4. Let µ : X ×Y → [0, 1] be any function, let ψ and ψ′ be monoton-
ically increasing and concave on [0, 1], and assume that

EX [ψ(EY )] ≤ εψ(ε′) and EY [ψ′(EX)] ≤ ε′ψ′(ε).

Then we have

EXY [µ(X,Y )] ≤ 2εε′.

More generally, an n-dimensional orthotope (or hyperrectangle) is optimal within
a factor of at most n.

One might conjecture that the rectangle is always optimal, i.e., that the factor
of 2 in the above corollary can be removed. In the following, we show that this
is not true.

Proposition 1. There exist µ : X × Y → [0, 1], monotonically increasing and
concave functions ψ and ψ′ on [0, 1], as well as distributions X and Y over X
and Y, and ε, ε′ ∈ [0, 1], such that

EX [ψ(EY [µ(X,Y )])] ≤ ε · ψ(ε′) and EY [ψ′(EX [µ(X,Y )])] ≤ ε′ · ψ′(ε),

but

EXY [µ(X,Y )] > εε′.

Proof. Consider the following function µ : {x1, x2} × {y1, y2} → [0, 1]:

y2 1 0

y1 1 1

x1 x2

Moreover, let PrX(x1) = PrY (y1) = 1
4 , and ψ(x) = ψ′(x) = 1 − (1 − x)2. For

ε = ε′ = 0.65582 we have

EX [ψ(EY [µ(X,Y )])] = EY [ψ′(EX [µ(X,Y )])] =
37

64
≤ ε′ · ψ′(ε) = ε · ψ(ε′).

However,

EXY [µ(X,Y )] =
7

16
= .4375 > εε′ = ε2 ≈ .431.

ut
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The choice of µ in the above example seems to works for any function of the
form ψ(x) = 1− (1− x)q, though for larger q we need PrX(x1) and PrY (y1) to
be closer to 0.

Even though the square is not optimal in general, we believe that whenever it
is not optimal, the “opposite square” is optimal. By “opposite square” we mean
that there is a square S = X ′ × Y ′ ⊆ X × Y such that µ(x, y) = 0 if (x, y) ∈ S
and µ(x, y) = 1 otherwise. Loosely speaking, this means that the worst that
can happen in terms of amplification is that either the success probability of a
winner is maximally concentrated (into a square), or the failure probability is
maximally concentrated. The following makes this mathematically rigorous.

Conjecture 1. Let µ : X × Y → [0, 1] be any function, and X and Y arbitrary
distributions over X and Y, respectively. Moreover, let ψ(x) = 1 − (1 − x)q for
some q ∈ N, and assume that

max(EX(ψ(EY [µ(X,Y )])),EY (ψ(EX [µ(X,Y )]))) ≤ εψ(ε)

for some ε ∈ [0, 1]. Let δ ∈ [0, 1] be the (unique) value such that

εψ(ε) = (1− δ) + δψ(1− δ).

Then, we have

EXY [µ(X,Y )] ≤ max(ε2, 1− δ2).

The above conjecture is stated for the two-dimensional symmetric case and only
for the function ψ(x) = 1 − (1 − x)q, but we conjecture natural generalizations
to be true as well.

5 Applying the Amplification Theorem

As mentioned in the introduction, it is easy to obtain concrete hardness am-
plification results for certain games such as one-way function inversion or hash
collision finding. Known asymptotic results such as “weak one-way functions
imply strong one-way functions” are straightforward to derive from Corollary 3
(with a more efficient reduction). Such games have been called clonable in [9].

In the following, we demonstrate how the presented amplification theorems
can be applied to more involved games that are not clonable, such as MAC
forgery or signature forgery games.

We first give a redefinition (with some minor changes) of the type of game
that has been introduced as “Dynamic Weakly Verifiable Puzzle” (or DWVP)
in [3]. A DWVP is an abstraction that captures certain cryptographic games
such as the MAC forgery game or the signature forgery game (but includes the
simpler one-way function inversion game as well as the hash function collision
finding game).
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Definition 1. A deterministic DWVP is characterized by a function h :M→
H and a relation σ ⊆M×S. The game supports the following query types:

– HINT-query: A query of the form m ∈M that is answered with h(m).
– VERIFICATION-query: A query of the form (m′, s) ∈ M× S. This query is

always answered with a fixed symbol (say, ⊥).

The game is won when a VERIFICATION-query (m′, s) is made such that

(m′, s) ∈ σ and m′ was not asked before as HINT-query.

Moreover, the game may support arbitrary additional query types.

Definition 2. A probabilistic DWVP is a probability distribution over (com-
patible) deterministic DWVPs.

For the MAC forgery game, for example, the HINT-queries would enable the
winner to ask for tags of chosen messages, and the VERIFICATION-queries would
correspond to forgery attempts (H = S would correspond to the set of tags).

For certain games, an additional query type may be used to inform the winner
about the instance to be solved (in a way that does not count as a hint). For
example, a signature forgery game may use this to output the generated public
key. Or, a one-way function inversion game would use this to output the function
image y that is supposed to be inverted.

Now, we define the direct product of DVWPs. In contrast to [3], we give
a more general definition, taking the direct product of arbitrary (potentially
different) DVWPs, and define the direct product in a way such that the resulting
game is not necessarily a DVWP anymore.

Definition 3. The direct product of deterministic DWVPs {gi}i∈[n], denoted
by

[g1, . . . , gn]∧,

is the game which answers queries of the form (i, q), where i ∈ [n] and q is a
query for the subgame gi. It is won exactly when all subgames gi are won.

The direct product [G1, . . . , Gn]∧ of probabilistic DWVPs is defined by lifting
the deterministic definition via the independent joint distribution.

Notation 1. Analogous to the above games, we model (compatible) winners (or
solvers) as probability distributions over deterministic winners.

We assume a predicate ω that describes whether a deterministic winner w
wins a game g or not, i.e., ω(g, w) = 1 if w wins g (and ω(g, w) = 0 otherwise).
For a given probabilistic winner W for a game G, we let

ω(G,W ) = EGW [ω(G,W )] ∈ [0, 1]

denote the winning (or success) probability of W playing G.
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In the following, we present a direct product hardness amplification theorem for
arbitrary DWVPs.

Theorem 5. Let {Gi}i∈[n] be a family of probabilistic DWVPs. Let W be a
winner for the direct product [G1 . . . Gn]∧, and asking up to hi HINT-queries to
Gi.

For any {δj}j∈[n] and {εj}j∈[n] with δj , εj ∈ (0, 1], there are uniform re-
ductions {ρi}i∈[n] and non-uniform reductions {ρ′i}i∈[n], such that if W has a
winning probability of ∏

j∈[n]

δj ,

then,

(i) For some i ∈ [n], the winner ρi(W ) for Gi has winning probability at least

ω(Gi, ρi(W )) ≥ (1− εi)δi
e(hi + 1)

,

where ρi runs the winner W for the direct product dqie times for

qi = n · ln(1/εi) ·
∏

j∈[n],j 6=i

δ−1j .

(ii) For some i ∈ [n], the winner ρ′i(W ) for Gi has winning probability at least

ω(Gi, ρ
′
i(W )) ≥ (1− εi)δi,

where ρ′i runs the winner W for the direct product dq′ie times for

q′i = n · e(hi + 1) · ln(1/εi) ·
∏

j∈[n],j 6=i

δ−1j .

We provide some intuition before proving the theorem. We would like to amplify
the winning probability of W by repeating it multiple times. The problem is
that this might not increase our winning probability, since it can happen that
W makes a successful VERIFICATION-query on a message which was asked as
a HINT-query in an earlier repetition. To overcome this problem, the natural
idea, originating in [3], is to disallow certain messages to be asked as HINT-
query. We show two possibilities of achieving this: In the first version, we simply
pick messages randomly (ad-hoc) to disallow as HINT-query. This enables a
uniform and efficient reduction, but comes at the cost of introducing a loss
factor of (hi + 1) in the obtained winning probability. This is why we present a
second version, in which we provide the reduction with some non-uniform advice
(that depends on the winner W ). The advice essentially describes a fixed set of
messages that are supposed to be disallowed as HINT-query, such that the loss
in winning probability of the first (uniform) version can be overcome just by
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repeating more often (by a factor of (hi + 1)). Our non-uniform version can be
made uniform in a similar way as in [3], at the cost of introducing a similarly
expensive precomputation.

We stress that the following proof is almost entirely concerned with analyz-
ing the loss when certain messages are disallowed as HINT-queries, whereas the
actual direct product amplification simply follows from Corollary 3.

Proof (of Theorem 5). The main idea, originating in [3], is to prevent certain
messages to be asked as HINT-query. This is why we introduce a filter system F ,
acting as a proxy between a winner W and a game Gi that does the following:

1. First, for each6 message m ∈ M, F decides independently with probability
1/(hi + 1) that m is disallowed to ask as a HINT-query.

2. Then, all queries from the connected winner are proxied and the response
is forwarded back, unless a HINT-query m is asked for a disallowed message
m, in which case F just returns an error symbol, say ⊥, as response.

For any filter f ∈ supp(F ) and any winner Wi for an instance g ∈ supp(Gi), we
let

ω̂(g,Wi, f)

denote the f -restricted winning probability of Wi playing g through the filter f ,
where only VERIFICATION-queries that are disallowed as HINT-queries by the
filter f are taken into account7. This gives us the following useful property: When
a winnerWi forGi is run q times independently through any fixed (deterministic)
filter f ∈ supp(F ), the obtained success probability is at least

1− (1− ω̂(Gi,Wi, f))q.

Observe that for any deterministic instance g, we have

ω(g,Wi) ≤ (e · (hi + 1)) · ω̂(g,Wi, F ).

This is because if we have hi (distinct) hint queries M1, . . . ,Mhi and the first
successful attack query is Mhi+1, the probability that the attack is also successful
through the filter F and Mhi+1 is disallowed as a HINT-query is at least(

1− 1

hi + 1

)hi

· 1

hi + 1
≥ 1

e · (hi + 1)
.

6 Of course, this is most efficiently done by sampling lazily as we go, only for the
messages that actually appear.

7 Note that Wi’s actual winning probability through the filter may be larger than
ω̂(g,Wi, f), since we allow to ask VERIFICATION-queries that are allowed as HINT-
queries as well. We do not want to disallow those with the filter, since it may happen
that Wi first asks some VERIFICATION-queries that are allowed as HINT-queries and
then still makes a successful VERIFICATION-query that is disallowed as HINT-query.
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In the following, let Wi∼ denote the winner for Gi that is obtained from W by
simulating independent instances of (G1, . . . , Gi−1, Gi+1, . . . , Gn) towards W .

For claim (i), consider the following reduction: ρi maps a winner W for the game
[G1 . . . Gn]∧ to a winner Wi for Gi which simply runs Wi∼ qi times independently
through the filter F (without resetting the filter). Let χi(x) := 1− (1−x)qi . For
any g ∈ supp(Gi) we have

χi(ω([G1 . . . G(i−1) g G(i+1) . . . Gn]∧,W ))

e · (hi + 1)
≤ χi(ω(g,Wi∼))

e · (hi + 1)

≤ χi(ω(g,Wi∼))

ω(g,Wi∼)
· ω̂(g,Wi∼, F )

=
χi(ω(g,Wi∼))

ω(g,Wi∼)
· EF [ω̂(g,Wi∼, F )]

= EF
[
ω̂(g,Wi∼, F )

ω(g,Wi∼)
χi(ω(g,Wi∼))

]
≤ EF

[
ω(g,Wi∼)

ω(g,Wi∼)
χi(ω̂(g,Wi∼, F ))

]
= EF [χi(ω̂(g,Wi∼, F ))]

≤ ω(g, ρi(W )).

In the first step, we have used that χi is monotonically increasing and that

ω([G1 . . . G(i−1) g G(i+1) . . . Gn]∧,W ) ≤ ω(g,Wi∼).

The second step is due to the inequality ω(g,Wi∼) ≤ (e · (hi + 1)) · ω̂(g,Wi∼, F ).
The fifth step is due to χi being concave, Lemma 1, and the above inequality
ω̂(g,Wi∼, f) ≤ ω(g,Wi∼) for any f ∈ supp(F ). Since the shown inequality holds
for any g ∈ supp(Gi), it also holds in expectation:

e(hi + 1) · ω(Gi, ρi(W )) = e(hi + 1) · EGi
[ω(Gi, ρi(W ))]

≥ EGi
[χi(ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W ))].

By Corollary 3 we must have

EGi
[χi(ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W ))] ≥ (1− εi)δi

for some i ∈ [n], implying the first claim.

Now, we consider claim (ii). Recall that we have

ω(g,Wi∼) ≤ (e · (hi + 1)) · ω̂(g,Wi∼, F )
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for any g ∈ supp(Gi), so the same is true in expectation:

ω(Gi,Wi∼) ≤ (e · (hi + 1)) · ω̂(Gi,Wi∼, F ) = (e · (hi + 1)) · EF [ω̂(Gi,Wi∼, F )].

Thus, there exists f ′ ∈ supp(F ) such that

ω(Gi,Wi∼) ≤ (e · (hi + 1)) · ω̂(Gi,Wi∼, f
′).

Now, let the reduction ρ′i map a winner W for [G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧

to the winner W ′i that simply runs Wi∼ q′i times independently through the
filter8 f ′. Note that since we only use that the events Ei of message mi being
disallowed as a HINT-query are (hi+1)-wise independent, an appropriate f ′ with
short description always exists (one can take, for example, a (hi + 1)-universal
hash function).

For χi(x) = 1− (1− x)qi we have

EGi

[
χi

(
ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W )

e · (hi + 1)

)]
≤ EGi

[
χi

(ω(Gi,Wi∼)

e · (hi + 1)

)]
≤ χi

(EGi
[ω(Gi,Wi∼)]

e · (hi + 1)

)
= χi

(ω(Gi,Wi∼)

e · (hi + 1)

)
≤ χi(ω̂(Gi,Wi∼, f

′))

≤ ω(Gi, ρ
′
i(W )).

The second step is due to Jensen’s inequality (χi is concave). By instantiat-
ing Corollary 3 with `i = e(hi + 1) we obtain

EGi

[
χi

(
ω([G1 . . . G(i−1) Gi G(i+1) . . . Gn]∧,W )

e · (hi + 1)

)]
≥ (1− εi)δi

for some i ∈ [n], implying the second claim. ut

We point out some differences between our non-uniform amplification statement
from Theorem 5 and the non-uniform DWVP amplification Theorem 4 of [3].

– The reduction in [3] guarantees that only a single VERIFICATION-query is
asked. This makes their analysis very complicated, and comes at the cost
of an increased number of asked HINT-queries (by an additional factor of h
compared to our bounds, where h is the total number of HINT-queries asked
by the considered winner W ). We describe a reduction that executes the
winner multiple times and submits all VERIFICATION-queries.
It is important to note that it depends on the concrete game whether the
number of VERIFICATION-queries asked is important or not. For example,

8 If the filter answers a HINT-query with ⊥, the current repetition can be aborted.
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in the case of the signature forgery game, it is trivial to reduce the number
of submitted VERIFICATION-queries to one, since one can efficiently check
whether a forgery attempt will be accepted or not. The same is true for
any game where one can verify a VERIFICATION-query efficiently before
submitting it.
For the MAC forgery game it will in general not be possible to verify a
forgery attempt efficiently. However, it is still meaningful (and quite natural)
to consider the case where the adversary is allowed to make multiple forgery
attempts. Note, however, that our amplification statement is not applicable
for games that allow only very few (or even just one) VERIFICATION-queries.
This may be the case, for example, if the goal of the game is to guess a value
from a small set (say, a bit).

– The statement in [3] is a Chernoff-type amplification result that covers the
threshold case, i.e., it is in the more general setting where a winner does
not solve all n independent instances, but only a fraction of them. It seems
though that for MAC forgery and signature forgery games, the basic non-
threshold case (which we cover) is of most interest.

– Our Theorem 5 provides concrete (non-asymptotic) bounds with very small
constant factors. In contrast, the statements of [3] hide large constants in
asymptotic bounds. Moreover, we have a loss of a factor (hi+1), that is inde-
pendent of the number of VERIFICATION-query asked, whereas the loss in [3]
isO(h+v), where h and v are the total number of HINT- and VERIFICATION-
queries asked.

– We consider the direct product of n arbitrary DWVPs, i.e., the individual
games are not required to be the same. In contrast, [3] studies the case where
all n games are equal, and uses a restricted direct product definition that
requires to ask the same query m to all instances in parallel.
Note that because our games {Gi}i∈[n] may be all different, we obtain an
amplifying reduction for some Gi. If the games {Gi}i∈[n] are all the same,
and one is aiming for a uniform reduction, it is a standard technique to
embed the given instance g at a uniform random position I ∈ [n]. It may
seem that one would lose a factor of n in winning probability when this
is done. However, we note that by the AM–GM inequality, the conclusion
of Corollary 3 can be extended to

EX1...Xn
[µ(X1, . . . , Xn)] ≤

∏
i∈[n]

δi ≤

(∑
i∈[n]

δi
n

)n
.

This prevents losing a factor of n when embedding the given instance at a
uniform position.

6 Conclusions and Open Problems

We presented an abstract direct product hardness amplification theorem at the
level of probability theory. Our hope is that phrasing it at this level enables
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reusability and leads to a more modular analysis of hardness amplification state-
ments, similar as in our proof of hardness amplification for DVWPs (Theorem 5).
The theorem assumes an arbitrary concave amplification function ψ, simply be-
cause the proof does not require further assumptions. This leads to the question
of whether natural examples of games with corresponding reductions exist, where
the function ψ is something totally different than 1− (1− x)q or 1− (1− x/`)q.

Moreover, the shown bounds are close to optimal, but still not perfectly tight.
We phrased a conjecture for a perfectly tight bound, which states that the worst
case in terms of amplification is that either the success probability or the failure
probability of the considered winner is maximally concentrated. Independently
of this conjecture, it seems that the factor of n in the number of repetitions q
(see Corollary 3) can be significantly reduced.

Finally, we leave it for future work to generalize the amplification statements
beyond the “product” setting, for example to the “threshold” setting.
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Appendix

A Proofs

Proof (of Corollary 1). Let c ∈ (0, 1) be arbitrary. Moreover, we let ai = (1−ε)cδi
and bi = − ln(1− (1− ε)1−c)/q.

ai · ψ(bi) = (1− ε)cδi · ψi(− ln(1− (1− ε)1−c)/q)
= (1− ε)cδi · (1− (1− (− ln(1− (1− ε)1−c)/q)q))
≥ (1− ε)cδi · (1− (exp(ln(1− (1− ε)1−c)/q)q))
= (1− ε)cδi · (1− ε)1−c

= (1− ε)δi.

From Theorem 2 we obtain

EX1...Xn
[µ(X1, . . . , Xn)] ≤

∏
i∈[n]

ai +
∑
i∈[n]

bi

= (1− ε)cn
∏
i∈[n]

δi +
∑
i∈[n]

bi

= (1− ε)cn
∏
i∈[n]

δi + n · − ln(1− (1− ε)1−c)/q

≤ (1− ε)cn
∏
i∈[n]

δi + n · − ln(1− (1− ε)1−c)
n · νn,ε ·

∏
i∈[n] δ

−1
i

≤ (1− ε)cn
∏
i∈[n]

δi + (1− (1− ε)cn) ·
∏
i∈[n]

δi

=
∏
i∈[n]

δi.

Finally, we show that

νn,ε ∈
[ ln(1/ε)

1− (1− ε)n
,

ln(2/ε)

1− (1− ε/2)n

]
.

First, observe that

νn,ε = inf
c∈(0,1)

− ln(1− (1− ε)1−c)
1− (1− ε)nc

≥
infc∈(0,1)− ln(1− (1− ε)1−c)

supc∈(0,1) 1− (1− ε)nc

=
ln(1/ε)

1− (1− ε)n
.
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The upper bound is shown as follows.

νn,ε = inf
c∈(0,1)

− ln(1− (1− ε)1−c)
1− (1− ε)nc

≤ inf
c∈(0,1)

− ln(1− (1− (1− c)ε))
1− (1− c · ε)n

= inf
c∈(0,1)

− ln((1− c)ε)
1− (1− c · ε)n

≤ ln(2/ε)

1− (1− ε/2)n
.

This concludes the proof. ut

Proof (of Corollary 3). Observe that for any i ∈ [n] we have

δi · ψi(`i ln(1/εi)/qi) = δi · (1− (1− ln(1/εi)/qi)
qi)

≥ δi · (1− (e− ln(1/εi)/qi)qi)

= (1− εi)δi.

Thus, we have by Theorem 4

EX1...Xn [µ(X1, . . . , Xn)] ≤ max

∏
i∈[n]

δi,
∑
i∈[n]

δi`i ln(1/εi)/qi


≤ max

∏
i∈[n]

δi,
∏
i∈[n]

δi


=
∏
i∈[n]

δi.

This concludes the proof. ut
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