On expected polynomial runtime in
cryptography

Michael Kloof3

KASTEL, Karlsruhe Institute for Technology, Germany
michael.klooss@kit.edu

Abstract. A common definition of black-box zero-knowledge considers
strict polynomial time (PPT) adversaries but ezpected polynomial time
(EPT) simulation. This is necessary for constant round black-box zero-
knowledge in the plain model, and the asymmetry between simulator and
adversary an accepted consequence. Consideration of EPT adversaries
naturally leads to designated adversaries, i.e. adversaries which are only
required to be efficient in the protocol they are designed to attack. They
were first examined in Feige’s thesis [9], where obstructions to proving
security are shown. Prior work on (designated) EPT adversaries by Katz
and Lindell (TCC’05) requires superpolynomial hardness assumptions,
whereas the work of Goldreich (TCC’07) postulates “nice” behaviour
under rewinding.

In this work, we start from scratch and revisit the definition of efficient
algorithms. We argue that the standard runtime classes, PPT and EPT,
behave “unnatural” from a cryptographic perspective. Namely, algorithms
can have indistinguishable runtime distributions, yet one is considered
efficient while the other is not. Hence, classical runtime classes are not
“closed under indistinguishability”, which causes problems. Relaxations
of PPT which are “closed” are (well-)known and used.

We propose computationally expected polynomial time (CEPT), the
class of runtimes which are (computationally) indistinguishable from
EPT, which is “closed”. We analyze CEPT in the setting of uniform
complezity (following Goldreich (JC’93)) with designated adversaries, and
provide easy-to-check criteria for zero-knowledge protocols with black-box
simulation in the plain model which show that many (all known?) such
protocols handle designated CEPT adversaries in CEPT.

1 Introduction

Interactive proof systems allow a prover ¥ to convince a verifier ¥ of the “truth”
of a statement x, i.e. that x € JL for some language L. Soundness of the protocol
ensures that if the verifier accepts, then x € £ with high probability. Zero-
knowledge proof systems allow # to convince V of x € L without revealing
anything else. The definition of zero-knowledge relies on the (more general)
simulation paradigm: It stipulates that, for every (malicious) verifier ¥*, there
is a simulator Sim which, given only the inputs z, auz of ¥*, can produce a
stmulated output (or m’ewED out = Sim(z, auz), which is indistinguishable from

! We use view and output synonymously in the introduction.

2 Michael Kloof3

the output outy (P(x,w), V*(z, aux)) of a real interaction. Thus, anything /*
learns in the interaction, it could simulate itself — if Sim and V* lie in the same
complezxity class.

Let us write X/Y (zero-knowledge) for adversary complexity X and simulator
complexity Y. The two widespread notions of zero-knowledge are PPT/PPT
and PPT/EPT. The former satisfies the “promise of zero-knowledge”, but comes
at a price. Barak and Lindell [2] show that it is impossible to construct constant
round proof systems with black-box simulation and negligible soundness error
in the plain model. Since constant round black-box zero-knowledge is attractive
for many reasons, the relaxation of PPT/EPT zero-knowledge is common.
However, this asymmetry breaks the “promise of zero-knowledge”. The adversary
cannot execute Sim, hence it cannot simulate the interaction. More concretely,
this setting does not compose well. If we incorporate an EPT simulator into a
(previously PPT) adversary, the new adversary is EPT. This common approach
— constructing simulators for more complex systems from simulators of building
blocks — therefore fails due to the asymmetry.

To remedy the asymmetry, we need to handle EPT adversaries. There are
several sensible definitions of EPT adversaries, but the arguably most natural
choice are designated EPT adversaries. That is, adversaries which only need to
be EPT when interacting with the protocol they are designed to attack. Feige
[9] first considered this setting, and demonstrates significant technical obstacles
against achieving security in the presence of such attacks.

The problems of EPT (and designated adversaries) are not limited to zero-
knowledge, and extend to the simulation paradigm, e.g. multi-party computation.

Preliminary conventions. Throughout, x denotes the security parameter. We
generally consider objects which are families (of objects) parameterized by x,
but often leave the dependency implicit. We abbreviate systems of (interactive)
machines (or algorithms) by system. A system is closed, if it only expects k as
input, and produces some output. For example, a prover & does not constitute
a closed system, nor does the interaction (®, 1)), since it still lacks the inputs
to ® and V. Our primary setting is uniform complexity [11], where inputs to an
(otherwise closed) system are generated efficiently by so-called input generators.
Interaction of algorithms A, B is denoted (A, B), the time spent in A is denoted
timea((A, B)), and similarly for time spent in B or A + B. Oracle access to ©
is written A®. An algorithm A is a priori efficient, if the runtime bound is
independent from its environment, e.g. classical “a priori PPT”. The term a
posteriori emphasizes an absence of a priori efficiency, i.e. bounds which depend
on the environment, e.g. in the case of designated adversaries.

1.1 Obstacles

We first recall some obstacles regarding expected runtime and designated adver-
saries which we have to keep in mind. For more discussions and details, we refer
to the excellent introductions of [19} |14] and to [9, Section 3].

On expected polynomial runtime in cryptography 3

Runtime squaring. Consider (a family of) random variables T}, over N, where
P(T, = 2%) = 27" and T} is 0 otherwise. Then T, has polynomially bounded
expectation E(T,) = 1, but E(T2?) = 2. That is S, = T? is not expected
polynomial time anymore. This behaviour not only prevents machine model inde-
pendence of EPT as an efficiency notion, but also the non-black-box simulation
technique of Barak [1] (which suffers from a quadratic growth in runtime).

Composition and rewinding. Consider an oracle algorithm A with access to a
PPT oracle O. Then to check if the total time timea,o(A®) is PPT, we can
count an oracle call as a single step. Moreover, it makes no difference if A has
“straightline” or “rewinding” access to ©. For EPT, even a standalone definition
of “©O is EPT?” is non-trivial and possibly fragile. For example, there are oracles,
where any PPT A with “straightline” access to © results in an EPT interaction,
yet access “with rewinding” to © allows an explosion of expected runtime. See [19]
for a concrete example.

Designated EPT adversaries. For a designated adversary A against zero-
knowledge of a proof system (P, V), we require (only) that A is efficient when
interacting with that protocol. Since a zero-knowledge simulator deviates from the
real protocol, the runtime guarantees of A are void.

1.2 Motivation: Reproving zero-knowledge of graph 3-colouring

The constant-round black-box zero-knowledge proof of Goldreich and Kahan [15]
is our running example for demonstrating problems and developing our approach.

Recall that (non-interactive) commitment schemes allow a committer to
commit to a value in a way which is hiding and binding, i.e. the commitment
does not reveal the value to the receiver, yet it can be unveiled to at most one
value. A commitment scheme consists of algorithms (Gen, Com, VfyOpen). The
commitment key is generated via ck < Gen(k).

The constant round protocol of Goldreich—-Kahan The protocol of [15]
uses two different commitments, Com™ is perfectly hiding, Com™®) is perfectly
binding. The idea of protocol G3Cgxk is a parallel, N-fold, repetition of the
standard zero-knowledge proof for G3C, with the twist that the verifier commits
to all of its challenges beforehand. Let G = (V| E) be the graph and let ¢ be a
3-colouring of G. The prover is given (G,) and the verifier G.

(P0) & sends ckpige < Gen(H)(ﬁ). (ckping < Gen(B)(m) is deterministic.)

(VO0) ¢ picks N = k - card(E) challenge edges e¢; + E, and commits to them
using Com™®,

(P1) & picks randomized colourings for each of the N parallel repetitions of the
standard graph 3-colouring proof system, and sends the Com®_committed
randomized node colours to ¢/.

(V1) ¢ opens all commitments (to e;).

4 Michael Kloof3

(P2) & aborts if any opening is invalid. Otherwise, % proceeds in the parallel
repetition using these challenges, i.e. in the i-th repetition & opens the
committed colours for the nodes of edge e;.

(V2) ¢ aborts iff any opening is invalid, any edge not correctly coloured, or if
ckpide is “bad”. Else ¥ accepts.

The soundness of this protocol follows from Com™® being perfectly hiding.
Therefore, each of the N parallel repetitions is essentially an independent repeti-
tion of the usual graph 3-colouring proof. For N = k - card(F) parallel rounds,
the probability to successfully cheat is negligible (in &), see [15].

Proving zero-knowledge: A (failed?) attempt Now, we prove black-box
zero-knowledge for designated adversaries. That is, we describe a simulator which
uses the adversary ¢* only as a black-box, which can be queried and rewound to
a (previous) state. We proceed in three game hops, gradually replacing the view
of a real interaction with a simulated view. Successive games are constructed so
that their change in output (which is a purported view) is indistinguishable.

Go This is the real G3C protocol. The output is the real view.

G; The prover rewinds a verifier which completes |(V1)|successfully (i.e. sends
valid openings on the first try) to and rep until a second run
where ¢ validly opens all commitments. The output is the view of this second
succesful run. The prover uses fresh randomness in each reiteration of
(whereas the black-box has fixed randomness).

Gy If the two openings in differ, return ambig, indicating ambiguity of the
commitment. Otherwise, proceed unchanged.

G3 The initial commitments (in to a 3-colouring are replaced with commit-
ments to 0. These commitments are never opened. In successive iterations,
the commitments to a 3-colouring are replaced by commitments to pseudo-
colourings v; (for e;), i.e. for edge e; = (u;,v;), 1¥; colours u; and v; differently
(and uniformly), whereas 1; colours all v # u;,v; with 0. Hence the opened
commitments simulate a valid 3-colouring at the challenge edges e;.

Evidently, Game Gg outputs a purported view independent of the witness. Thus,
the simulator is defined as in Gg: In a first try, it commits (using Com®)) to all
zeroes instead of a 3-colouring in [(P1)] and uses this “garbage” commitment to
learn the verifier’s challenge (in If the verifier does not successfully open
the commitments (in [[VI)), Sim aborts (as an honest prover would) and outputs
the respective view. Otherwise, Sim rewinds the verifier to Step 2 and sends a
pseudo-colouring (w.r.t. the previously revealed challenge) instead. Sim retries
until the verifier succesfully unveils (in [(V1)]) again. (If the verifier opens to a
different challenge, return view = ambig.)

Now, we sketch a security proof for Sim. We argue by game hopping.

Go to Gy. The expected number of rewinds is at most 1. Namely, if ¥/* opens
in with probability e, then an expected number of é rewinds are required.
Consequently, the expected runtime is polynomial (and G; is EPT). The output
distribution of the games is identical.

On expected polynomial runtime in cryptography 5

G; to Gs. It is easy to obtain an adversary against the binding property of
Com™ which succeeds with the same probability that Gy outputs ambig. Thus,
this probability is negligible.

Gz to Gz. Embedding a (multi-)hiding game for Com™) in this step is
straightforward. Namely, using the left-or-right indistinguishability formulation,
where the commitment oracle either commits the first or second challenge message.
Thus, by security of the commitment scheme, Gy and G3 are indistinguishable.ﬂ

A closer look. The above proof is clear and simple. But the described simulator is
not EPT! While G3 and Gg are (computationally) indistinguishable, the transition
does not necessarily preserve expected polynomial runtime [9,19)]. Feige [9] points
out a simple attack, where ¥* brute-forces the commitments with some tiny
probability p, and runs for a very long time if the contents are not valid 3-
colourings. This is EPT in the real protocol, but our simulator as well as the
simulator in [15] do not handle ¥* in EPT. The problem lies with designated
adversaries as following example shows.

Ezample 1. Let ¥* sample in step a “garbage” commitment ¢’ to zeroes,
using Com®) just like Sim in its first step, trying to predict Sim’s choice. (¢’ is a
“proof of simulation”.) Now ¢/* unveils e in if and only if it receives ¢’. The
honest prover always aborts in because * will never unveil. However, if
Sim happens to chose ¢ = ¢’ as its “garbage” commitment, the simulation runs
forever, because ¥* unveils only for this ¢/, which is not a pseudo-colouring.

As described, V* is a priori PPT, and indeed, the simulator in [15] uses
a “normalization technique” which prevents this attack. However, exploiting
designated PPT, V* may instead run for a very long time, when it receives c’.

Obstructions to simple fixes. Let us recall a few simple, but insufficient fixes. A
first idea is to truncate the execution of A at some point. For PPT adversaries,
this may seem viable.E| However, there are EPT adversaries, or more concretely
runtime distributions, where any strict polynomial truncation affects the output
in the real protocol noticeably. So we cannot expect that such a truncation works
well for Sim. See |9, Section 3] for a more convincing argument against truncation.

Being unable to truncate, we could enforce better behaviour on the adversary.
Intuitively, it seems enough to require that ¥* runs in expected polynomial time
in any interaction |19} |14]. However, even this is not enough. Katz and Lindell
[19] exploit the soundness error of the proof system to construct an adversary
which runs in expected polynomial time in any interaction, but still makes the
expected runtime of the simulator superpolynomial. The problem is that these
runtime guarantees are void in the presence of rewinding.

2 We rely on security of binding and hiding against expected time adversaries, which
follows from PPT-security by runtime truncation arguments, e.g. by Lemma

3 Even there, the situation is far from easy. In a UC setting with an a posteriori
efficiency notion (and designated adversaries), Hofheinz, Unruh, and Miiller-Quade
show in [18] Section 9] that (pathological) functionalities can make simulation in
PPT impossible (if one wants security under composition for just a single instance).

6 Michael Kloof3

Modifications of these fixes work, but at a price: Katz and Lindell [19]
use superpolynomial truncation and need to assume superpolynomial hardness.
Goldreich |14] restricts to algorithms (hence adversaries) which behave well under
rewinding. We discuss these in Section Our price will be proof techniques,
which become more technical and, perhaps, more limited.

Our fix: There is no problem. Our starting point is the conviction that the given
“proof” should evidently establish the security of the scheme for any cryptograph-
ically sensible notion of runtime. If one could distinguish the runtime of Gy and
Ggs, then this would break the hiding property of the commitment scheme. Thus,
the runtimes are indistinguishable. Following, in computational spirit, Leibniz’
“identity of indiscernibles”, we declare runtimes which are indistinguishable from
efficient by efficient distinguishers as efficient per definition. With this, the proof
works and the simulator, while not expected polynomial time, is computation-
ally expected polynomial time (CEPT), which means its runtime distribution is
indistinguishable from EPT.

We glossed over a crucial detail: We solved the problem with the very strategy
we claim to fix — different runtime classes for Sim and ¢*! Fortunately, Sim also
handles CEPT adversaries in CEPT.

1.3 Contribution

Our main contribution is the reexamination of the notion of runtime in cryp-
tography. We offer a novel, and arguably natural, alternative solution for a
problem that was never fully resolved. Our contribution is therefore primarily of
explorational and definitional nature. More concretely:

— We define CEPT, a small relaxation of EPT with a simple characterization.

— To the best of our knowledge, this is the first work which embraces uniformﬁ
complexity, expected time, and designated adversaries.

— We develop general tools for this setting, most importantly, a hybrid lemma.

— Easy-to-check criteria show that many (all known?) black-box zero-knowledge
arguments from standard assumptions in the plain modelﬂ have CEPT
simulators which handle designated CEPT adversaries. Consequently, security
against designated adversaries is natural. For example, the proof systems |16}
151 [24] |29] |20] |28| satisfy our criteria.

— We impose no (non-essential) restrictions on the adversary, nor do we need
additional (hardness) assumptions.

— We sketch the application of our techniques to secure function evaluation.

All of this comes at a price. Our notions and proofs are not complicated, yet
somewhat technical. This is, in part, because of a posteriori runtime and uniform
complexity. Still, we argue that we have demonstrated the viability of our new
notion of efficiency, at least for zero-knowledge.

4 Our results are applicable to a minor generalization of the non-uniform setting as
well, namely non-uniformly generated input distributions.
5 Unfortunately, problems might arise with superpolynomial hardness assumptions.

On expected polynomial runtime in cryptography 7

A complexity theoretic perspective. This work is only concerned with the com-
plexity class of feasible attacks, and does not assume or impose complexity
requirements on protocols. Due to designated adversaries, the complexity class
of adversaries is (implicitly) defined per protocol, similar to [19]. We bootstrap
feasibility from complexity classes for (standalone) sampling algorithms, i.e. algo-
rithms with no inputs except x. Hence a (designated) adversary is feasible if the
completed system of protocol and adversary (including input generation) is CEPT
(or more generally, in some complexity class of feasible sampling algorithms).

The complexity class of simulators is relative to the adversary, and thus
depends both on the protocol and the ideal functionality. Namely, feasibility of
a simulator Sim means that if an adversary A is feasible (w.r.t. the protocol),
then “Sim(A)” is feasible (w.r.t. the ideal functionality).

Comments on our approach. The uniform complexity setting drives complexity,
yet is necessary, since a notion of time that depends on non-uniformity is rather
pathological. Losing the power of non-uniformity (and strictness of PPT) requires
many small adjustments to definitions. Moreover, annoying technical problems
with efficiency arise inadvertently, depending on formalizations of games and
models. As in prior work, we mostly ignore them, but do point them out and
propose solutions. They are easily fixed by adding “laziness”, “indirection”, or
“caching”.

An important point raised by a reviewer of TCC’20 is the “danger of zero-
knowledge being trivialized” by “expanding the class of attacks”, and a case
for “moving towards knowledge tightness” (with which we fully agree). Many
variations of zero-knowledge, from weak distributional [8| |6] to precise |25} 7],
exist. We argue that our notion is very close to the “standard” notion with
EPT simulation, but allows designated (C)EPT adversaries. Indeed, it seems
to gravitate towards “knowledge tightness” |14], as seen by runtime explosion
examples due to expectation.

1.4 Technical overview and results

We give an overview of our techniques, definitions, and results. Recall that we
only consider runtimes for closed systems (which receive only x as input and
produce some output). W.r.t. uniform complexity and designated adversaries,
i.e. adversaries which only need to be efficient in the real protocol [9], closed
systems are the default situation anyway. A runtime class 7 is a set of runtime
distributions. A runtime (distribution) is a family (7)), of distributions T}
over Ng. We use runtime and runtime distribution synonymously. Computational
J -time indistinguishability of oracles and distributions is defined in the obvious
way (c.f. Definition . For statistical 7-query indistinguishability, we count only
queries as steps, and require J-time w.r.t. this. (In our setting, unbounded queries
often imply perfect indistinguishability, which is too strong.)

The basic tools.

8 Michael Kloof3

Statistical vs. computational indistinguishability. The (folklore) equivalence of
statistical and computational indistinguishability for distributions with “small”
support is a simple, but central, tool. For polynomial runtime, “small” support
means polynomial support, say {0, ..., poly;(x)}. Assuming non-uniform advice,
the advice is large enough to encode the optimal decisions, achieving statisti-
cal distance as distinguishing advantage. This extends to “polynomially-tailed”
runtime distributions T'. There, by assumption, for any poly, there is a poly,
such that P(T,; > poly;(k)) < m, Hence, we can reduce to strict polynomial
support by truncating at poly,, sacrificing 1/poly, in statistical distance. The
Markov bound shows that expected polynomial time is polynomially tailed. Re-
moving non-uniformity is possible with repeated sampling, e.g. by approximating
the distribution.

Standard reduction. Another simple, yet central, tool is the standard cutoff
argument. It is the core tool to obtain efficiency from indistinguishability.

Lemma 1 (Standard reduction to PPT). Let @ be a distinguisher for
two oracles Oy, O1. Suppose D has advantage at least € > m (infinitely

often). Suppose furthermore that D is EPT (even CEPT) with expected time
polyy. Then there is an a priori PPT distinguisher A with advantage at least §
(infinitely often). (Here, e, poly, g, polyy are functions in k.)

We stress that we require no runtime guarantees for D+ — it may never halt.
For a proof sketch, define N = 4poly,-poly, 4, and let A be the runtime cutoff of @
at N. The outputs of A and D are £ close. For A%t and D" this may be false.
However, if D" exceeds N steps with probability higher than Zf, then the runtime
is a distinguishing statistic with advantage 7. Thus, we can assume the outputs of
A and DO are 27‘5 close. Now, a short calculation shows that A has advantage at

least £. Namely, A(A9, A) > A(DO, D) — A(A9, D) — A(D%, AD).

Computationally expected polynomial time. We define the runtime classes
PPT (resp. EPT), as usual, i.e. (T,),, € PPT <= Tpoly: P(T,, < poly(x)) =1
(vesp. (i), € 8PT <= Fpoly: E(T,) < poly(x)).

Definition 1 (Simpliﬁedﬁ Definition . A runtime S, i.e. a family of ran-
dom variables S, with values in Ny, is computationally expected polynomial
time (CEPT), if there exists a runtime T which is (perfectly) expected polyno-
mial time (i.e. EPT), such that any a priori PPT distinguisher has negligible
distinguishing advantage for the distributions T and S. The class of CEPT
runtime distributions is denoted CEPT . Computationally strict polynomial
time (CPPT) is defined analogously.

5 Formally, “triple-oracle” instead of “standard” indistinguishability is used. Assuming
non-uniform advice, or runtimes 7', S which are induced by algorithms, the simplified
definition is equivalent to the actual one.

On expected polynomial runtime in cryptography 9

Characterizing CEPT. At a first glimpse, CEPT looks hard to handle. Fortu-
nately, this is a mirage. We have following characterization of CEPT.

Proposition 1 (Simpliﬁedﬂ Corollary. Let T be a runtime. The following
are equivalent:

(0) T is in CEPT .

(1) 35S € 8PT which is computationally PPT-indistinguishable from T.

(2) 35 € 8PT s.t. T and S are statistically indistinguishable (given polynomially
many samples).

(8) There is a set of good events G, with P(G,;) > 1—¢e(k) such that (T, | Gx) <
t,; (for the conditional expectation), where € is negligible and t is polynomial.

Let T be a runtime. Itemdeﬁnes virtually expected time (¢, ¢) with virtual
expectation (bounded by) ¢ and wvirtuality e. Thus, the characterization says that
computational, statistical and virtual EPT coincide.

Proposition [I] follows essentially from the statistical-to-computational reduc-
tion and a variant of Lemma [l Thanks to this characterization, working with
CEPT is feasible. One uses itemto justify that indistinguishability transitions
preserve CEPT. And one relies on item to simplify to the case of EPT,
usually in unconditional transitions, such as efficiency of rewinding.

An intrinsic characterization. The full Corollary [T not only reveals that CEPT
is “well-behaved”. It also shows that the runtime class CEPT is “closed under
indistinguishability”: Any runtime S which is CEPT-indistinguishable from
some T € CEPT lies in CEPT . This intrinsic property sets it apart from EPT.
(Indeed, CEPT is the closure of 82T .) PPT and CPPT behave analogously.

Ezample 2. Let A be an algorithm which outputs 42 in exactly 10'° steps, and
let A’ act identical to A, except with probability 27*, in which case it runs 22~
steps. Then A’ is neither PPT nor EPT. Yet, A and A’ are indistinguishable
even given timed black-box access. That is, observing both output and runtime
of the black-box, it is not possible to tell A and A’ apart. Thus, it is rather
unexpected that A’ is considered inefficient. For many properties, e.g. correctness
or soundness, statistical relaxations from “perfect” exist. CPPT and CEPT
should be viewed as such relaxations for efficiency.

Working with CEPT. Applying the characterization of CEPT to a whole system
(P, V%), the good event ¢ may induce arbitrary stochastic dependencies on
(internal) random coins of the parties. This is inconvenient. We are interested
only in one party, namely *. Moreover, in a simulation, there is no % anymore
and the probability space changed, hence there is no event ¢. To account for
this, we observe that only the messages ¢* receives from & are relevant for *’s
behaviour, not #’s internal randomness. In the full version [21], we formulate a
convenience lemma for handling this, whereas in this extended abstract, we deal
with it directly.

10 Michael Kloof3

Definitions and tools for zero-knowledge. Here, we state our definition of
uniform complexity zero-knowledge, demonstrate how to prove zero-knowledge
for G3Cgk, and then abstract the approach to cover a large class of protocols.

Definition of zero-knowledge. For uniform auxiliary input zero-knowledge, the
input (x,w, auz, state) < J(k) is efficiently generated by an input generator
g. A designated adversary (¢, 9*) consists of input generation, malicious veri-
fier, and distinguisher, but we leave J often implicit. The distinguisher receives
out and state, the latter is needed for modular sequential composition.m Here,
out = outy~(P(x,w),V*(x, auzr)) or out = outsimSim(code(V*), z, auz), where
(z,w, auz, state) is sampled by J(k). As a shorthand, for the system which
lets J sample inputs and passes them as above, we write (?,V)g. From desig-
nated CEPT adversaries, we require that timegi g1 p-1q((state, outp-P(x, w),
V*(z, aux))) is CEPT.

Concrete example. Recall that in Section [I.2] we showed zero-knowledge of the
graph 3-colouring protocol G3Cgk of Goldreich and Kahan [15] as follows:

Step 1: Introduce all rewinding steps as in Gj. Here, virtually expected
runtime and virtuality at most doubles. Roughly, rewinding at most doubles the
probability that a query query is asked. Since this, in particular, applies to long
running “bad” queries, virtuality at most doubles.

Step 2: Apply indistinguishability transitions, which reduce to hiding resp.
binding properties of the commitment. From this, we obtain both good output
quality and efficiency of Sim. Concretely, indistinguishability and efficiency follow
by an application of the standard reduction (to PPT).

We abstract this strategy to cover a large class of zero-knowledge proofs.|§|
Intuitively, we apply the ideas of |[14] (“normality”) and [19] (“query indistin-
guishability”), but separate the unconditional part (namely, that rewinding
preserves efficiency), and the computational part (namely, that simulated queries
preserve efﬁciency).ﬂ

Abstracting Step 1 (Rewinding strategies). A rewinding strategy RWS has
black-box rewinding (bb-rw) access to a malicious verifier ¢/*, and abstracts a
simulator’s rewinding behaviour. Unlike the simulator, RWS has access to the
witness. For RWS to be normal, we impose three requirements.

Firstly, a normal rewinding strategy outputs an adversarial view which is
distributed (almost) as in the real execution. Secondly, there is some poly so that

E (timerws-o- (RWS" ")) < poly (k) - E(timegyp- ((P, V*)))

" While [11] passes no extra state, only sequential repetition is proven there.

8 Strictly speaking, we concentrate on zero-knowledge arguments, since we need efficient
provers.

9 We significantly deviate from [19] to obtain simpler reductions.

On expected polynomial runtime in cryptography 11

for any adversary ©*. We call this (polynomial) runtime tightness of RWS.E
Thirdly, RWS has (polynomial) probability tightness, which is defined as
follows: Let pr,.(query) be the probability that RWS asks ¥* a query query. Let
Preal(query) be the probability that the prover &# asks query. Then RWS has
probability tightness poly if for all queries query

Prows (query) < poly(k) - priea (query).

Intuitively, runtime tightness ensures that RWS preserves EPT, whereas
probability tightness bounds the growth of virtuality. Indeed, the virtuality ¢ in
(P, U*) increases to at most poly-d in RWS"" . This follows because the probability
for a “bad” query in RWS'" is at most poly-fold higher than in (@, ¢*).

Lemma 2 (Informal). Let RWS be a normal rewinding strategy for (#,1) with
runtime and probability tightness poly. Let (4,1*) be an adversary. If (P,V*)qg
is CEPT with virtually expected time (t,€), then RWS(V*) composed with J is
CEPT with virtually expected time (poly - t,poly - €).

(Weak) relative efficiency. We generalize the guarantees of rewinding strategies
to relative efficiency of (oracle) algorithms. An oracle algorithm B is efficient
relative to A with runtime tightness (poly,ne, POly,i) if for all oracles O:
If timea o (AY) is virtually expected (t,¢)-time, then timego(B?) is virtually
expected (polyiime * t, Polyyiy - €)-time.

We call B weakly efficient relative to A, if whenever timea o(A?) is
efficient (e.g. CEPT), then timeg;o(BY) is efficient (e.g. CEPT).

Abstracting Step 2 (Simple assumptions). A “simple” assumption is a pair of
efficiently computable oracles Cy and C7, and the assumption that C & Cy, ie.
Cp and C; cannot be distinguished in PPT.E For example, hiding resp. binding
for commitment schemes are simple assumptions.

In Step 2, we reduce the indistinguishability of RWS"" and Sim"” to a simple
assumption. That is, there is some algorithm R such that RWSY" = R (%),
and R (V%) = Sim"". Moreover, we assume that RC (%) is efficient relative to
RWS"", and Sim"" is efficient relative to R (V).

Putting it together (Benign simulators). Black-box simulators whose security
proof follows the above outline are called benign. See Fig. [I] for an overview of
properties and their relation.

Lemma 3 (Informal). Argument systems with benign simulators are auxiliary-
input zero-knowledge against CEPT adversaries.

10 Up to minor technical details, polynomial runtime tightness of RWS coincides with
“normality” of Sim in [14] Def. 6].

11 Technically, our definition of “simple assumption” corresponds to falsifiable assump-
tions [26] in the sense of [10]. We deliberately do not call them falsifiable, since
our proof techniques should extend to a larger class of assumptions, which includes
non-falsifiable assumptions.

12 Michael Kloof3

standard reduction =———> CEPT characterization €———— comp. ind. to stat. ind.
n
1
o

normal RWS off. rel. to simple ass. 4 A normal RWS “efficiency notion” query ind.

-
benign ——-<%£=— aux. input ZK «——2>———— query-benign

— (>hybriU
sequential ZK

Fig. 1: A rough overview of dependencies of core results and definitions. The
greyed out approach follows [19] more closely, see the full version [21]. The top
line is used everywhere implicitly.

Proof (Summary). The proof strategy above can be summarized symbolically:
outy« (P, V%) = RWS(V*) = R (V%) = R (V%) = Sim(V*).

More precisely, consider a CEPT adversary (¢,¢*). By normality of RWS,
outy= (P, V*) and RWS(¥*) have (almost) identical output distributions, and
RWS(V*) is CEPT. By relative efficiency, R% (¢*) is CEPT if RWS"" is CEPT.
Since Cy ~ C1, by a standard reduction, if R (V*) is CEPT, so is R (V*),
and their outputs are indistinguishable. Finally, since Sim"" is efficient relative
to RE(V*), also Sim"" is CEPT. All in all, Sim" is efficient and produces
indistinguishable outputs.

Benign simulators are common, e.g. the classic, constant round, and concurrent
zero-knowledge protocols in 16} |15} |24} 29} (20} 28] satisfy this property.

Sequential composition and hybrid arguments. It turns out that hybrid
arguments are non-trivial in the setting of a posteriori efficiency. Here, we outline
the challenges in proving the hybrid lemma, how to overcome them, and how to
obtain security of sequential composition from our abstract hybrid lemma.

Intermezzo: Tightness bounds. The use of relative efficiency with polynomial
tightnesss bounds is not strictly necessary. Nevertheless, it offers “more quantifi-
able” security and is easier to handle. For example, benign simulators are easily
seen to “compose sequentially” because, (1) normal RWS and relative efficiency
compose sequentially, and (2) “simple” assumptions satisfy indistinguishability
under “repeated trials”. Together, this translates to sequential composition of
benign simulation. Hence, argument systems with benign simulators are sequential
zero-knowledge against CEPT adversaries. Unfortunately, the general case is
much more involved.

The hybrid lemma. To keep things tidy, we consider an abstract hybrid argument,
which applies to zero-knowledge simulation and much more. Due to a posteriori
efficiency, the lemma is both non-trivial to prove and non-trivial to state.

On expected polynomial runtime in cryptography 13

Lemma 4 (Hybrid lemma). Let Oy and Oy be two oracles and suppose that

Oy is weakly efficient relative to Oy and Oy ~ ©y. Denote by rep(©p) and rep(©q)
oracles which give repeated access to independent instances of Oy. Then rep(©Oy)

is weakly efficient relative to rep(©y) and rep(©Qy) =~ rep(©).

Lemma [4] hides much of the complexity caused by a posteriori efficiency,
and is often a suitable black-box drop-in for the hybrid argument. We sketch
how to adapt the usual hybrid reduction. In our setting, rep(©y) gives access
to arbitrarily many independent instances of ©p. The usual hybrids H; use ©;
for the first ¢ instances, and switch to ©g for all other instances. W.l.o.g., only
g = poly(k) many ©-instances are accessed by the distinguisher @. The hybrid
distinguisher @’ guesses an index i* + {0,...,¢ — 1}, and simulates a hybrid
H;t, embedding its challenge oracle Oj.

If @ has advantage €, then the hybrid distinguisher D’ has advantage €/q.
In the classic PPT setting, we assume that ©y and ©; are classical PPT, and
hence find that @’ is PPT and therefore efficient. In an a posteriori setting,
the efficiency of @’ is a bigger hurdle. We make the minimal assumptions, that
times 4 rep(©) (Drer(90)) is efficient and that ©; is weakly efficient relative to (90.

Hence, we do not trivially know whether time@+rep(@1)(®'e'°(@1)) or the hybrid
distinguisher @', which has to emulate many oracle instances, is efficient. Indeed,
a naive argument would invoke weak relative efficiency ¢ times. In the case of
PPT, this would mean ¢g-many polynomial bounds. But, for all we know, these
could have the form 2%poly(k) in the i-th invocation, leading to an inefficient
simulation.

The core problem is therefore to avoid a superconstant application of weak
relative eﬁiciency.ﬁ Essentially this problem was encountered by Hofheinz, Unruh,
and Miiller-Quade [18] in the setting of universal composability and a posteriori
PPT. They provide a nifty solution, namely to randomize the oracle indezing.
This ensures that, in each hybrid, every emulation of Oy (resp. ©O;) has identical
runtime distribution T (resp. T4). This gives a uniform bound on runtime changes.
Now, we show how to extend the proof of [18|, which is limited to CPPT.

We prove the hybrid argument in game hops, starting from the real protocol
Gi. In Gy, we replace one oracle instance of Oy by ©; (at a random point). In
Gg, every instance of Oy but one is replaced by ©O;. In Gy, only O is used. Since

©; is weakly efficient relative to Oy and O ~ ©q, the transitions from G; to
Go (resp. Gz to Gy) preserve efficiency and are indistinguishable. The step from
Gz to Gs is the crux. Note that we have at least one ©p (resp. ©7) instance in
either game. Take any one and denote the time spent in that instance by Ty (resp.
T}). Since we randomized the instances, the distribution of Ty (resp. T71) does
not depend on the concrete instance. Importantly, even in the hybrid reduction,

12 The hybrid proof technique requires the hybrid distinguisher to emulate all but one
oracle instance, and for this we need weak relative efficiency.

13 For reference, even for a priori PPT sequential composition for zero-knowledge, one
must avoid a superconstant invocation of the existence of simulators. There, the
solution is to consider a “universal” adversary and its “universal” simulator.

14 Michael Kloof3

there is an instance which can be used to compute Ty (resp. T7). Moreover,
the total time spent in computing instances of Oy and ©; is “dominated”E by
q-To+ q-T1. Thus, it suffices to prove that S =T’ + Ty + Ty is CEPT, where
T’ is the time spent outside emulation of instances of Oy and ©O;. (Note that S,
T', To, Ty depend on the hybrid Hy, where £ € {1,...,q — 1}; we suppressed this
dependency.) Now, we have two properties:

— S¢ is CEPT if and only if time(H,) is CEPT for the ¢-th hybrid H,.
— The reduction can compute and output Sp.

Thus, it suffices that S; and S,—; are indistinguishable, since we know that
S1 is CEPT. Curiously, we now reduced efficiency to indistinguishability.E To
prove indistinguishability, we can truncate the reduction (or rather, the hybrids)

to strict PPT as in the standard reduction. Thus, we obtain S ~ Sq. The
hybrid lemma follows. The actual reasoning of this last step is a bit lengthier,
but follows [18] quite closely: We truncate each oracle separately to maintain
symmetry of timeout probabilities. Unfortunately, the reduction does not give
the usual telescoping sum, since the challenge oracle cannot be truncated. Due to
symmetry, the error is “dominated” by observed timeouts. Hence, it suffices to
find a (uniform) bound for the timeout probabilities over all Hy. Our reasoning
for this is mildly more complex than [18], since we do not have negligible bounds
for timeouts, but only polynomial tail bounds, and we make a weaker assumption
on efficiency of ©y and ©;.

Modular sequential composition. With Lemma [4] at hand, it is straightforward
to prove that auxiliary input zero-knowledge composes sequentially. In fact, the
well-known proof works almost without modifications by using the hybrid lemma
(Lemma [4]), which absorbs the bulk of the complexity. Indeed, it is possible to
prove a modular sequential composition theorem for secure function evaluation,
similar to [19]. Interestingly, in [19], subprotocols must have simulators which
are EPT in any interaction, whereas in our setting, there is no such restriction.

1.5 Related work

We are aware of three (lines of) related works w.r.t. EPT: The results by Katz
and Lindell [19] and those of Goldreich [14], both focused on cryptography. And
the relaxation of EPT for average-case complexity by Levin [23]. A general
difference of our approach is, that we treat the security parameter separate from
input sizes, whereas [19, |14] assume x = |z|. With respect to a posteriori runtime,
[18] is a close analogue, although for PPT and in the UC setting.

Comparison with [19]. Katz and Lindell [19] tackle the problem of expected
polynomial time by using a superpolynomial runtime cutoff. They show that this
cutoff guarantees a (strict) EPT adversary. However, for the superpolynomial

4 To be exact, dominated with slack ¢: P(timeo, o, (He) > t) < ¢-P(q(Te0 +Te1) > t).
15 The CEPT characterization does not strictly apply here, but a simple variation does.

On expected polynomial runtime in cryptography 15

cutoff, they need to fix one superpolynomial function o and have to assume
security of primitives w.r.t. (strict) a-time adversaries. Squinting hard enough,
their approach is dual to ours. Instead of assuming superpolynomial security and
doing a cutoff, we “ignore negligible events” in runtime statistics, thus doing a
“cutoff in the probability space”. Moreover, we require no fixed bound.

Interestingly, their first result [19, Theorem 5] holds for “adversaries which
are EPT w.r.t. the real protocol”. Their notion is minimally weaker than ours,
as it requires efficiency of the adversary for all inputs instead of a sequence of
input distributions.m [19, Section 3.5] claims that other scenarios, e.g. sequential
composition, fall within |19, Theorem 5]. Their modular sequential composition
theorem, [19, Theorem 12], however, requires that subprotocol simulators are
“expected polynomial time in any interaction”, which neither Theorem 5 nor
Theorem 12 assert for the resulting simulators.

Comparison with [14]. Goldreich [14] strengthens the notion of expected poly-
nomial time to obtain a complexity class which is stand-alone and suitable for
rewinding based proofs. He requires expected polynomial time w.r.t. any reset
attack, hence restricts to “nice” adversaries. With this, normal (in the sense
of [14]) black-box simulators run in expected polynomial time, essentially by
assumption. This way of dealing with designated adversaries is far from the spirit
of our work.

Comparison with [23]. The relaxation of expected polynomial time adopted by
Levin |23 and variations [13} 14} 3] are very strong. Let T be a runtime distribution.
One definition requires that for some poly and v > 0, P(7T, > C) < %ﬁ") for
large enough x and C' > 0. Equivalently, E(7T7) is polynomially bounded (in &) for
some v > 0. Allowing negligible “errors” relaxes the notion further. This definition
fixes the composition problems of expected polynomial time. But arguably, it
stretches what is considered efficient far beyond what one may be willing to
accept. Indeed, runtimes whose expectation is “very infinite” are considered
efﬁcient.m The goals of average case complexity theory and cryptography do
not align here. We stress that our approach, while relaxing expected polynomial
time, is far from being so generous, see Section [1.6

Related work on CPPT. The notion of CPPT is (in different forms) used
and well-known. For example, Boneh and Shoup [4] rely on such a notion. This
sidesteps technical problems, such as sampling uniformly from {0, 1, 2} with binary
coins. With a focus on complexity theory, Goldreich |12] defines typical efficiency
similar to CPPT. As the relaxations for strict bounds is very straightforward,
we suspect more works using CPPT variations for a variety of reasons.

16 Their definitions are a consequence of their non-uniform security definition and
complexity setting. The proof of [19, Theorem 5] never changes adversarial inputs,
so there is no obstruction to handling designated adversaries in our sense.

17 Setting ¢ = 2 and v = 3 in Remarkyields a runtime 7" with E(T) = Zle n, which
is still considered efficient.

16 Michael Kloof3

Comparison with [18]. Hotheinz, Unruh, and Miiller-Quade [18] define PPT with
overwhelming probability (w.o.p.), i.e. CPPT, and consider a posteriori efficiency.
They work in the setting of universal composability (UC), and their main focus is
an overall sensible notion of runtime, which does not artificially restrict evidently
efficient functionalities, such as databases or bulletin boards. Their notion of
efficiency is similar to our setting with CPPT. In fact, we use their techniques
for the hybrid argument. Since [18] defines and assumes protocol efficiency, which
we deliberately neglect, there are some differences. Reinterpreting [18], their
approach is based on: “If for all (stand-alone) efficient @ the machine D is
efficient, then for all (stand-alone) efficient @ the machine D" is efﬁcient.”lﬂ
Our approach is based on: “For all @, if the machine @ is efficient, then the
machine D9 is efficient.” The stronger (protocol) efficiency requirements are
harder to justify in our setting. (Even classical PPT ©g can be “inefficient” for
expected poly-size inputs. E.g., disallowing quadratic time protocols seems harsh.)

More related work. Halevi and Micali [17] define a notion of efficiency for proofs
of knowledge, which closely resembles our notion of normal rewinding strategies.
Precise zero-knowledge (25, [27] requires that simulation and real execution time
are closely related. Due to Feige’s “attack” (or Example , this does not seem
to help with designated EPT adversaries.

1.6 Separations

We briefly provide separations between some runtime notions. Here, we focus
only on efficiency of adversaries, and ignore requirements imposed on protocol
efficiency, since we deliberately neglected those. We consider basic runtime classes
(i.e. runtimes of sampling algorithms) and how they are lifted to interactive
algorithms.

Both [19, Definition 1] and |18, Definitions 1 and 2] use an “a posteriori” lifting.
The former lifts EPT, the latter lifts CPPT; both allow designated adversaries
and are similar to our setting. “A priori” liftings, such as |14, Definitions 1—-
4] are far more restrictive (on adversaries), effectively disallowing designated
adversaries.

Regarding the underlying runtime classes, the works |19, (14] deal with (perfect)
EPT, negligible deviations are not allowed. The notion of PPT w.o.p. from [18]
and CPPT coincide. To separate PPT, EPT, CPPT, CEPT, and Levin’s
relaxations, we first recall fat-tailed distributions.

Remark 1 (Fat-tailed distributions). The sum) n~¢ is finite if and only if
¢ > 1. Thus, we obtain a random variable X with P(X = n) « n~°. For
v > 0 we have E(X7) o< 3., n= "7 If ¢ — v < 1, then E(X7) = co. Moreover,
P(X > k) > k¢, i.e. X has fat tails. In particular, for ¢ = 3, E(X) < oo but
E(X?) o >, n~! = oo, and P(X > poly) > ﬁ for any poly.

18 Think of @ as the environment, ©p as the protocol, and ©; as the simulator.

On expected polynomial runtime in cryptography 17

Allowing a negligible deviation clearly separates perfect runtime distributions
from their computational counterparts. Clearly, PPT is strictly contained in
EPT. The separation of CPPT and CEPT follows from fat-tailed distributions.
In Section below, we separate CEPT from Levin’s relaxations of EPT,
denoted L7, and Vadhan’s relaxation |14] of LT, denoted ¥T, which allows
negligible deviation. In the following diagram, strict inclusions are denoted by
arrows.

PPT EPT LT

| | |

CPPT —— CEPT —— VT

Levin’s relaxation and CEPT. We noted in Remark 1} that Y 7 n™¢ =
a. < oo for ¢ > 1 gives rise to a distribution Z. over N via normalizing the sum.
Let X = Z3. Then E(X) = =32, n = oo. Since Zs is fat-tailed, so is X. Let
Vi = X|(.>g3)0- It follows immediately that E(Yy) = E(X[54s)50) = a%kz
for any k € N. Thus, for any superpolynomial cutoff K, we find E(Yx) > TicK 2
is superpolynomial, and as a consequence, there is no superpolynomial cutoff
which makes X EPT. (We interpret X as a constant family of runtimes.)

Formally, CEPT uses v-quantile cutoffs (i.e. we may condition on an event ¢
of overwhelming probability 1 —» that minimizes E(T'|§)). For X, any v-quantile
cutoff for negligible v induces some bound k which maximizes P(T' < k) > v. If
k were polynomial, then (due to “fat tails”) v must also be polynomial. Hence, k
must be superpolynomial, and consequently there is no negligible quantile cutoff
which makes X EPT. All in all, the runtime distribution X is allowed by Levin’s
relaxation, but is not CEPT.

1.7 Structure of the paper

In the introduction, we discuss motivation, contribution and related work, and
sketch our definitions and techniques.. In Section [2 we clarify notation, recall and
adapt standard definitions, and give basic requirements for runtime. In Section [3]
we define virtually expected time, the “triple-oracle distinguishing” notion, and
CEPT. We also state the characterization of CEPT and provide a proof sketch.
In Section [4] we define zero-knowledge protocols and designated adversaries. We
then prove, in full detail, that the naive simulator for G3Cgk works, and show
by example how benign simulators look like. Lastly, in Section [5} we discuss the
hybrid lemma and sequential composition.

Due to limited space, many of the definitions, tools, and results in the intro-
duction are only sketched or missing. For these, we refer to the full version [21].

18 Michael Kloof3
2 Preliminaries

In this section, we state some basic definitions and (non-)standard conventions.
Since machine models more influence in an EPT setting than in a strict PPT
setting, we fix some suitable RAM model for the rest of this work.

Notation and basic definitions. We denote the security parameter by k; it is
often suppressed. Similarly, we often speak of an object X, instead of a family of
objects (X,), parameterized by x. We always assume binary encoding of data,
unless explicitly specified otherwise. We write X ~ Y if a random variable X is
distributed as Y. For random variables X, Y over a (partially) ordered set (A, <)

d
we write X <Y if P(X > a) <P(Y < a) foralla € Aandsay Y dominates X (or
is greater than X in distribution). We use the same notation for families of random

variables, i.e. we write X <Y and mean X, % Y. for all k. We write X|m_>b (resp.
Xlgyp resp. X |prede) for the random variable where a (resp. any a satisfying a €
S resp. pred(a) = 1) is mapped to b, and everything else unchanged, e.g. X|, .,
or X|g o or X|s .,y The statistical distance A(p, o) of distributions (i.e.

measures) p, o over a countable set (2 is 3 > _o[p(w) —o(w)|. With poly, polylog,
and negl we denote polynomial, polylogarithmic and negligible functions (in k)
respectively. Usually, we (implicitly) assume that poly, polylog, and negl are
monontone. A function negl is negligible if lim,_,, poly(x)negl(x) = 0 for every
polynomial poly. In many definitions, we assume the existence of a negligible
bound negl on some advantage ¢ = £(k). We use “strict pointwise <” for bounds,
i.e. € < negl denotes Vk: g(k) < negl(x).

Systems, algorithms, interaction and machine models. We always consider (in-
duced) systems, which offer interfaces for (message-based) communication.lﬂ
Input and output are modelled as interfaces as well. The security parameter « is
an implicit input interface of (almost) every system. A system is closed if its
only open interfaces are input for x and output, i.e. if it is a “sampling algorithm’
which on inputs x samples some output. Besides (black-box) oracle-access, an
algorithm A can have timed access to an oracle ©, which means A® can limit
the allotted time s of a call to © and is informed of the elapsed runtime ¢ when
O returns. We let t = timeout if © did not return in the allotted timespan s, i.e.
if t > s. We write bbrw(A) for black-box rewinding access to A.

i

Preliminary remarks on runtime. For an oracle algorithm A, we write timea (A?)
for the time spent in A, timeo(A®) for the time spent in ©, and timea o (A?)
for the time spent in both. This notation extends naturally to systems built
from interacting machines. Note that T = timea(AY) is a random wvariable.
We assume that an oracle call is a single step and that runtimes sum up, i.e.
timea (A9) + timeg (A?) = timea;0(AY), as dependent random variables.

19 We use an ad-hoc definition of system. A compatible, precise notion was recently
(concurrently) introduced in [22].

On expected polynomial runtime in cryptography 19

Definition 2. A runtime (distribution) T is a family of random variables
(resp. distributions) over Ng parameterized by the security parameter k. We (only)
view a runtime as a random variable T, : 2, — Ng, when stochastic dependency
is relevant. A runtime class T is a set of runtime distributions. A (sampling)
algorithm A is T -time if timea(A) € T, more explicitly, T,, = timea(A(k)) is
nJ.

Ezample 3. The runtime classes PPT and EPT of strict polynomial time (PPT)
and expected polynomial time (EPT) are defined in the obvious way, i.e.: T €
PPT (resp. T € 8PT) if there exists a polynomial poly such that P(7,, >

poly(r)) = 0 (vesp. E(T,) < poly(x)).

In any closed system, every component has an associated random variable,
describing the time spent in it. We only consider such runtimes (most often,
the total runtime). Hence, efficiency depends only on &, since closed systems
have no (other) input. In particular, we do not assign a stand-alone runtime
notion to a non-closed system, e.g. an algorithm A which needs inputs (besides
K), resp. oracle access, resp. communication partners. The exception to the rule
are a priori PPT resp. EPT algorithms A, for which there is a bound poly such
that timea(...) < poly resp. E(timea(...)) < poly for any choice of inputs, resp.
oracles, resp. parties.

Our central tool for dealing with expected time is truncation.

Definition 3 (Runtime truncation). Let A be an algorithm. We define ASYN
as the algorithm which executes A up to N steps, and then returns A’s output. If
A did not finish in time, ASYN returns timeout.

Probability theory. The underlying probability space is usually denoted by f2.
We allow product extension of {2 to suit our needs, say extending to 2/ = 2 x X
with Bernoulli distribution Ber(3) on X' = {0,1}. Random variables over {2 are
lifted implicitly and we again write {2 instead of 2. Let Ng U {oo, timeout} be
totally ordered via n < co < timeout for all n € Ny.

Definition 4 (v-quantile cutoff). Let T be a distribution on Nog U {oco} and
v > 0. Suppose that P(T = oo0) < v. The (exact) v-quantile (cutoff) T" is
following distribution on No U timeout. Let CDFp(-): Ng U {oco} — [0, 1] be the
CDF of T. Then CDFrv(-): Nog U timeout — [0, 1] is defined by CDFrv(n) =
min{1—v,CDFr(n)} for n € N, and CDFzv(00) = lim,,—, oo min{1—v, CDF7(n)},
hence P(T" = o00) =0, and CDF7v (timeout) =1,

It is easy to see that, perhaps after extending (2, there always is an event
A C 2 such that TV : is a v-quantile cutoff of T.

=T | Ar>timeout

Remark 2 (Equal-unless). If X,Y: {2 — & are random variables over {2 and
coincide (as functions), except for an event & C (2, then X and Y are (pointwise)
equal unless §. We extend this to oracles (and algorithms) in the natural way.

Definition 5 ((Oracle-)Indistinguishability). Let Oy and Oy be (not nec-
essarily computable) oracles with identical interfaces. A distinguisher D is a

20 Michael Kloof3

system which connects to all interfaces or Oy, Oy, resulting in a closed system
D%. The (standard) distinguishing advantage of D is defined by

AV, 0, (k) = [B@7 W (k) = 1) = P(D) (k) = 1)].

By abuse of notation, we sometimes abbreviate Adv%%oy@l by Adv%if(};.

Let T be a runtime class. Then Oy and Oy are computationally (standard)
indistinguishable in T -time, written Oy éy O1 if for any T -time distinguisher
D, i.e. timey (D) (k) € T (forb = 0,1), there is some negligible negl such that
Adv%if@t)(n) < negl. We define statistical T -query indistinguishability by counting
only oracle-queries as runtime. If all (unbounded) distinguishers have advantage
0, we speak of perfect indistinguishability and write Oy = Oy .

Indistinguishability of distributions X and Y [under repeated samples] is
defined in the natural compatible way, namely via oracles Ox and Oy which
outputs a single [a fresh] sample of X resp. Y [for each query]. By truncation
arguments, if a statistical EPT -query distinguisher exists, so does a statistical
PPT -query distinguisher, i.e. a strict polynomial number of queries suffice.

3 Computationally expected polynomial time

In this section, we define computationally expected polynomial time (CEPT).

Virtually expected time. We are interested in properties, which need only
hold with overwhelming probability. We formalize this for the expectation of
non-negative random variables as follows.

Definition 6 (Virtual expectation). Let X: 2 — R>qU{oo} Let ¢ > 0. We
say X has e-virtual expectation (bounded by) t if

3G C 0 PG)>1—¢ AEX|G) <t

We extend this to families by requiring it to hold component-wise. Moreover, we
say a runtime T is e-virtually t-time if T has e-virtual expectation bounded by
t. We abbreviate this as virtually expected (t,c)-time and call € the virtuality
of time (t,€). If we do not specify e, it is a negligible function.

Virtual expectation has a “probably approximately” flavour. It is closely re-
lated to “e-smooth properties”, such as e-smooth min-entropy. Virtual expectation
behaves well under restriction (up to a certain extent):

Let X: 2 — R>¢ be a random variable and E(X) = ¢. Then any restriction
of X to an event ¢ of measure 1 — ¢ implies E(X | §) < (1 — &)~ 't. The upshot
is that, as long as we condition on overwhelming (in fact, noticeable) events @,
polynomially bounded expectation is preserved.

On expected polynomial runtime in cryptography 21

Triple-oracle indistinguishability. To prevent technical artefacts in defi-
nitions of runtime classes and distinguishing-closedness, we use triple-oracle
indistinguishability. Triple-oracle distinguishing should be interpreted as distin-
guishing with repeated samples, plus sampling access to the distributions Xy, X;.
Recall that we always use binary encodings, and this includes runtime oracles
(even though unary encodings work there without change).

Definition 7. A triple-oracle distinguisher @ for distributions Xo, X1, re-
ceives access to three oracles ©g, O1 and Oy, which sample according to some
distributions Xo, X1, and Xp. The distinguishing advantage is Advg)_%gf@l =
P90 () = 1) = DD () = 1)].

Two runtime distributions T, S are computationally T -time triple-oracle
indistinguishable, if any T -time distinguisher has advantage o(1). If T contains
PPT, then (by amplification) any distinguisher has negligible advantage. For
statistical triple-oracle indistinguishability, we only count oracle queries as a step
(and often explicitly speak of statistical T -query distinguishers).m

A runtime class T is computationally closed if for any runtime S: If some
T € T is triple-oracle indistinguishable from S, then S € T .

In the definition, we sketched our approach for general runtime classes (namely
requiring o(1) advantage bound). This definition applies to runtime classes from
other algebras, such as polylog or quasi-polynomial time, and implicitly uses the
notion of negligible function for these algebras. From now on, we specialize to
the polynomial setting, where amplification enforces (poly-)negligible advantage.

Characterizing CEPT. We begin with the fundamental definitions.

Definition 8 (CEPT and CPPT). The runtime class CEPT of computa-
tionally expected polynomial time contains all runtimes which are (triple-
oracle) PPT -time indistinguishable from expected polynomial time: In other
words: A runtime T is CEPT if there is an EPT ZN“, such that T and T are
triple-oracle PPT-indistinguishable.

The runtime class CPPT of computationally (strict) probabilistic poly-
nomial time is defined analogously.

Now, we turn towards the characterization of CEPT. We start with a few sim-
ple lemmata. Their central technique is to approximate probability distributions
with suitable precision, and then use this information for distinguishing.

Lemma 5. Suppose S and T are runtimes and T € CEPT . Then statistical
CEPT -query and computational CEPT -time triple-oracle indistinguishability
coincide. Moreover, a priori PPT distinguishers are sufficient.

20 We never consider unbounded queries for statistical triple-oracle distinguishing, as
this trivially coincides with perfect indistinguishability.

22 Michael Kloof3

Proof (Proof sketch). Tt is clear that statistical indistinguishability implies com-
putational indistinguishability. The proof is quite simple, and based on standard
truncation arguments. For T' € CEPT there exists, by definition, some T € EPT
such that 7" and T" are computationally triple-oracle indistinguishable. Hence, for
any efficiently computable N = N(k), we have |[P(T > N) —P(T > N)| < negl.

To show that T and T are statistically triple-oracle indistinguishable, we
argue by contraposition and assume the statistical distance A(T,T) is at least
0= ﬁ infinitely often. Note that P(T > N) < %, where E(T') < poly,. Thus,

by truncating 7', T after, say N = 4poly,poly;, we know that 7=V and T=N are
distributions with polynomial support in {0, ..., N} and non-negligible statistical
distance g infinitely often. Since we have (repeated) sample access to T, T and the
challenge runtime, we can approximate the probability distributions up to any ﬁ
precision in polynomial time. Consequently, we can construct a (computational)
PPT distinguisher if 7" and T are not statistically PPT -query indistinguishable.
A similar line of reasoning show that 7" and S are computationally distinguishable
if they are statistically far.

Lemma 6. Let T and S be runtimes induced by algorithms A, B, and suppose
T € CEPT. Then triple-oracle and standard PPT -time indistinguishability
coincide.

Proof (Proof sketch). As in Lemma [6] after suitable truncation we can assume
that 7" and S, and hence A and B, are actually PPT. By sampling T resp. S via
emulation of A resp. B (instead of oracle queries), and a hybrid argument (over
challenge queries) the claim follows.

We stress that to efficiently distinguish two induced runtimes, it is sufficient that
one of the two algorithms is efﬁcient.@ Putting things together yields following
characterization of CEPT and CPPT:

Corollary 1 (Characterization of CEPT). Let T be a runtime. The fol-
lowing conditions are equivalent:

(0) T is in CEPT .

(1) T is PPT -time triple-oracle comp. indist. from some T € 697 .

(2) T is PPT -query triple-oracle stat. indist. from some T € 697 .

(3) T is virtually expected polynomial time. Explicitly: There is a negligible
function negl, an event ¢ with P(G) > 1 — negl, and a polynomial poly, such
that E(T, | §) < poly(k).

Furthermore, T € CEPT satisfies the tail bound P(T, > N) < %(H) + negl(k)
for poly and negl as in . Consequently, CEPT is a closed runtime class.
For induced runtimes T = timea(A), S = timeg(B), where T € CEPT, and S

2L If neither runtime is efficient, we are in a setting where the truncation argument does
not work. Indeed, strings can be encoded as numbers, hence runtimes. Thus, this is
indistinguishability of general distributions.

On expected polynomial runtime in cryptography 23

is arbitrary, triple-oracle indistinguishability and standard indistinguishability
coincide. The analogous characterization and properties hold for CPPT.

Proof (Proof sketch of Corollary . Equivalence of items and follows from
Lemma Now, we show implies As in Lemma we see that triple-oracle
indistinguishability implies statistical closeness. By assumption, there is some
T € 82T with A(T,T) < v negligible. Let S = T" be the v-quantile of T,
note that § < E(T), and let G be an event associated with the quantile, (which
exists, perhaps after extension of (2) that is, S = T|Q\g.—>timeout' Then we have

E(S) < E(T) < poly, and item easily follows. The converse is trivial.
To see the tail bound, note that for T' € CEPT there is a “good” runtime
T € 89T with A(T, T) < negl. Thus, the tail bound follows immediately from
Markov’s bound applied to T and statistical distance of negl. Hence, CEPT
distinguishers are as powerful as PPT distinguishers. Thus, CEPT is closed
Finally, for induced runtimes, Lemma[6] demonstrates the equivalence of triple-
oracle and standard distinguishing.

Proof (Proof sketch of Corollary . Equivalence of items and follows
from Lemma [5| For = |(3)| note that since T is statistically triple-oracle
indistinguishable from T and T' € &PT, we have that A(()T,T) = v is negligible.
The converse is trivial.

To see the tail-bound, note that for T' € CEPT there is a “good” runtime
T € 89T with A(T, T) < negl. Thus, the tail bound follows immediately from
Markov’s bound applied to T and statistical distance of negl. Hence, CEPT
distinguishers are as powerful as PPT distinguisher. Thus CEPT is closed.

Lemma [6] shows the equivalence of triple-oracle and standard distinguishing.

Remark 3 (Non-uniformity). As noted in the introduction, non-uniform advice
can replace sampling access. For non-uniform distinguishers, triple-oracle and
standard indistinguishability coincide. This simplifies Corollary

4 Application to zero-knowledge arguments

Our flavour of zero-knowledge follows Goldreich’s treatment of uniform complex-
ity |11], combined with Feige’s designated adversaries [9]. We only define efficient
proof systems for NP-languages.

Definition 9 (Interactive arguments). Let R be an NP-relation with corre-
sponding language L. An argument (system) for L consists of two interactive
algorithms (P, V) such that:

Efficiency: There is a polynomial poly so that for all (k,z,w) the runtime
timeg4o ((P(z,w),V(x))) is bounded by poly(x, |z|).
Completeness: V(z,w) € R: outy (P(z,w),V(x)) = 1.

24 Michael Kloof3

Definition [J] essentially assumes “classic” PPT algorithms, but it will be
evident that our techniques do not require this. We do not define soundness,
but note that it is easily handled via truncation to a PPT adversary. The
terms proof and argument systems are often used interchangeably (and we also
do this). Strictly speaking, proof systems require unconditional soundness and
allow unbounded provers. Argument systems allow computational soundness and
require efficient provers. All our exemplary proof systems [16} |15, [24] |29} |20, 28]
have efficient provers, hence are also argument systems.

4.1 Zero-knowledge

Definition 10. Let 7,8 € {PPT ,CPPT ,8PT ,CEPT }. Let (P,V) be an ar-
gument system. A universal simulator Sim takes as input (code(V*), x, aux)
and simulates V*’s output. Let (9,V*, D) be an adversary. We define the real
and ideal executions as

Realy (- (k) = (state, outy- (P (x,w), V*(x, aur)))
and Idealy gim(code(v+) (1) = (state, Sim(code(V"), z, aur))

where (x,w, auz, state) < I and (x,w) € R, else Real and ldeal return a failure
symbol, say L. We omit the input code({*) to Sim, if it is clear from the context.
The advantage of (9,V*,D) is

AV (k) = [P(D(Realy . (k) = 1) — P(D(Idealy gin(x)) = 1)].

An adversary (9,V*, D) is T -time if timeg g1+ 1o(D(Realg o)) € T.
The argument is (uniform) (auxiliary input) zero-knowledge against
T -time adversaries w.r.t. $-time Sim, if for any T -time adversary (9,9*,D):

— timegysimto (D(ldealy s;,)) € 8. The runtime of Sim includes whatever time
is spent to emulate V*. In a (generalized) sense, Sim is weakly (T, 8)-efficient
relative to P.

— Advé’fw@(n) is negligible

Some more remarks are in order.

Remark 4. In our setting, existential and universal simulation are equivalent.
The adversary Vniv, which executes aux as its code, is universal.

Remark &5 (Reductions to PPT). By a standard reduction to PPT, we may
w.l.0.g. assume that @ is a priori PPT. Perhaps surprisingly, this is false for J.
Intuitively, verifying the quality of the output of Sim requires only PPT @ (and
g). Verifying the efficiency, however, does not. The cause is that J may generate
expected poly-size inputs.

Remark 6 (Efficiency of the simulation). Deﬁnition only ensures that Sim is
weakly efficient relative to P, i.e. we have no tightness bounds. Relative efficiency
with tightness bounds is an unconditional property, and hence not possible if
zero-knowledge holds only computationally.

In the definition, it is possible to replace timeg sim+o (D (Idealg g;,)) € & with
timesim (D (Idealy ;,)) € &, since J is unaffected, and @ is w.l.o.g. a priori PPT.

On expected polynomial runtime in cryptography 25

Remark 7 (“Environmental” distinguishing: Why 9 outputs state). In Defini-
tion we allow J to output state, effectively making (J,D) into a stateful
distinguishing “environment”. Viewing Sim and & as oracles, this corresponds
to oracle indistinguishability. Without this, the security does not obviously help
when used as a subprotocol, since a protocol is effectively a (stateful) distinguish-
ing environment. Definition [10]is discussed in-depth in [21]. Here, we only note
that in the non-uniform classical PPT setting, it coincides with the standard
definition.

Remark 8. We seldom mention non-uniform zero-knowledge formulations in the
rest of this work. Our definitions, constructions and proofs make timed bb-rw use
of the adversary, and therefore apply in the non-uniform setting without change.

4.2 Application to graph 3-colouring

To exemplify the setting, the technical challenges, and our techniques, we use
the constant-round zero-knowledge proof of Goldreich and Kahan [15] as a
worked example. We only prove zero-knowledge, as completeness and soundness
are unconditional. Formal definitions of commitment schemes are in the full
version [21]. We assume left-or-right (LR) oracles in the hiding experiment for
commitment schemes. (Security against CEPT adversaries follows from security
against PPT adversaries by a simple truncation argument.)

The protocol. We recall G3CGK from Section[1.2] It requlres two non-interactive
commitments schemes; Com™ s perfectly hldmg, Com™®) is perfectly binding.
The common input is G = (V, F) and the prover’s witness is a 3-colouring .

(P0O) # sends ckpiqe < Gen(H)(/@). (ckpindg < Gen(B)(/@) is deterministic.)

(VO0) ¢ randomly picks challenge edges e; < E fori=1,...,N = k- card(E),
commits to them as ¢f = Com(H)(ckhide, ei), and sends all {cf}i=1, . N.

(P1) & picks randomized colourings v; for all i = 1,..., N and commits to
all node colours for all graphs in (sets of) commitments {{cf’] bievti=1,. N

using Com™®). @ sends all cw to V.

(V1) ¢ opens the commitments ¢ toe; foralli=1,...,N.

(P2) & aborts if any opening is 1nvahd or e; ¢ E for some i. Otherwise, for all
iterations ¢ = 1,..., N, # opens the commitments c;pa, ;bb for the colours of
the nodes of edge e; = (a,b) in repetition i. 7

(V2) ¢ aborts iff any opening is invalid, any edge not correctly coloured, or if
ckpide is bad. Otherwise, ¥ accepts.

In [15], delaying the check of ckpige to the end of the protocol weakens the
requirements on VfyCK, as the verifier may learn setup randomness of ckpjqe at
that point. But this is irrelevant for zero-knowledge.

26 Michael Kloof3

Proof of zero-knowledge. Our goal is to show the following lemma.
Lemma 7. Suppose Com™ and Com™® are a priori PPT algorithms. Then
protocol G3Cqk in Section [[.9 is zero-knowledge against CEPT adversaries
with a bb-rw CEPT simulator. Let (9,V*) be a CEPT adversary and suppose
T := timep,y-(Realg) is (t,€)-time. Then Sim handles (9,V*) in virtually
expected time (t',2e +&'). Here &' stems from an advantage against the hiding
property of Com(B), hence €' negligible. If the time to compute a commitment
depends only on the message length, then t' is roughly 2t.

Our proof differs from that in [15] on two accounts: First, we do not use the
runtime normalization procedure in [15]. This is because a negligible deviation
from EPT is absorbed into the CEPT virtuality, namely &’. Second, we handle
designated CEPT adversaries. In particular, the runtime classes of simulator
and adversary coincide. We first prove the result for perfect EPT adversaries.

Lemma 8. The claims in Lemma[7 hold if T € EPT , i.e. e = 0.

Proof (Proof sketch). We proceed in game hops. The initial game being Realg -
and the final game being ldeal g;,. We consider (timed) bb-rw simulation.

Game G is the real protocol. The output is the verifier’s output and state
(from 9). From now on, we ignore the state output, since no game hop affects it.

Game Gj: If the verifier opens the commitments in correctly, the game
repeatedly rewinds it to using fresh prover randomness, until it obtains a
second run where ¢* unveils the commitments correctly (in|(V1)). The output is
*’s output at the end of this second successful run. If the verifier failed in the
first run, the protocol proceeds as usual. The outputs of G; and Gy are identically
distributed. It can be shown that this modification preserves (perfect) EPT of
the overall game, i.e. Gy is perfect EPT. More precisely, the (virtually) expected
time is about 2t (plus emulation overhead). To see this, use that each iteration
executes P’s code with fresh randomness. For the analysis, condition to fix the
randomness of everything but %; averaging over the randomness of ¢, ¥* (and
@), then extends the reasoning again. Since bb-rw-access fixes the randomness of
* between rewinds, the probability that ¥/* opens the commitment in step
is p in each (independent) try. Hence, the number of rewinds is distributed
geometrically, and 1+p> 22 i-p(1—p)*~! = 2 is the expected number of overall
iterations (including the first try). Consequently, the expected runtime doubles
at most.Z

Game Ga: Test if both (valid) openings of ¥*’s commitments in open to
the same value. Else, Gy outputs ambig, indicating equivocation of the commit-
ment. This modification hardly affects the runtime, so it is still bounded roughly
by 2t. The probability for ambig is negligible, since one can (trivially) reduce to an

2 Formally arguing that the expected time is bounded by 2t is a bit more technical than
for strict time bounds. But it follows easily from the independence of the iterations
(due to fresh prover randomness), and the fact that ¢, in particular, upper bounds
the expected time per iteration.

On expected polynomial runtime in cryptography 27

adversary against the binding property of Com™®). That is, there is an adversary
B such that [P(D(out(Gz) = 1)) — P(D(out(G;) = 1))| = AdvP%s, (B).

In Game Gg, the initial commitments (in to 3-colourings are replaced
with commitments to 0. These commitments are never opened. Thus, we can
reduce distinguishing Games 2 and 3 to breaking the hiding property of Com®)
modelled as left-or-right indistinguishability. More precisely, the reduction con-
structs real resp. all-zero colourings, and uses the LR-challenge commitment
oracle Oy, which receives two messages (mg, m1) and commits to my. Use myg to
commit to the real colouring (left), whereas m; is the all-zero colouring (right).
The modification of Gy to “oracle committing” yields an EPT Game Go/ (in-
stantiated with ©p). The modification of Gz to Gz (with ©;) is CEPT. This
follows immediately from the standard reduction, because Games Gy and Gg
differ only in their oracle, and the case of ©y is EPT. More precisely, the
standard reduction applied to ©y and ©; yields an adversary B such that
IP(D(out(Gs)) = 1) — P(D(out(Gy)) = 1)| > 1 AdvPde, (B) infinitely often,
assuming @B has non-negligible advantage.

Consequently, Game Gg is efficient with (oracle) runtime T3 ~ T5:, and the
output distributions of Games Gy and Ggs are indistinguishable. Finally, note
that Game Gz and Gy only differ by (not) using oracle calls. Incorporating these
oracles does not affect CEPT (as Oy is an a priori PPT oracle). Thus, G3 is
efficient (i.e. CEPT) as well. Assuming the time to compute a commitment
depends only on the message length, a precise analysis shows, that the (virtually)
expected time is affected negligibly (up to machine model artefacts).

In Game G4, the commitments in the reiterations of are replaced by
commitments to pseudo-colourings for each e;, that is, at the challenge edge
ei, two random different colours are picked, and all other colours are set to 0.
If V* equivocates, the game outputs ambig. The argument for efficiency and
indistinguishability of outputs is analogous to the step from Game Go to Game Gs.
It reduces all replacements to the hiding property in a single step. This is possible
since our definition of hiding is left-or-right oracle indistinguishability with an
arbitrary number of challenge commitments. As before, a precise analysis shows
that the (virtually) expected time is affected negligibly.

All in all, if Gp runs in (virtually) expected time ¢, then G4 runs in expected
time about 2¢, ignoring the overhead introduced by bb-rw emulation, etc. Moreover,
the output is indistinguishable, i.e. |P(D(out(Gy)) = 1) — P(D(out(Gp))) = 1| <
negl.

The simulator is defined as in G4: It makes a first test-run with an all-zeroes
colouring. If the verifier does not open its challenge commitment in Sim
aborts (like the real prover in . Otherwise, it rewinds ¢¥* (and uses pseudo-
colourings) until ¥* opens the challenge commitment again, and outputs the
verifier’s final output of this run (or ambig). (To prevent non-halting executions,
we may abort after, e.g., 22% steps. But this is not necessary for our results.)

We point out some important parts of the proof: First, in Game Gy, rewinding
and its preservation of EPT is unconditional. That is, rewinding is separated
from the computational steps happening after it. Second, since the simulator’s

28 Michael Kloof3

time per iteration is roughly that of prover and verifier, the total simulation time
is CEPT (and roughly virtually expected 2t).

There is only one obstacle to extend our result to CEPT adversaries. It
is not obvious, whether the introduction of rewinding in G; preserves CEPT.
Fortunately, this is quite simple to see: The probability that a certain commitment
is sent in increases, since the verifier is rewound and many commitments
may be tried. However, the probability only increases by a factor of 2. Thus,
“bad” queries are only twice as likely as before.

Proof (Proof sketch of Lemma @ Go to Gi: Fix the first message ckpjge Of
P to bbrw(¥*) and the randomness of ¥* (which is fixed since we consider a
bb-rw oracle). Let py(c) be the probability, that in protocol step Gy, sends
c= {{ngj}jEV}i:L...,N to bbrw(1*) at least once. (For Gg, also at most once.
But rewinding in G; increases the chances.) Let v; denote the i-th query sent
in step (or L if none was sent), let the random variable I denote the total
number of queries. Then

o0

pi(c) = PEj<i:yy=cAnI<y) < Z]P’(IZZ’/\’VZ-:C)
i=1

= ZP(Izi)P(w:cllzw < ZP(Izz‘)~po(c) = E(I) - po(o).

In the penultimate equality, we use that, for any fixed i, ; is a fresh random
commitment (or never sampled, if I <). As argued before, E(I) = 2, hence
p1(c) < 2pp(c). Thus, the probability pi(c) for Gy to issue query c is at most twice
that of Gg. By averaging over first messages ¢ (according to prover randomness),
the derivation extends to our setting of interest, where ¢ is chosen randomly by
&P. Next, we conclude from this, that the virtuality at most doubles.

We argue similar to the “good set/runtime” from Corollary [1, but with
interactive machines. That is, we define an oracle ¥/, which will be EPT, as
follows: Consider the “behavioural decision” tree for /* where the root has edges
which are labelled by a choice of random tape for ¢/*. The edges in lower layers
are labelled by messages which * can receive. The nodes are labelled with the
runtime spent to answer the string of message on the path. We can now construct
a runtime cutoff at ¢ as follows: Replace every node which is labelled with ¢ > ¢
by a timeout node. Let ¥’ be a oracle which acts according to this decision tree.
That is, ¢V acts exactly like *, except if a timeout node is chosen. In that case
¢’ outputs timeout and shuts down. Thus, ¥* and ¥’ are equal until timeout.
Suppose for simplicity, that there is a superpolynomial ¢, such that truncation at
t yields an EPT ¢, i.e. timey (Go) is EPT [

23 There are two small problems, which are dealt with in detail in the full version [21].
First, we argued using runtime cutoffs instead of quantile cutoffs (without justifica-
tion). Assuming there exists a unique ¢ such that P(T < t¢) = 1 — v, then the cutoff
at t is the v-quantile. Otherwise, defining ¢’ is a bit more technical. The second
problem is that ¥ is not an algorithm, it is a “timeful system”, i.e. a system which

On expected polynomial runtime in cryptography 29

Denote by Gf, the modification of Gy which uses /" instead of ¢*, and let G
immediately output timeout if ¢ does. Then timey.(Gj) is EPT by construction,
and essentially equals the virtual expected time of timey+(Gp). The statistical
distance A(Gy, Gj) is exactly the probability that ¢ outputs timeout. Let G}
be defined analogously to Gj,.

Let timeout(query) be 1 if query causes a timeout and 0 otherwise. Then

Pg; (timeout) = Z timeout(query) - p1(query)
query
<2 Z timeout(query) - po(query) = 2 - Pg (timeout).

query

Since the probability for timeout bounds the virtuality if we use * instead of ¥/,
this shows that Gy is CEPT, with virtuality 2e. If Gy always halts, the outputs
of G; and Gq are identically distributed. In general, the statistical distance is (at
most) 2 - P(Gg = nohalt); this follows as for virtuality, which must encompass
the probability of non-halting executions. Conditioned on halting executions, the
distributions Gg and G; are identical. The transition to Go now relies on the
standard reduction, all other steps of Lemma [§| apply literally.

In the full version [21], we abstract the above proof strategy, by defining
rewinding strategies, reductions to “simple assumptions”; and benign simulators,
as sketched in the introduction.

Remark 9. With an analogous proof, one finds that the simulator in [15] is also
a CEPT simulator. Its advantage is, that it handles adversaries which are a
priori PPT, as well as EPT w.r.t. any reset attack |14, without introducing any
“virtuality”, i.e. the simulation is EPT. On the other hand, it increases virtuality
of CEPT adversaries by a larger factor.

5 Hybrid argument and sequential composition

We formally state the hybrid lemma, and sketch its application to composition
of zero-knowledge proofs.

5.1 Hybrid lemma

Definition 11 (Relative efficiency). Let A and B be two (interactive) al-
gorithms with identical interfaces. We say that B is weakly (7,S8)-efficient
relative to A w.r.t. (implicit) runtime classes T, 8, if for all distinguishing
environments & (which yield closed systems (8,A), (&,B)) we have

timeg4a({(E,A)) € T = timeg1a((6,B)) € S.

has an associated notion of runtime. One way around this is to note that we do not
need V' to be an algorithm. It is merely a formalism to track the change of virtuality.

30 Michael Kloof3

In the following, we assume 7 = & = CEPT unless specified otherwise. Note
that, except for notation, Definition [T1] considers oracle indistinguishability.

Ezample 4. Viewing the real (resp. simulated) interaction in Definition as

oracles Op (resp. Osim), security implies that Ogp ~ Osim and Og;, is weakly
efficient relative to Oy

Now, we define a natural generalization of distinguishing with repeated
samples, but for general oracle indistinguishability.

Definition 12 (Repeated oracle access). Let © be an oracle. We denote by
rep(©) an oracle which offers repeated access to independent instances of ©. We
denote by rep,(©) an oracle which limits access to a total of q instances of O.

Note that rep(©) = rep,(©). We can now state the hybrid argument.

Lemma 9 (Hybrid-Lemma for CEPT). Suppose Oy is weakly efficient
relative to Oy and suppose O ~ ©1. Let © be an algorithm with oracle-
access to rep(Qy), and suppose that timeg i ep(0y) (D)) € CEPT. Then
time@+,ep(@1)(@'ep(@l)) € C8PT and the distinguishing advantage is

|P(®rep(©0) =1)— P(@rep(@ﬂ =1)| < negl.

That is, rep(O1) is weakly efficient relative to rep(Qp), and rep(©y) ~ rep(©Oy).

Due to limited pages, we refer to the introduction (Section for a proof
sketch. A full proof is given in [21].

5.2 Sequential zero-knowledge

Definition 13 (Sequential zero-knowledge). Let (P,V) be a zero-knowledge
argument. Suppose Sim is a universal simulator. Modify Definition [I(as follows:
Replace 9 by &° which can repeatedly call its oracle © (either Ogp or Ogim).
Define real and ideal executions and the advantage accordingly. For security,
require the analogue of the efficiency for Sim and negligible advantage.

Some remarks are in order. First, one V* is fixed for all calls to ©, but one
may assume a universal * anyway. Second, & can adaptively choose (z,w, aur)
in its call to ©. Third, effectively, Deﬁnitionstipulates that rep(Osi) is weakly
efficient relative to rep(Qy), and rep(Osim) ~ rep(Qy).

We are now ready to state and prove the sequential composition lemma.

Lemma 10 (Sequential composition lemma). Let (P,1V) be an argument
system. Suppose Sim is a simulator for auziliary input zero-knowledge (which
handles CEPT adversaries in CEPT). Then (P,V) is sequential zero-knowledge
(with the same simulator Sim).

The proof is an almost trivial consequence of the hybrid lemma.

On expected polynomial runtime in cryptography 31

Proof. Let (&,V*,D) be a CEPT adversary against sequential zero-knowledge.
Let Ogp(z,w, auzr) and Ogm(z, w, auz) be as in Definition By definition,

Realg . (k) = outg (&, rep(Ogp)) and Idealg g;p, (k) = outs (&, rep(Osim))

Define a distinguisher A for rep(QOp) and rep(Osim) as D (outg(8, rep(©))). Now,
we are in the usual setting of oracle (in)distinguishability. Since Sim is an auxiliary
input zero-knowledge simulator for (2, V), we have that Os;n, is weakly efficient

relative to Op and that Oy ~ Ogim. Thus, the hybrid lemma (Lemma @) is

applicable. Hence rep(©gp) is weakly relative efficient to rep(Os;n) and rep(©Ogp) ~
rep(Osim). This concludes the proof.

Remark 10. In the real-ideal setting for secure function evaluation (SFE), our
definition of auxiliary input and sequential security are analogous to zero-knowl-
edge. The modular sequential composition theorem [5, |19] stipulates that if a
protocol 7 is secure in F-hybrid model (and uses F-calls sequentially), then it
7P is secure, where F-calls are replaced by subprotocol calls to p, and p securely
realizes F. Even in our a posteriori setting, the proof is straightforward, since it
is basically an application of the hybrid lemma, similar to Lemma

Acknowledgements. 1T am grateful to Alexander Koch and Jérn Miiller-Quade for
feedback on an entirely different approach on EPT, and to Dennis Hofheinz for
essentially breaking said approach. I also extend my gratitude to the reviewers
of CRYPT0’20/21 and TCC’21, and to Akin Unal and Marcel Tiepelt, whose
suggestions helped to improve the overall presentation. Special thanks go to the
reviewers of TCC’20 and Dakshita Khurana for great feedback, which eventually
resulted in the addition of the hybrid lemma. This work was supported by
KASTEL Security Research Labs.

References

[1] Boaz Barak. “How to Go Beyond the Black-Box Simulation Barrier”. In: 42nd
Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-17
October 2001, Las Vegas, Nevada, USA. IEEE Computer Society, 2001.

[2] Boaz Barak and Yehuda Lindell. “Strict Polynomial-Time in Simulation and
Extraction”. In: SIAM J. Comput. 33.4 (2004).

[3] Andrej Bogdanov and Luca Trevisan. “Average-Case Complexity”. In: Foundations
and Trends in Theoretical Computer Science 2.1 (2006).

[4] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography.
Version 0.5. 2020.

[5] Ran Canetti. “Security and Composition of Multiparty Cryptographic Protocols”.
In: J. Cryptol. 13.1 (2000).

[6] Kai-Min Chung, Edward Lui, and Rafael Pass. “From Weak to Strong Zero-
Knowledge and Applications”. In: TCC (1). Vol. 9014. Lecture Notes in Computer
Science. Springer, 2015.

[7] Ning Ding and Dawu Gu. “On Constant-Round Precise Zero-Knowledge”. In:
ICICS. Vol. 7618. Lecture Notes in Computer Science. Springer, 2012.

[14]

[15]

[16]

[17]
18]
[19]
[20]
[21]
22]
23]
[24]

[25]
[26]

[27]
[28]

[29]

Michael Kloof3

Cynthia Dwork, Moni Naor, Omer Reingold, and Larry J. Stockmeyer. “Magic
Functions”. In: J. ACM 50.6 (2003).

Uriel Feige. “Alternative models for zero-knowledge interactive proofs”. PhD
thesis. Weizmann Institute of Science, 1990.

Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive Arguments
From All Falsifiable Assumptions”. In: JACR Cryptol. ePrint Arch. 2010 (2010).
Oded Goldreich. “A Uniform-Complexity Treatment of Encryption and Zero-
Knowledge”. In: J. Cryptology 6.1 (1993).

Oded Goldreich. “Average Case Complexity, Revisited”. In: Studies in Complexity
and Cryptography. Vol. 6650. Lecture Notes in Computer Science. Springer, 2011.
Oded Goldreich. “Notes on Levin’s Theory of Average-Case Complexity”. In:
Studies in Complexity and Cryptography. Vol. 6650. Lecture Notes in Computer
Science. Springer, 2011.

Oded Goldreich. “On Expected Probabilistic Polynomial-Time Adversaries: A
Suggestion for Restricted Definitions and Their Benefits”. In: J. Cryptology 23.1
(2010).

Oded Goldreich and Ariel Kahan. “How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP”. In: J. Cryptology 9.3 (1996).

Oded Goldreich, Silvio Micali, and Avi Wigderson. “Proofs that Yield Nothing But
their Validity and a Methodology of Cryptographic Protocol Design (Extended
Abstract)”. In: FOCS. IEEE Computer Society, 1986.

Shai Halevi and Silvio Micali. “More on Proofs of Knowledge”. In: TACR Cryptol.
ePrint Arch. 1998 (1998).

Dennis Hofheinz, Dominique Unruh, and Jérn Miiller-Quade. “Polynomial Run-
time and Composability”. In: J. Cryptology 26.3 (2013).

Jonathan Katz and Yehuda Lindell. “Handling Expected Polynomial-Time Strate-
gies in Simulation-Based Security Proofs”. In: J. Cryptology 21.3 (2008).

Joe Kilian and Erez Petrank. “Concurrent and resettable zero-knowledge in
poly-loalgorithm rounds”. In: STOC. ACM, 2001.

Michael Kloo8. “On (expected polynomial) runtime in cryptography”. In: JACR
Cryptol. ePrint Arch. (2020).

David Lanzenberger and Ueli Maurer. “Coupling of Random Systems”. In: JACR
Cryptol. ePrint Arch. 2020 (2020).

Leonid A. Levin. “Average Case Complete Problems”. In: STAM J. Comput. 15.1
(1986).

Yehuda Lindell. “A Note on Constant-Round Zero-Knowledge Proofs of Knowl-
edge”. In: J. Cryptol. 26.4 (2013).

Silvio Micali and Rafael Pass. “Local zero knowledge”. In: STOC. ACM, 2006.
Moni Naor. “On Cryptographic Assumptions and Challenges”. In: CRYPTO.
Vol. 2729. Lecture Notes in Computer Science. Springer, 2003.

Rafael Pass. “A precise computational approach to knowledge”. PhD thesis.
Massachusetts Institute of Technology, Cambridge, MA, USA, 2006.

Rafael Pass, Wei-Lung Dustin Tseng, and Muthuramakrishnan Venkitasubrama-
niam. “Concurrent Zero Knowledge, Revisited”. In: J. Cryptology 27.1 (2014).
Alon Rosen. “A Note on Constant-Round Zero-Knowledge Proofs for NP”. In:
TCC. Vol. 2951. Lecture Notes in Computer Science. Springer, 2004.

	On expected polynomial runtime in cryptography
	Introduction
	Obstacles
	Motivation: Reproving zero-knowledge of graph 3-colouring
	Contribution
	Technical overview and results
	Related work
	Separations
	Structure of the paper

	Preliminaries
	Computationally expected polynomial time
	Application to zero-knowledge arguments
	Zero-knowledge
	Application to graph 3-colouring

	Hybrid argument and sequential composition
	Hybrid lemma
	Sequential zero-knowledge

