
Doubly Efficient Interactive Proofs over Infinite
and Non-Commutative Rings

Eduardo Soria-Vazquez

Technology Innovation Institute, UAE.
ORCID: 0000-0002-4882-0230

eduardo.soria-vazquez@tii.ae

Abstract. We introduce the first proof system for layered arithmetic
circuits over an arbitrary ring R that is (possibly) non-commutative and
(possibly) infinite, while only requiring black-box access to its arithmetic
and a subset A ⊆ R. Our construction only requires limited commutativ-
ity and regularity properties from A, similar to recent work on efficient
information theoretic multi-party computation over non-commutative
rings by Escudero and Soria-Vazquez (CRYPTO 2021), but furthermore
covering infinite rings.
We achieve our results through a generalization of GKR-style interactive
proofs (Goldwasser, Kalai and Rothblum, Journal of the ACM, 2015).
When A is a subset of the center of R, generalizations of the sum-check
protocol and other building blocks are not too problematic. The case
when the elements of A only commute with each other, on the other hand,
introduces a series of challenges. In order to overcome those, we need to
introduce a new definition of polynomial ring over a non-commutative
ring, the notion of left (and right) multi-linear extensions, modify the
layer consistency equation and adapt the sum-check protocol.
Despite these changes, our results are compatible with recent develop-
ments such as linear time provers. Moreover, for certain rings our con-
struction achieves provers that run in sublinear time in the circuit size.
We obtain such result both for known cases, such as matrix and poly-
nomial rings, as well as new ones, such as for some rings resulting from
Clifford algebras. Besides efficiency improvements in computation and/or
round complexity for several instantiations, the core conclusion of our
results is that state of the art doubly efficient interactive proofs do not
require much algebraic structure. This enables exact rather than approx-
imate computation over infinite rings as well as “agile” proof systems,
where the black-box choice of the underlying ring can be easily switched
through the software life cycle.

1 Introduction

Interactive proofs (IPs) are a natural extension of the standard notion of a
mathematical proof, where the verifier checking a proof is allowed to interrogate
the prover who is providing it. They were introduced by Goldwasser, Micali and
Rackoff [GMR89] in the 1980s and they soon made a huge impact in complexity

theory. IPs have also been influential to practical proof systems, for which a
lot of progress took place during the last decade. Usually, in those schemes, the
prover tries to convince a verifier about the correctness of the evaluation of a
circuit consisting of addition and multiplication gates. Moreover, the arithmetic
of this circuit is often over a finite field, no matter how well represented under
these constraints is the original computation whose correctness is being checked.

In 2008, Goldwasser, Kalai and Rothblum (GKR) presented the first doubly-
efficient interactive proof [GKR15], where the prover is only required to perform
a polynomial amount of work in the size of the (layered, over a finite field)
arithmetic circuit and the verifier only needs to be quasi-linear in the same
parameter. The prover’s effort was later improved to quasi-linear [CMT12] and
finally linear [XZZ+19] for the same family of circuits in 2019. Recently, the
restriction to layered circuits was removed [ZLW+21] without affecting the linear
complexity of the prover and only a slight increase in the verifier’s work for non-
layered circuits. In this work we are interested in a different kind of generalization
of the GKR protocol. Namely, we set out to answer the following question:

“Let C be a layered arithmetic circuit over a ring R. What algebraic
properties does R need to satisfy in order to construct a doubly-efficient
IP for C’s correct evaluation, without emulating R’s arithmetic?”

The most relevant part of our quest is that of avoiding the emulation of R’s
arithmetic, which we refer to as being black-box over R. We answer this question
in a partial but constructive way by providing a doubly-efficient IP for rings R
that are possibly non-commutative as well as infinite.

The black-box nature of our constructions has a theoretical interest, in the
tradition of finding lower bounds and reducing assumptions. Namely, it helps
us understand what are the minimum algebraic properties that need to be as-
sumed for proof systems and their underlying techniques to go through, and
how does this affect their complexity. Whereas this path has been more ex-
plored in the context of Multi-Party Computation (MPC, see e.g. [CFIK03,
CDI+13, ACD+19, DLS20, ES21] just to name a few), it has been strangely
overlooked in the context of proof and argument systems, with notable excep-
tions [AIK10, HR18, CCKP19, GNS21, BCFK21, BCS21]. The main take-away
of our work is that, when it comes to GKR-style protocols and their complexity,
the algebraic properties of the ring do not matter much as long as it contains a
big enough set with “good enough” regular and commutative properties. Since
infinite rings are allowed, this is a superset of the rings for which we know how
to build efficient information-theoretic MPC in a black-box manner [ES21].

Besides the theoretical aspects of our work, we expect its generality to find
applications in practice. Practically relevant infinite rings (such as the integers)
and fields (such as rational or real numbers) as well as non-commutative rings
(such as matrices and quaternions) did not fit previous systems. Their arithmetic
had to be emulated (at best) or approximated (at worst) when compiled into cir-
cuits over either finite fields or finite commutative rings [CCKP19]. Avoiding this
compilation step can bring improvements in several fronts. First of all, removing
this stage simplifies the practitioners’ work, who can now be agile with respect

2

to the choice of rings that are more commonplace than finite fields. If, after de-
ployment, they need to provide a new proof system with a different underlying
arithmetic, they could simply change the underlying data type that represents
the ring, rather than having to develop an ad-hoc compiler. Moreover, working
natively over such data types (algebraic structures) allows them to easily use
existing software libraries for those, since their arithmetic does not need to be
compiled into circuits. This, in turn, results in circuits with significantly less
gates, which can ultimately result in better concrete efficiency in terms of com-
putation and round complexity. Finally, the soundness error of our black-box IP
can also benefit from working over these rings. We encourage to read specific
applications and instantiations in the full version [Sor22].

Related work. In [AIK10] Applebaum, Ishai and Kushilevitz show how to con-
struct a verifiable computation protocol out of message authentication codes
(MACs) and randomized encodings (REs). For their construction to be a proof
rather than an argument system, it would need to use information-theoretic
MACs and statistically secure REs. It is a longstanding open problem whether
such statistical REs could efficiently support layered arithmetic circuits over
the non-commutative and infinite rings that we support, or even finite fields.
In particular, such REs would imply efficient constant-round statistically secure
multi-party computation protocols for such circuits, which in turn solves an open
problem about locally decodable codes of quasi-polynomial parameters [IK04].

In 2013, Meir [Mei13] demonstrated how the IP = PSPACE result can
be proven using error-correcting codes (ECCs) that are more general than low
degree polynomials. Along the way, the sum-check protocol is generalized to
work with tensor products of linear ECCs. While that work is also interested
in reducing algebraic assumptions, the results and ECCs are defined over finite
fields. Whereas Meir’s goal is to provide a new proof for a complexity theory
result, we want to expand the amount of rings that one can use in a black-box
way for GKR-style protocols and we care about concrete efficiency.

1.1 Technical overview

The GKR protocol [GKR15] is a doubly-efficient interactive proof for the evalua-
tion of a layered arithmetic circuit, which consists of addition and multiplication
gates of fan-in two. Parties move from the output (0-th layer) to the input layer
(D-th layer) one layer at a time. Each gate in the i-th layer is supposed to
take inputs from two wires in layer i + 1, and so the output wires of the i-th
layer gates are checked to be consistent with the ones in the preceding layer.
Let V (i) : {0, 1}si → F be the function that maps the string x to the value of
the x-th wire in layer i. Thus, layer i has (up to) 2si wires. Furthermore, let
add(i+1) : {0, 1}si × {0, 1}si+1 × {0, 1}si+1 → {0, 1} be the function satisfying
add(i+1)(z, x, y) = 1 if the z-th wire on layer i is the addition of the x-th and
y-th wires in layer i+ 1, otherwise add(i+1)(z, x, y) = 0. Define mult(i+1) analo-

gously. If we use f̂ ∈ F[~X] to denote a (low degree) multivariate polynomial such

3

that for all a ∈ {0, 1}s, f̂(a) = f(a), we can express layer consistency as follows:

V̂ (i)(~Z) =
∑

x,y∈{0,1}si+1

(
m̂ult

(i+1)
(~Z, x, y) ·

(
V̂ (i+1)(x) · V̂ (i+1)(y)

)
+

+ âdd
(i+1)

(~Z, x, y) ·
(
V̂ (i+1)(x) + V̂ (i+1)(y)

))
. (1)

The advantage of using the polynomial extensions V̂ (i), V̂ (i+1), m̂ult
(i+1)

and

âdd
(i+1)

is that the previous equation can be easily checked using the sum-check
protocol [LFKN92]. Originally, as well as for most of its subsequent literature, the
GKR protocol only worked for circuits over finite fields. Chen et al. [CCKP19]
showed how to extend this result to finite commutative rings as long as the
points used to define the polynomial extensions and the random challenges from
the verifier belong to a set A = {a1, . . . , an} where ∀i 6= j, ai − aj is not a zero
divisor. In our work, we denote such A a regular difference set.

As we realized, removing the finiteness assumption from [CCKP19] does
not introduce any additional problems. Even if R is infinite, we only need a
finite regular difference set A. On the other hand, when R is not commuta-
tive, we are presented with several issues. First, the definition of a polynomial
ring with coefficients in R is not straightforward. One easily finds obstacles re-
lated to whether polynomial evaluation is a ring homomorphism (i.e., whether
f(a)+g(a) = (f+g)(a) and f(a) ·g(a) = (f ·g)(a)) or other crucial results, such
as Euclidean division or bounding the number of roots of a polynomial. Never-
theless, if we restrict the regular difference set A to be contained in the center
of the ring (i.e., ∀r ∈ R, a ∈ A, a · r = r · a), then Equation (1) (and multi-linear
extensions, the sum-check protocol, etc.) behave as expected. In this scenario,
which we discuss in Section 4, we use the most common definition for polynomial
over non-commutative rings (Definition 9, the same as in [ES21]).

The most challenging part of our work comes from relaxing the commu-
tativity requirement on A, so that rather than A ⊂ Z(R), we only ask that
∀ai, aj ∈ A, ai · aj = aj · ai. This was also the most difficult family of rings
in [ES21], where Escudero and Soria-Vazquez showed how to build efficient
information-theoretic MPC protocols with black-box access to such a ring1. Em-
ploying the same polynomial ring definition as in [ES21] fails in our context. This
poses the question of whether there are inherently more algebraic limitations for
doubly-efficient IPs than there are for information theoretic MPC, potentially
ruling out these “less commutative” rings. Fortunately, we overcome most prob-
lems by putting forward a new polynomial ring definition (Definition 12) in
Section 3, the notion of sandwich (and toast) polynomials (Section 3.1) and re-
working many basic algebraic results related to these new polynomials. We show
that there is no unique notion of multi-linear extension (MLE) in this setting,
so we have to define both left and right MLEs. Equipped with these results,
in Section 5 we show how to modify the layer consistency equation so that it

1 In fact, in [ES21] they only show how to work with finite rings in that family. An
example interesting ring in this setting is Mn×n(F2), which has F2n as a subfield.

4

becomes a sandwich polynomial. We need to do this carefully, so that it is a
toast polynomial on every indeterminate. Finally, we provide a new sum-check
protocol for this layer consistency equation (Section 5.3), which we show how
the prover can run run in linear time in Section A.

2 Preliminaries

Notation. We use [i, j], where i < j, to represent the set of positive integers
{i, i + 1, . . . , j}, and simply [n] to represent {1, 2, . . . , n}. Sometimes, we may

use arrows to denote vectors, e.g. ~b = (b1, . . . , bn). For a “sub-interval” of the

elements of a vector, we might denote use ~b[i,j] = (bi, . . . , bj).

2.1 Interactive proofs and the GKR protocol

In order to capture more naturally our results, we present these definitions in
terms of the prover P trying to convince a verifier V that the application of an
arithmetic circuit C over a ring R on some input inp results on a specific output
out, where inputs and outputs are elements of R.

Definition 1. Let C be an arithmetic circuit over a ring R. A pair of interactive
machines 〈P,V〉 is an ε-sound interactive proof (IP) for C if, on a claimed output
out by P:

– Completeness: For every inp s.t. C(inp) = out, it holds that Pr[〈P,V〉(inp) =
accept] = 1.

– ε-Soundness: For any inp s.t. C(inp) 6= out, and any P∗, it holds that
Pr[〈P∗,V〉(inp) = accept] ≤ ε.

We say that an interactive proof has the succinct property if the running
time of V and the total communication between P and V is poly(|x|, log(|C|)).

The sum-check protocol Given an n-variate polynomial f : Fn → F, the
sum-check protocol [LFKN92] allows a verifier to outsource the computation

of
∑
~b∈{0,1}n f(~b) to a prover. If the verifier was to do this on their own, it

would take them O(2n) time. Let d be an upper bound on the degree of each
individual variable of f . The sum-check protocol is an n-round interactive proof
for this task, where both the proof size and the verifier’s work is O(n · d) and
the soundness error is ε = n · d · |F|−1. For a full description see either [LFKN92]
or the full version of this work.

The GKR protocol The basics of how circuits and wire values are represented
in the GKR protocol have been explained at the beginning of Section 1.1. Here we
give a bit more details about how Equation (1) is combined with the sum-check
protocol and how to progress from the output to the input layer. P first sends the
claimed output to V, consisting of 2s0 different values. V defines a multi-linear

5

polynomial V̂ (0) : Fs0 → Fs0 which extends V (0), samples a random γ ∈ Fs0 and
sends it to P. Both parties then evaluate V̂ (0)(γ) and run a sum-check protocol
on Eq. (1) for i = 0 and evaluated at γ. Let fi(~Z,~X,~Y) be the function such
that Eq. (1) is V̂ (i)(~Z) =

∑
x,y∈{0,1}si+1 fi(~Z, x, y). At the end of the protocol, V

needs to compute f0(γ, χ, ψ), where χ, ψ ∈ Fs1 are two random values produced

throughout the sum-check execution. Whereas V can evaluate âdd
(1)

(γ, χ, ψ)

and m̂ult
(1)

(γ, χ, ψ) on their own, it has to ask P for V̂ (1)(χ), V̂ (1)(ψ), since
those evaluations require the knowledge of the wire values on layer 1. This way,
a claim about the output layer has been reduced to two claims about layer one,
V̂ (1)(χ) and V̂ (1)(ψ). V and P could run one sum-check protocol for each of those
claims using Eq. (1) for i = 1, but the number of sum-check executions would
eventually become exponential in the depth of the circuit by following such a
route. In order to avoid this, both claims are combined into a single claim. We
provide a full description of the GKR protocol in the full version [Sor22]. Below,
we state the complexity and soundness of its current most efficient version.

Theorem 1 ([XZZ+19]). Let C : Fn → Fk be a depth-D layered arithmetic
circuit. The GKR protocol is an interactive proof for C with soundness error
O(D log |C|/|F|). Its communication and round complexity is O(D log |C|). The
prover complexity is O(|C|) and the verifier complexity is O(n+k+D log |C|+T),

where T is the optimal time to evaluate every âdd
(i)
, m̂ult

(i)
wiring predicate. For

log-space uniform circuits, T = poly log(|C|).

2.2 Algebraic background

We recap some basic notions in non-commutative algebra. Unless otherwise spec-
ified, whenever we talk about a ring R we mean a ring with identity 1 6= 0, for
which we assume neither commutativity nor finiteness.

Definition 2. Let R be a ring. An element a ∈ R is a unit if there exists b ∈ R
such that a · b = b · a = 1. The set of all units is denoted by R∗.

Definition 3. An element a ∈ R \ {0} is a left (resp. right) zero divisor if
∃ b ∈ R \ {0} such that a · b = 0 (resp. b · a = 0).

Sets of elements whose pairwise differences are either regular or invertible
will play a crucial role in our constructions.

Definition 4. Let A = {a1, . . . , an} ⊂ R. We say that A is a regular difference
set, or R.D. set for short, if ∀i 6= j, ai− aj ∈ R is not a zero divisor. We define
the regularity constant of R to be the maximum size of an R.D. set in R.

Definition 5. Let A = {a1, . . . , an} ⊂ R. We say that A is an exceptional set
if ∀i 6= j, ai−aj ∈ R∗. We define the Lenstra constant of R to be the maximum
size of an exceptional set in R.

6

Besides “how regular” or “how invertible” are certain subsets of ring ele-
ments, we might also be interested in “how commutative” they are.

Definition 6. The center of a ring R, denoted by Z(R) consists of the elements
a ∈ Z(R) such that ∀b ∈ R, a · b = b · a.

Definition 7 ([QBC13]). Let A = {a1, . . . , an} ⊂ R. We say that A is a
commutative set if ∀ai, aj ∈ A, ai · aj = aj · ai.

Definition 8. Let R be a ring and A ⊂ R. The centralizer of the set A in R is:

CR(A) = {b ∈ R : b · a = a · b,∀a ∈ A}.

Lemma 1. Let R be a ring and A ⊂ R a commutative set. Then CR(A) ⊇
(A ∪ Z(R)). Furthermore, if A ⊆ Z(R), then CR(A) = R.

3 Polynomials over non-commutative rings

There is no unique choice for how to define a polynomial ring with coefficients on
a non-commutative ring R. Usually, as in [QBC13, ES21], univariate polynomials
are defined in such a way that “the indeterminate commutes with coefficients”,
so as to uniquely express any polynomial f ∈ R[X]≤d as f(X) =

∑d
i=0 fiX

i, where
fi ∈ R. In the language of centralizers, this approach enforces CR[X]({X}) = R[X].
In the multivariate case, one can choose whether to define the ring so that
indeterminates commute with each other or not. For rings where A ⊆ Z(R),
we will stick with the former case and refer to it as a ring of non-commutative
polynomials. Due to space constraints, we defer the proofs of every statement in
this section to the full version [Sor22].

Definition 9. Let (R,+, ∗) be a ring and let Σ = {X1, . . . , Xn}. Let Σ∗ be the
free commutative monoid generated by Σ, i.e. the monoid whose binary operation
is the concatenation of finite strings and the letters of the alphabet Σ commute
with each other. The ring of non-commutative polynomials R[X1, . . . , Xn] is the
monoid ring of Σ∗ over R. Explicitly, a ∈ R[X1, . . . , Xn] is of the form a =∑
m∈Σ∗ amm, where am ∈ R and there is only a finite amount of am 6= 0.

Addition and multiplication are defined as follows:

– Addition: a+ b =
∑
m∈Σ∗(am + bm)m

– Multiplication: a · b =
∑
m1,m2∈Σ∗(am1

· bm2
)m1m2.

Furthermore, for any set S ⊆ R, we define S[X1, . . . , Xn]≤d to be the subset of
polynomials in R[X1, . . . , Xn] of degree at most d whose coefficients belong to S.

The previous definition has many advantages, but it requires to be care-
ful about polynomial evaluation, which we next show to be a ring homomor-
phism if and only if the evaluation points belong to Z(R). For example, con-
sider polynomials f(X) = f0 + f1X and g(X) = g1X + g2X

2. We would have that
h(X) = f(X) · g(X) = f0g1X + (f0g2 + f1g1)X2 + f1g2X

3. Unless α commutes with
g1 and g2, this results in h(α) 6= f(α) · g(α).

7

Lemma 2. Let A = {αi}ni=1 ⊂ R be a commutative set and let α = (α1, . . . , αn).
Denote by Evα : R[X1, . . . , Xn] → R the map that takes a polynomial f ∈
R[X1, . . . , Xn] to its evaluation2 at α, by replacing each appearance of Xi with
αi and applying the product operation of R. Then:

1. ∀f, g ∈ R[X1, . . . , Xn], Evα(f) + Evα(g) = Evα(f + g).
2. Evα(f) · Evα(g) = Evα(f · g) holds ∀f, g ∈ R[X1, . . . , Xn] if and only if A ⊆

Z(R).

A different way to define the polynomial ring is by treating the indetermi-
nate X as a formal, non-commuting symbol. Polynomial addition works as usual,
whereas the product looks similar to string concatenation. In terms of centraliz-
ers, in this approach we enforce CR[X]({X}) = ∅. The advantage of this strategy is
that polynomial evaluation at any α ∈ R becomes a ring homomorphism, in con-
trast with Definition 9, where that is only true if α ∈ Z(R) (Lemma 2). On the
other hand, not being able to simplify polynomial expressions as in Definition 9
not only results in lengthier polynomials, but it also eliminates the possibility to
prove many useful results about polynomials. We will refer to this construction
as the ring of totally non-commutative polynomials.

Definition 10. Let (R,+,�) be a ring and let Σ = R ∪ {X1, . . . , Xn}. Let ∗
denote the string concatenation operation. Let M be the monoid generated by Σ
according to the non-commutative binary operation · : M ×M →M, which we
restrict to finite strings and where:

r·s =

{
r � s, if r, s ∈ R
r ∗ s, if (r ∈ R ∧ s ∈ {Xi}ni=1) ∨ (r ∈ {Xi}ni=1 ∧ s ∈ R) ∨ (r, s ∈ {Xi}ni=1)

(2)
The ring of totally non-commutative polynomials RJX1, . . . , XnK consists of ele-
ments a ∈ RJX1, . . . , XnK of the form a =

∑
m∈M am ·m, where am ∈ R and there

is only a finite amount of am 6= 0. Addition (inherited from R) and multiplication
(inherited from M) are defined as follows:

– Addition: a+ b =
∑
m∈M(am + bm) ·m

– Multiplication: a · b =
∑
m1,m2∈M am1

·m1 · bm2
·m2.

Lemma 3. RJX1, . . . , XnK is a ring.

Note 1. The only difference between (M, ·) in Definition 10 and the free monoid
over Σ is that, in M, strings containing sub-strings of the form Xi ∗ a ∗ b ∗ Xj do
not exist, since in M those are “simplified” to Xi ∗ c ∗ Xj where c = a� b.

Note 2. RJX1, . . . , XnK allows for limited simplifications in polynomial expres-
sions: Those inherited from the associative and distributive properties if we
go from the “outside” to the “inside” of a monomial. E.g., it is true that

2 Throughout the text, we implicitly refer to Evα(f) whenever we write either f(α) or
f(α1, . . . , αn) and f ∈ R[X1, . . . , Xn].

8

XrX3 + XsX3 = X(r + s)X3, but ∀m1 6= m2 ∈ M, we cannot simplify beyond
XrX3m1 + XsX3m2 = X(rX3m1 + sX3m2), since m1 6= m2 “blocks” any simplifica-
tion from the right end (besides any common factor at the right end of m1,m2).

The rationale behind defining the ring of non-commutative polynomials as in
Definition 9, as they do in e.g. [QBC13, ES21], is that in those works unique poly-
nomial interpolation is the most crucial property. In our case, the most impor-
tant requirement is that polynomial evaluation is a ring homomorphism, so that
we can meaningfully apply a sumcheck protocol to the layer consistency Equa-
tion (1). Unfortunately, the approach from Definition 10, where CRX = ∅,
does not serve us either, since the layer consistency equation is cubic. As it will
become clearer later on, when proving results about Euclidean division (Theo-
rem 2) and Lemma 6, we cannot bound the number of roots of the product of
three polynomials by simply following that route. Such bound is in turn neces-
sary to establish the soundness error of our new interactive proofs.

Due to the above, we introduce a novel polynomial ring definition, some-
where between Definitions 9 and 10. We define the polynomial ring with eval-
uation set A, RA[X], by taking into account the specific set of points A ⊂ R
on which polynomials will be ever evaluated. Rather than constructing the
ring so that CR[X1,...,Xn]({Xi}ni=1) = R[X1, . . . , Xn] (as in Defn. 9) or such that
CRJX1,...,XnK({Xi}ni=1) = ∅ (as in Defn. 10), we will enforce CRA[X1,...,Xn]({Xi}ni=1) =
CR(A) ∪ {Xi}ni=1. Hence, in RA[X1, . . . , Xn], indeterminates commute with each
other and “an indeterminate commutes with a coefficient c ∈ R if and only if
c ∈ CR(A)”. Formally, we construct RA[X1, . . . , Xn] by taking the quotient of the
ring of totally non-commutative polynomials RJX1, . . . , XnK with a “commutator
ideal” IA that enforces our precise commutativity requirements.

Definition 11. Let RJX1, . . . , XnK and let A ⊂ R. For i, j = 1, . . . n, let Si,j =
{XiXj − XjXi} and Si = {Xic − cXi : c ∈ CR(A)}. The two-sided ideal generated

by
⋃n
i=1

⋃i−1
j=1 Si,j ∪ Si is the commutator ideal of A, which we denote by IA.

For our specific goals, we will impose that the set A is commutative (see
Definition 7). This is to ensure that CR(A) ⊇ (A ∪ Z(R)).

Definition 12. Let A ⊂ R be a commutative set and let IA be the commutator
ideal it defines. We define the ring of polynomials with evaluation set A to be
RA[X1, . . . , Xn] = RJX1, . . . , XnK/IA. For any set S ⊆ R, we define SA[X1, . . . , Xn]
to be the subset of polynomials in RA[X1, . . . , Xn] whose coefficients belong to S.

Claim. Let S ⊆ R. Any f ∈ SA[X1, . . . , Xn] can be uniquely expressed as

f =

s∑
k=1

(m∏
`=1

(
rk,`

n∏
i=1

(X
di,`
i)

))
,

where rk,` ∈ S ∪{1}, di,` ∈ Z and m is the maximum length of any monomial in
f . We consider X0i to be the empty string, for any i = 1, . . . , n.

9

By Lemma 1, when A ⊆ Z(R) we have that CR(A) = R, in which case the
commutator ideal enforces CRA[X1,...,Xn]({Xi}ni=1) = RA[X1, . . . , Xn]. Intuitively,
in this situation, the polynomial ring RA[X1, . . . , Xn] behaves the same way as
R[X1, . . . , Xn] in Definition 9:R[X1, . . . , Xn] also satisfies that CR[X1,...,Xn]({Xi}ni=1) =
R[X1, . . . , Xn] and, when the evaluation points are in A ⊆ Z(R), evaluating poly-
nomials from R[X1, . . . , Xn] is a ring homomorphism too (Lemma 2). In the full
version [Sor22] we show in more detail how both definitions are interchangeable
for our purposes when A ⊆ Z(R).

For the sake of generality, we will state and prove our results using the more
general ring RA[X1, . . . , Xn] from Definition 12. Nevertheless, when A ⊂ Z(R),
it is conceptually simpler to treat polynomials as elements from R[X1, . . . , Xn]
(Definition 9). For basic algebraic results that we will present in Section 3.1,
such as Euclidean division or the number of roots of a polynomial, simplified
statements and proofs for R[X1, . . . , Xn] can be found in e.g. [ES21].

3.1 Sandwich polynomials

In the previous block of results, we have seen that when A ⊂ Z(R), the ring
RA[X1, . . . , Xn] from Definition 12 behaves the same way as R[X1, . . . , Xn] in Defi-
nition 9. It is when A is merely a commutative set –and hence CRA[X1,...,Xn](Xi) ⊇
(A ∪ Z(R) ∪ {Xj}nj=1)– that our new Definition 12 will be necessary to enable
our GKR-style protocol over a ring R ⊃ A.

Our protocols will be concerned with a particular subset of the polynomials in
RA[X1, . . . , Xn], concretely the ones for which monomials have a single coefficient,
possibly “surrounded” by indeterminates on both sides. We will refer to these as
sandwich polynomials, metaphorically thinking of the indeterminates as bread
and the coefficient as the content3. The goal of this subsection is to generalize the
Schwartz-Zippel lemma to these polynomials, to the extent that it is possible.

Definition 13 (Sandwich polynomials). Let A be a commutative subset of
a ring R and let RA[X1, . . . , Xn] be the ring of polynomials with evaluation set A.
Let i = (i1, . . . , in), j = (j1, . . . , jn). We define the set of sandwich polynomials
over R with left-degree at most d′ and right-degree at most d to be:

RA[X1, . . . , Xn]≤d′,≤d = {f(X1, . . . , Xn) =
∑

i∈[0,d′]n,j∈[0,d]n
Xinn · . . . · X

i1
1 fi,jX

j1
1 · . . . · Xjnn | fi,j ∈ R}

The subset of polynomials with right-degree exactly d, RA[X1, . . . , Xn]≤d′,d ⊂
RA[X1, . . . , Xn]≤d′,≤d, is given by further imposing that, for every Xk, the poly-
nomial must have at least one monomial of right-degree d in Xk. Formally: ∀k ∈
[n] ∃i ∈ [0, d′]n, j1, . . . , jk−1, jk+1, . . . , jn ∈ [0, d] such that fi,(j1,...,jk−1,d,jk+1,...,jn) 6=
0. The subset of polynomials with left-degree exactly d′, RA[X1, . . . , Xn]d′,≤d, is

3 The reader might find funny to think about multiplication as “stacking sandwiches”
and addition as putting sandwiches next to each other. The commutativity of indeter-
minates with elements in CR(A), simplifications enabled by the distributive property
and other results in this section provide some (metaphorical) food for thought!

10

defined analogously. Furthermore, for any set S ⊆ R, we define SA[X1, . . . , Xn]≤d′,≤d
as the subset of polynomials in RA[X1, . . . , Xn]≤d′,≤d whose coefficients fi,j all be-
long to S. Polynomials of exact degrees are defined as in the previous paragraph.

Definition 14 (Toast polynomials). Let ~X = (X1, . . . , Xn). A sandwich poly-
nomial f is a left (resp. right) toast polynomial if it is of right (resp. left) degree
zero, i.e. f ∈ RA[~X]≤d′,0 (resp. f ∈ RA[~X]0,≤d). If we do not want to specify the
position of the indeterminate, we may simply refer to it as a toast polynomial.

In the previous definitions, it is important to note that a polynomial in
RA[X1, . . . , Xn]≤d′,≤d has at most ((d′ + 1) · (d + 1))n monomials, i.e. for fixed

powers i ∈ [0, d′]n, j ∈ [0, d]n, an expression of the form
∑
` X

in
n ·. . .·X

i1
1 f

(`)
i,j X

j1
1 ·. . .·

Xjnn is simplified into Xinn ·. . .·X
i1
1 fi,jX

j1
1 ·. . .·Xjnn , where fi,j =

∑
` f

(`)
i,j . Furthermore,

when we talk about polynomials of exact right degree d or left degree d′, we
assume that all possible simplifications have taken place. In particular4, for f ∈
RA[X]≤d′,d, we assume that fi,d is not simplified away with terms of the form
Xi+kfi+k,d−kX

d−k, where k ∈ {1, . . . , d}, when fi,d, fi+k,d−k ∈ CR(A).

Lemma 4. Let ~X = (X1, . . . , Xn). For ` = 1, . . .m, let f (`) ∈ RA[~X]≤d′f ,≤df ,

a(`) ∈ CR(A)[~X]≤d′a,≤da and b(`) ∈ CR(A)[~X]≤d′b,≤db . Let g =
∑m
`=1 a

(`)f (`)b(`).

Then g ∈ RA[~X]≤(d′a+da+d′f),≤(d′b+db+df).

Lemma 5. Let f ∈ RA[X1, . . . , Xn]≤d′,≤d and let a` ∈ A. Then, ∀` ∈ {1, . . . , n}:

f(X1, . . . X`−1, a`, X`+1, . . . , Xn) ∈ RA[X1, . . . X`−1, X`+1, . . . , Xn]≤d′,≤d.

The advantage of sandwich polynomials is that they can be divided by monic
polynomials in SA[X], where S = CR(A) (recall notation from Definition 12).

Theorem 2 (Euclidean division). Let f(X) ∈ RA[X]d′,d be a non-zero sand-
wich polynomial and let g(X) ∈ CR(A)A[X]0,m be a monic polynomial5. There ex-
ist unique sandwich polynomials q`(X), r`(X) (resp. qr(X), rr(X)) such that f(X) =
q`(X)·g(X)+r`(X) (resp. f(X) = g(X)·qr(X)+rr(X)), where q`(X) ∈ RA[X]≤d′,≤d−m
and r`(X) ∈ RA[X]≤d′,≤m−1 (resp. qr(X) ∈ RA[X]≤d−m,≤d, rr(X) ∈ RA[X]≤m−1,≤d).

Given the previous theorem, we can prove the following result about the
maximum number of roots of toast polynomials on their evaluation set A, when
A is not only commutative but also regular difference (Definition 4).

Lemma 6. Let A be a commutative, regular difference set of R and let f ∈
RA[X]0,≤d (resp. f̃ ∈ RA[X]≤d,0) be a non-zero toast polynomial. Then f (resp.

f̃) has at most d roots in A.

4 We give this example in the univariate case in order to avoid heavier notation.
5 I.e. g(X) = Xm +

∑m−1
`=0 g`X

`. Note that since g` ∈ CR(A) ∀` ∈ [0,m − 1], it is also
true that g(X) ∈ CR(A)A[X]m,0, that g(X) ∈ CR(A)A[X]m−1,1, etc.

11

The proof of the previous is particularly useful to understand our need for
toast polynomials. Whereas, given Theorem 2 and Lemma 6, one could hope to
be able to bound the number of roots of any polynomial f ∈ RA[X]≤d′,≤d, we were
unable to prove such a result. This is due to the fact that the Euclidean division
of sandwich polynomials by a polynomial gi(X) = (X − αi), where αi is a root
of f , provides us with a remainder that is of degree zero only on the side from
which gi(X) is dividing. If α1 is a root of f , by calling Theorem 2 so that g1(X)
“divides on the right”, we can prove that f(X) = f1(X)(X − α1) + r1(X), where
f1 ∈ RA[X]≤d′,≤d−1, r1 ∈ RA[X]≤d′,0. If we divide r1(X) by g1(X) on the left, we
get to f(X) = f1(X)(X−α1)+(X−α1)f2(X), where f2 ∈ RA[X]≤d′−1,0. The problem
now is that, if α2 ∈ A is another root, we find no way forward from the expression
0 = f(α2) = f1(α2)(α2−α1)+(α2−α1)f2(α2). Alternative strategies also beared
no positive results. This important limitation will condition the generalization
of almost every building block of our doubly-efficient IP over non-commutative
rings when A is merely commutative, rather than A ⊆ Z(R).

Lemma 7 generalizes the Schwartz-Zippel lemma to toast polynomials.

Lemma 7 (Schwartz-Zippel Lemma). Let A ⊆ R be a finite, commutative
regular difference set. Let ~X = (X1, . . . , Xn) and let f ∈ (RA[~X]≤d,0 ∪ RA[~X]0,≤d)

be a non-zero toast polynomial. Then, Pr~a←An [f(~a) = 0] ≤ n · d · |A|−1.

Multi-linear extensions were introduced in [BFL91] and extensively used in
[CMT12]. Here, we generalize their definition to toast polynomials (Defn. 14).

Lemma 8. Let A be a regular difference, commutative set s.t. {0, 1} ⊂ A ⊂ R.
Given a function V : {0, 1}m → R, there exist unique multilinear polynomials
V̂L ∈ RA[X1, . . . , Xm]≤1,0 and V̂R ∈ RA[X1, . . . , Xm]0,≤1 extending V , i.e. V̂L(a) =

V (a) = V̂R(a) for all a ∈ {0, 1}m. We call V̂L (resp. V̂R) the left (resp. right)
multilinear extension of V , which we will abbreviate by LMLE (resp. RMLE).

When A ⊂ Z(R), or when V : {0, 1}m → CR(A), it furthermore holds that
V̂L(X1, . . . , Xm) = V̂R(X1, . . . , Xm), in which case we will simply refer to the mul-
tilinear extension (MLE) of V and denote it by V̂ (X1, . . . , Xm).

4 Doubly-efficient IP over non-commutative rings:
Regular difference set contained in Z(R)

In our first generalization, we assume that A is an R.D. set such that A ⊂ Z(R).
This greatly simplifies our protocol compared with the one we will present in
Section 5, where we only assume that A is commutative.

As most building blocks work essentially as in the finite commutative ring
case [CCKP19], we only give a high level overview of this simpler variant. Since
A ⊂ Z(R), all polynomials can be expressed as elements from R[X1, . . . , Xn] (the
ring in Definition 9) rather than RA[X1, . . . , Xn] (as we show in the full version).
This simpler polynomial ring definition is good enough in this case, since poly-
nomial evaluation at elements in A is a ring homomorphism (Lemma 2) and
furthermore we can bound the number of roots of these polynomials in A. The

12

latter has been proved in [QBC13, ES21], where they use exceptional rather than
R.D. sets, but such assumption can be weakened for that result. Furthemore, we
have unique MLEs rather than LMLEs and RMLEs (see Lemma 8) and both the
layer consistency equation (Eq. (1)) and sum-check protocol generalize naturally.

The only state-of-the-art tool for doubly-efficient IPs that requires more care
in this scenario is the linear time prover sum-check protocol from [XZZ+19]. This
is a problem which we also encounter and solve in the harder case of Section 5.
We refer the reader interested in the particularities of this case to the full version.

Theorem 3. Let R be a ring and A ⊂ Z(R) a regular difference set. Let
C : Rn → Rk be a depth-D layered arithmetic circuit. There is an interac-
tive proof for C with soundness error O(D log |C|/|A|). Its round complexity is
O(D log |C|) and it communicates O(D log |C|) elements in R. The prover com-
plexity is O(|C|) and the verifier complexity is O(n+ k +D log |C|+ T), where
T is the optimal time to evaluate every wiring predicate. For log-space uniform
circuits, T = poly log(|C|) and hence the IP is succinct.

4.1 Improved efficiency

The generality of our construction opens up possibilities for concrete efficiency
improvements. One such example is the case when the ring R over which the
circuit is defined can be seen as a free module of rank d over a ring S with a R.D.
set A ⊆ Z(S). Namely, as long as a product of elements in R takes more than d
products in S, we have achieved our goal: Once the circuit has been evaluated, all
operations the prover performs are the (sum of) evaluation of polynomials in R[X]
at random elements from A. Polynomial evaluation is (the sum of) the product
of elements of R with elements of S. Hence, if the ratio between the product of
two elements in R and the product of an element of R with an element of S is
bigger than the constants hidden in the O(|C|) complexity of the prover, this
results in a sublinear time prover! We are only aware of two previous examples
in the literature where the prover is sublinear in the size of the circuit: Matrix
multiplication [Fre79, Tha13] and Fast Fourier Transforms (FFT) [LXZ21].

In [LXZ21], the authors provide a sum-check protocol for FFTs where the
prover only needs to do additional O(d) work to produce a proof for a vector
of size d. This is sublinear, since the FFT complexity is O(d log d). If FFTs are
used for fast polynomial multiplication, we also obtain sublinear time provers by
taking R to be the polynomial ring and S its coefficient ring. Multiplying two
degree-d polynomials requires either O(d2) or O(d log d) operations in S (since
in practice, for smaller values of d the former approach might be preferable).
Multiplying such a polynomial with an element of S, on the other hand, requires
exactly d operations in S, which is a gap of either O(d) or O(log d) between both
approaches. Thus, with our protocol we obtain a sublinear prover for polynomial
multiplication regardless of whether FFT is actually employed in practice.

For a matrix ring R = Mn×n(S), we have that R is a free module of rank
n2 over S. Since the best matrix multiplication algorithms we know require way
more than n2 operations, we once again obtain a sublinear prover by applying the

13

observation at the beginning of this subsection. All in all, when taking every other
complexity metric into account, Thaler’s optimal MATMUL protocol [Tha13] is
still preferable to our approach in terms of concrete efficiency. Nevertheless,
we find interesting the extent to which our construction is versatile: We can
obtain sublinear provers as simple, natural instantiations, rather than having to
design a specific protocol. Furthermore, as far as we know, ours is only the third
conceptually different method allowing for sublinear provers when dealing with
matrix multiplication [Fre79, Tha13].

Even if they do not necessarily achieve sublinear time provers, many other
rings R benefit from the improvement implied from being a rank-d module over a
ring S. This is the case of many Clifford algebras, whose applications we discuss
in the full version [Sor22]. For example, let R = H(S) denote the quaternions
with coefficients over a ring S. We have that Z(R) = Z(S), and R is a free module
of rank 4 over S. Multiplying two elements in R requires at least 7 multiplications
in S for a commutative ring S (or at least 8 in the non-commutative case) [HL75].
Dual quaternions are of rank 8 over their coefficient ring S, whereas their product
consists on three quaternion products. Hence, if S is commutative, the prover
would roughly obtain a factor of 21/8 = 2.625 improvement compared with
running over [CCKP19] over S.

Theoretical improvements. If we furthermore assumed that addition and multi-
plication of elements of the chosen non-commutative ring R can be performed
at unit cost, we can obtain a series of theoretical results. Even though one could
imagine to have specific hardware for that goal, these observations remain mostly
theoretical, as they require to work with exponential size rings.

First of all, in [HY11] Hrubeš and Yehudayoff show that given a polynomial
f (over a ring S) of degree d in n variables, there is a non-commutative extension
ring R such that S ⊂ Z(R) and f has a a formula of size O(dn) over R. On the
other hand, if S is an algebraically closed field, no commutative extension ring
R can reduce the formula or circuit complexity of f . These would all seem good
news for us: Non-commutativity might be a requirement, the resulting formula
is really small and furthermore R could potentially be a free module over S.
Unfortunately, the dimension of this ring extension is roughly nd.

In [SS10], Schott and Staples show how many NP-complete and]P-complete
problems can be moved to class P if addition and multiplication in a Clifford
algebra can be assumed to have unit cost. These include: Hamiltonian cycle
problem, set covering problem, counting the edge-disjoint cycle decompositions
of a finite graph, computing the permanent of an arbitrary matrix, computing
the girth and circumference of a graph, and finding the longest path in a graph.
Thus, in this model of computation, Theorem 3 provides us with a doubly-
efficient IP for those languages6. Remember that, since for a language to have
a doubly-efficient IP it has to belong to BPP, this was out of reach in the non-
algebraic complexity world! Once again, the problem is that the algebra has an
exponential dimension.

6 In all precision, Theorem 3 only deals with layered arithmetic circuits, but our result
can be generalized to general arithmetic circuits the same way as in [ZLW+21].

14

5 Doubly-efficient IP over non-commutative rings:
Commutative, regular difference set

Our most general doubly-efficient IP supports rings that are possibly infinite and
non-commutative, as long as they contain a commutative R.D. set A such that
A ⊂ R. As a writing simplification, we will add the condition that7 {0, 1} ⊂ A.
An example ring to which this section applies is R =Mn×n(Z/pkZ) for a prime
p. Since we can embed the Galois Ring S = GR(pk, n) into R and S contains an
exceptional set A of size pn, we can pick that same A as our commutative, R.D.
set [ES21]. On the other hand, we have that Z(R) = {a · Id : a ∈ Z/pkZ}, so
the biggest regular difference set contained in Z(R) is of size p. Hence, for small
values of p, Section 4 might not be enough for soundness.

5.1 A new layer consistency equation

Let us look at Equation (1). The first problem when trying to generalize it to this
setting, is that we cannot define MLEs of the Vi : {0, 1}si → R functions which
map b ∈ {0, 1}si to the b-th wire in the i-th layer. Instead, we need to content
ourselves with either LMLEs or RMLEs for those functions (see Lemma 8). A

natural impulse would be to settle for e.g. the LMLE V̂
(i)
L (~Z) and express the

consistency with layer i+1 as follows, where âdd
(i+1)

(~Z,~X,~Y), m̂ult
(i+1)

(~Z,~X,~Y) ∈
RA[~X,~Y,~Z]≤1,0, V̂

(i+1)
L (~X) ∈ RA[~X]≤1,0 and V̂

(i+1)
R (~Y) ∈ RA[~Y]0,≤1:

V̂
(i)
L (~Z) =

∑
x,y∈{0,1}si+1

(
m̂ult

(i+1)
(~Z, x, y) ·

(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ âdd
(i+1)

(~Z, x, y) ·
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

))
. (3)

The right hand side is a sandwich polynomial in RA[~X,~Y,~Z]≤1,≤1, since the co-
efficients of the wiring predicates belong to Z(R). Having such a sandwich is
problematic when defining a sum-check protocol, which would progress through
univariate polynomials in each indeterminate by partially evaluating the right
hand side of Eq. (3). More specifically, the problem is with the Yj indetermi-
nates (for j = 1, . . . , si+1), as the partial evaluations sent by the prover would be
sandwich polynomialsRA[Yj]≤1,≤1. Since our Schwartz-Zippel lemma (Lemma 7)
only copes with toast polynomials, this will not provide us with a sound protocol.

In order to have toast polynomials at every step of the sum-check proto-

col, we replace âdd
(i+1)

(~Z,~X,~Y), m̂ult
(i+1)

(~Z,~X,~Y) ∈ RA[~Z,~X,~Y]≤1,0 in Eq.(3) with

âdd
(i+1)

L (~Z,~X,~W), m̂ult
(i+1)

L (~Z,~X,~W) ∈ RA[~Z,~X,~W]≤1,0, still evaluating ~W in y. This
seemingly minor change requires to develop a new sum-check protocol which

7 We can remove that simplification and work with polynomials in
RA∪{0,1}[~U,~W,~X,~Y]≤2,≤2 rather than RA[~U,~W,~X,~Y]≤2,≤2, since if A is a commu-
tative set, so is A ∪ {0, 1}. For the purpose of clarity, we avoid that notation.

15

ensures that P evaluates ~Y and ~W at the same y. For the layer consistency equa-

tions featuring V̂
(i)
R (~Z) ∈ RA[~Z]0,≤1, we will also do a change of variables, as we

describe in Lemma 9 in Appendix ??. We display that information in Table 1.

Polynomial âdd
(i+1)
L , m̂ult

(i+1)

L âdd
(i+1)
R , m̂ult

(i+1)

R V̂
(i+1)
L V̂

(i+1)
R V̂

(i)
L V̂

(i)
R

(L/R)MLE MLE MLE LMLE RMLE LMLE RMLE

Ring RA[~X,~W,~Z]≤1,0 RA[~Y,~U,~Z]≤1,0 RA[~X]≤1,0 RA[~Y]0,≤1 RA[~Z]≤1,0 RA[~Z]0,≤1

Table 1. Polynomials involved in layer consistency equations. Note that MLEs such as

âdd
(i+1)
L could be considered as either polynomials in RA[~X,~W,~Z]≤1,0 or RA[~X,~W,~Z]0,≤1.

Lemma 9. Let ~Z = (Z1, . . . , Zsi). Toast multilinear polynomials V̂
(i)
L ∈ RA[~Z]≤1,0

and V̂
(i)
R ∈ RA[~Z]0,≤1 are equal to the following expressions:

V̂
(i)
L (~Z) =

∑
x,y∈{0,1}si+1

(
m̂ult

(i+1)

L (~Z, x, y) ·
(
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)

+

+ âdd
(i+1)

L (~Z, x, y) ·
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

))
. (4)

V̂
(i)
R (~Z) =

∑
x,y∈{0,1}si+1

((
V̂

(i+1)
L (x) · V̂ (i+1)

R (y)
)
· m̂ult

(i+1)

R (~Z, x, y) +

+
(
V̂

(i+1)
L (x) + V̂

(i+1)
R (y)

)
· âdd

(i+1)

R (~Z, x, y)
)
. (5)

Where, in Eq. (4), âdd
(i+1)

L (~Z,~X,~W), m̂ult
(i+1)

L (~Z,~X,~W) ∈ RA[~X,~W,~Z]≤1,0 and in

Eq. (5), âdd
(i+1)

R (~Z,~U,~Y), m̂ult
(i+1)

R (~Z,~U,~Y) ∈ RA[~Y,~U,~Z]≤1,0.

Proof. The term on each side of Eq. (4) (resp. Eq. (5)) is a multilinear polynomial
in RA[~Z]≤1,0 (resp. RA[~Z]0,≤1), so by the uniqueness of LMLEs (resp. RMLEs),
we are done if their evaluation at every z ∈ {0, 1}si coincides. The latter follows

from the definitions of âdd
(i+1)

L , m̂ult
(i+1)

L (resp. âdd
(i+1)

R , m̂ult
(i+1)

R).

Remark 1. An interesting detail about this construction, in which A 6⊂ Z(R),
is that it is necessary for wiring predicates to be MLEs, rather than simply
LMLEs or RMLEs. Otherwise, we would not obtain toast polynomials (in the
Xi variables for Equation (4), in Yi variables for Equation (5)) throughout the
execution of the sumcheck protocol and we would be unable to apply Lemma 7
to determine soundness. Whereas for the standard addition and multiplication
gates (since {0, 1} ⊆ Z(R) ⊆ CR(A)) we always obtain MLEs, if we use more
complex wiring predicates which enable multiplication by hard-coded constants,
those constants have to belong to CR(A).

16

5.2 2-to-1 reduction

Our protocol starts with a simple layer consistency equation, which relates the
output layer with layer 1 in the circuit according to the following equation:

V̂
(0)
L (γ) =

∑
x,y∈{0,1}s1

(
m̂ult

(1)

L (γ, x, y) ·
(
V̂

(1)
L (x) · V̂ (1)

R (y)
)
+

+âdd
(1)

L (γ, x, y) ·
(
V̂

(1)
L (x) + V̂

(1)
R (y)

))
. (6)

At the conclusion of the sumcheck protocol which is run to verify Equation (6),

V needs to evaluate m̂ult
(1)

L (γ,~X,~W)·(V̂ (1)
L (~X)·V̂ (1)

R (~Y))+âdd
(1)

L (γ,~X,~W)·(V̂ (1)
L (~X)+

V̂
(1)
R (~Y)) by replacing ~X,~Y,~W with respective random values χ(0), ψ(0), ω(0) ∈ As1 .

Since V cannot compute neither V̂
(1)
L (χ(0)) nor V̂

(1)
R (ψ(0)) on their own, P will

provide those values. These alleged evaluations have to satisfy their correspond-
ing layer consistency equations, using LMLEs and RMLEs respectively. In order
to avoid an exponential blow-up in the depth of the circuit, we perform a reduc-

tion from the two claimed values V̂
(1)
L (χ(0)), V̂

(1)
R (ψ(0)) to a single one. We do

so by sampling random values α(1), β(1) ∈ A and combining their corresponding
layer consistency equations as it is described next:

α(i)V̂
(i)
L (χ(i−1)) + β(i)V̂

(i)
R (ψ(i−1)) =

∑
x,y∈{0,1}si+1(

α(i) · m̂ult
(i+1)

L (χ(i−1), x, y) · (V̂ (i+1)
L (x) · V̂ (i+1)

R (y)) +

+ β(i) · (V̂ (i+1)
L (x) · V̂ (i+1)

R (y)) · m̂ult
(i+1)

R (ψ(i−1), x, y) +

+ α(i) · âdd
(i+1)

L (χ(i−1), x, y) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)) +

+ β(i) · (V̂ (i+1)
L (x) + V̂

(i+1)
R (y)) · âdd

(i+1)

R (ψ(i−1), x, y)
)

(7)

A justification for the soundness of the previous equation, as well as the two
original layer consistency equations appears in the full version [Sor22], where we
also provide a different approach using a 4-to-2 reduction, which reduces round
complexity at the cost of increased communication.

5.3 Sum-check for non-commutative layer consistency

We provide the sum-check protocol for Equation (7)8. The specific algorithm run
by the prover and its complexity analysis appears in Appendix A. Remember
that A ⊇ H = {0, 1} is an R.D. commutative set.

8 The simpler protocol for Equation (6) can be found in the full version.

17

Sum-check protocol for Equation (7): Let ~x = (x1, . . . , xm), ~y = (y1, . . . , ym).
We provide a sum-check protocol for

∑
~x,~y∈Hm f(~x, ~y, ~x, ~y) = β, where f ∈

RA[~U,~W,~X,~Y]≤2,≤2. If any of the checks throughout the protocol fails, V rejects.

1. In the first round, for b ∈ {0, 1}, P computes g1,b ∈ RA[U1]0,≤1, given by:

g1,b(U1) =
∑

x2,...,xm∈H
~y∈Hm

f(U1, x2, . . . , xm, ~y, b, x2, . . . , xm, ~y),

and sends them to V. Then V checks whether g1,0, g1,1 ∈ RA[U1]0,≤1 and∑
b∈H g1,b(b) = β. If true, V chooses a random r1 ∈ A and sends it to P.

2. For rounds 2 ≤ i ≤ m, define ~x(i,m] = (xi+1, . . . , xm) and ~x[1,i) = (x1, . . . , xi−1).
P sends the univariate toast polynomials gi,0, gi,1 ∈ RA[Ui]0,≤1 given by:

gi,b(Ui) =
∑

~x[1,i)∈Hi−1,~x(i,m]∈Hm−i

~y∈Hm

f(r1, . . . , ri−1, Ui, ~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y),

V checks whether gi,b ∈ RA[Ui]0,≤1 and
∑
b∈H gi,b(b) − gi−1,b(ri−1) = 0. If

that is the case, V chooses a random element ri ∈ A and sends it to P.
3. For rounds m + 1 ≤ i ≤ 2m, P, define j = i − m, ~r[1,i) = (r1, . . . , ri−1),
~y(j,m] = (yj+1, . . . , ym) and ~y[1,j) = (y1, . . . , yj−1). P sends the univariate
toast polynomials gi,0, gi,1 ∈ RA[Wj]≤1,0 given by:

gi,b(Wj) =
∑

~y[1,j)∈Hj−1,~y(j,m]∈Hm−j

~x∈Hm

f(~r[1,i), Wj , ~y(j,m], ~x, ~y[1,j), b, ~y(j,m]),

V checks whether gi,0, gi,1 ∈ RA[Wj]≤1,0 and
∑
b∈H gi,b(b)− gi−1,b(ri−1) = 0.

If that is the case, V chooses a random element ri ∈ A and sends it to P.
4. For round i = 2m+1, define ~r[1,2m+1) = (r1, . . . , r2m) and ~x(1,m] = (x2, . . . , xm).
P sends the toast polynomial g2m+1 ∈ RA[X1]≤2,0:

g2m+1(X1) =
∑

~x(1,m]∈Hm−1,~y∈Hm

f(~r[1,2m+1), X1, ~x(1,m], ~y),

V checks whether g2m+1 ∈ RA[X1]≤2,0 and
∑
b∈H g2m+1(b)−g2m,b(r2m) = 0.

If so, V chooses a random element r2m+1 ∈ A and sends it to P.
5. For rounds 2m + 2 ≤ i ≤ 3m, define j = i − 2m, ~r[1,i) = (r1, . . . , ri−1) and
~x(j,m] = (xj+1, . . . , xm). P sends the toast polynomial gi ∈ RA[Xj]≤2,0:

gi(Xj) =
∑

~x(j,m]∈Hm−j ,~y∈Hm

f(~r[1,i), Xj , ~x(j,m], ~y)

V checks whether gi ∈ RA[Xj]≤2,0 and
∑
b∈H gi(b) = gi−1(ri−1). If that is

the case, V chooses a random element ri ∈ A and sends it to P.

18

6. For rounds 3m + 1 ≤ i ≤ 4m, define j = i − 3m, ~r[1,i) = (r1, . . . , ri−1) and
~y(j,m] = (yj+1, . . . , ym). P sends the toast polynomial gi ∈ RA[Yj]0,≤2:

gi(Yj) =
∑

~y(j,m]∈Hm−j

f(~r[1,i), Yj , ~y(j,m]),

V checks whether gi ∈ RA[Yj]0,≤2 and
∑
b∈H gi(b) = gi−1(ri−1). If that is

the case, V chooses a random element ri ∈ A and sends it to P.
7. After the 4m-th round, V checks whether g4m(r4m) = f(r1, . . . , r4m) by

querying9 its oracles at (r1, . . . , r4m).

Theorem 4. Let A be a commutative R.D. set such that {0, 1} ⊆ A. Let f ∈
RA[~U,~W,~X,~Y]≤2,≤2 be the multi-variate sandwich polynomial given by Equation (7).
The sum-check protocol is a public coin interactive proof with soundness error
≤ 8m · |A|−1. The communication complexity is 14m elements in R.

5.4 Putting everything together

Doubly-efficient interactive proof over a non-commutative ring

Input: Circuit input inp and claimed output out. Output: Accept or reject.

– Compute V̂
(0)
L (X) as the LMLE of out. V chooses a random γ ∈ As0 and sends

it to P. Both parties compute V̂
(0)
L (γ).

– Run a sum-check protocol on Equation (6) as described in the full version. Let
χ(0), ψ(0), ω(0) denote the challenge vectors corresponding to the ~X, ~Y and ~W
variables within that execution. P sends V̂

(1)
L (χ(0)) and V̂

(1)
R (ψ(0)) to V.

– V queries their oracles for m̂ult
(1)

L (γ, χ(0), ω(0)) and âdd
(1)
L (γ, χ(0), ω(0)), so as to

check that âdd
(1)
L (γ, χ(0), ω(0)) ·(V̂ (1)

L (χ(0))+ V̂
(1)
R (ψ(0)))+ m̂ult

(1)

L (γ, χ(0), ω(0)) ·
(V̂

(1)
L (χ(0)) · V̂ (1)

R (ψ(0))) equals the last message of the sumcheck execution.
– For circuit layers i = 1, . . . , D − 1, V samples α(i), β(i) ∈ A and sends them to
P. They run a sumcheck protocol on Equation (7) as described in Figure 2 in
Appendix A. Let χ(i), ψ(i) denote the challenge vectors corresponding to the
~X, and ~Y variables within that execution. At the end of the protocol, P sends
V̂

(i+1)
L (χ(i)) and V̂

(i+1)
R (ψ(i)) to V, so that V can check the validity of the last

message in the sumcheck execution. If the check passes, they proceed to the
(i+ 1)-th layer, otherwise, V outputs reject and aborts.

– At the input layer D, V has received two claims V̂
(D)
L (χ(D−1)) and

V̂
(D)
R (ψ(D−1)). V queries the evaluation oracles of V̂

(D)
L and V̂

(D)
R at χ(D−1)

and ψ(D−1) respectively, and checks that they equal the sumcheck claims. If
they do, V outputs accept, otherwise, V outputs reject.

Fig. 1. Doubly-efficient IP over a ring containing a commutative, regular difference set.

9 As usual in the GKR protocol, some values are actually provided by P, unless the
input layer has been reached. This step is more detailed in Figure 1.

19

Theorem 5. Let R be a ring and A ⊂ R a commutative, regular difference set
such that {0, 1} ⊂ A Let C : Rn → Rk be a depth-D layered arithmetic circuit.
Figure 1 is an interactive proof for C with soundness error O(D log |C|/|A|).
Its round complexity is O(D log |C|) and it communicates O(D log |C|) elements
in R. In terms of operations in R, the prover complexity is O(|C|) and the
verifier complexity is O(n + k + D log |C| + T), where T is the optimal time

to evaluate every wiring predicate (âdd
(i)

L , m̂ult
(i)

L , âdd
(i)

R , m̂ult
(i)

R). For log-space
uniform circuits, T = poly log(|C|) and hence the IP is succinct.

References

ACD+19. Mark Abspoel, Ronald Cramer, Ivan Damg̊ard, Daniel Escudero, and Chen
Yuan. Efficient information-theoretic secure multiparty computation over
Z/pkZ via galois rings. In Dennis Hofheinz and Alon Rosen, editors,
TCC 2019, Part I, volume 11891 of LNCS, pages 471–501. Springer, Heidel-
berg, December 2019.

AIK10. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to
soundness: Efficient verification via secure computation. In Samson Abram-
sky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and
Paul G. Spirakis, editors, ICALP 2010, Part I, volume 6198 of LNCS, pages
152–163. Springer, Heidelberg, July 2010.

BCFK21. Alexandre Bois, Ignacio Cascudo, Dario Fiore, and Dongwoo Kim. Flexible
and efficient verifiable computation on encrypted data. In Juan Garay, ed-
itor, PKC 2021, Part II, volume 12711 of LNCS, pages 528–558. Springer,
Heidelberg, May 2021.

BCS21. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck ar-
guments and their applications. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 742–773, Virtual
Event, August 2021. Springer, Heidelberg.

BFL91. László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic expo-
nential time has two-prover interactive protocols. Computational complexity,
1(1):3–40, 1991.

CCKP19. Shuo Chen, Jung Hee Cheon, Dongwoo Kim, and Daejun Park. Verifiable
computing for approximate computation. Cryptology ePrint Archive, Report
2019/762, 2019. https://eprint.iacr.org/2019/762.

CDI+13. Gil Cohen, Ivan Bjerre Damg̊ard, Yuval Ishai, Jonas Kölker, Peter Bro Mil-
tersen, Ran Raz, and Ron D. Rothblum. Efficient multiparty protocols via
log-depth threshold formulae - (extended abstract). In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS,
pages 185–202. Springer, Heidelberg, August 2013.

CFIK03. Ronald Cramer, Serge Fehr, Yuval Ishai, and Eyal Kushilevitz. Effi-
cient multi-party computation over rings. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 596–613. Springer, Heidelberg,
May 2003.

CMT12. Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical
verified computation with streaming interactive proofs. In Shafi Goldwasser,
editor, ITCS 2012, pages 90–112. ACM, January 2012.

20

https://eprint.iacr.org/2019/762

DLS20. Anders P. K. Dalskov, Eysa Lee, and Eduardo Soria-Vazquez. Circuit amor-
tization friendly encodingsand their application to statistically secure mul-
tiparty computation. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part III, volume 12493 of LNCS, pages 213–243. Springer,
Heidelberg, December 2020.

ES21. Daniel Escudero and Eduardo Soria-Vazquez. Efficient information-theoretic
multi-party computation over non-commutative rings. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS,
pages 335–364, Virtual Event, August 2021. Springer, Heidelberg.

Fre79. Rūsiņš Freivalds. Fast probabilistic algorithms. In International Symposium
on Mathematical Foundations of Computer Science, pages 57–69. Springer,
1979.

GKR15. Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating
computation: interactive proofs for muggles. Journal of the ACM (JACM),
62(4):1–64, 2015.

GMR89. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM Journal on computing, 18(1):186–
208, 1989.

GNS21. Chaya Ganesh, Anca Nitulescu, and Eduardo Soria-Vazquez. Rinocchio:
Snarks for ring arithmetic. Cryptology ePrint Archive, Report 2021/322,
2021. https://eprint.iacr.org/2021/322.

HL75. Thomas D Howell and Jean-Claude Lafon. The complexity of the quaternion
product. Technical report, Cornell University, 1975.

HR18. Justin Holmgren and Ron Rothblum. Delegating computations with (al-
most) minimal time and space overhead. In Mikkel Thorup, editor, 59th
FOCS, pages 124–135. IEEE Computer Society Press, October 2018.

HY11. Pavel Hrubeš and Amir Yehudayoff. Arithmetic complexity in ring exten-
sions. Theory of Computing, 7(1):119–129, 2011.

IK04. Yuval Ishai and Eyal Kushilevitz. On the hardness of information-theoretic
multiparty computation. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 439–455. Springer, Hei-
delberg, May 2004.

LFKN92. Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Alge-
braic methods for interactive proof systems. Journal of the ACM (JACM),
39(4):859–868, 1992.

LXZ21. Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkCNN: Zero knowledge proofs
for convolutional neural network predictions and accuracy. In Giovanni Vi-
gna and Elaine Shi, editors, ACM CCS 2021, pages 2968–2985. ACM Press,
November 2021.

Mei13. Or Meir. IP = PSPACE using error-correcting codes. SIAM Journal on
Computing, 42(1):380–403, 2013.

QBC13. Guillaume Quintin, Morgan Barbier, and Christophe Chabot. On gener-
alized reed–solomon codes over commutative and noncommutative rings.
IEEE transactions on information theory, 59(9):5882–5897, 2013.

Sor22. Eduardo Soria-Vazquez. Doubly efficient interactive proofs over infinite and
non-commutative rings. Cryptology ePrint Archive, Paper 2022/587, 2022.
https://eprint.iacr.org/2022/587.

SS10. René Schott and G. Stacey Staples. Reductions in computational complexity
using clifford algebras. Advances in applied Clifford algebras, 20(1):121–140,
2010.

21

https://eprint.iacr.org/2021/322
https://eprint.iacr.org/2022/587

Tha13. Justin R Thaler. Practical verified computation with streaming interactive
proofs. PhD thesis, 2013.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou,
and Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover
computation. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733–764. Springer,
Heidelberg, August 2019.

ZLW+21. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xi-
ang Xie, and Yupeng Zhang. Doubly efficient interactive proofs for general
arithmetic circuits with linear prover time. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, pages
159–177, 2021.

A Linear time Prover for Equation (7)

Multi-linear extensions were key for [CMT12] to improve the complexity of the
Prover in [GKR15] from poly(|C|) to O(|C| log(|C|)). In this section, we will show
how to improve upon this to a complexity of O(|C|), in a style similar to Libra
[XZZ+19]. In order to achieve this, we will show how the Prover can execute
the sum-check algorithm of Section 5.3 for Equation (7). Recall that P has to
sum the evaluations of f ∈ RA[~U,~W,~X,~Y]≤2,≤2 in the hypercube H4m, where
H = {0, 1}. Our following algorithms assume that P has an initial lookup table
(LUT) Tf with these evaluations, as well as the same kind of lookup tables for its
constituent (L/R)MLEs T

m̂ultL
,TâddL

,TV̂L
,T

m̂ultR
,TâddR

,TV̂R
. We also assume that

P has received and stored the 2-to-1 reduction challenges α, β ∈ A. For a simpler
write-up, we write the different algorithms as if P already knew the challenge
vector ~r = (r1, . . . , r4m) ∈ A4m, even though they will receive the different ri
values as the progress through the execution of the sum-check protocol.

In constrast with [XZZ+19], we make the Prover provide the Verifier with
explicit polynomials, rather than with their evaluations at (up to) three different
points. We do this for the sake of generality10, since interpolation requires ex-
ceptional rather than regular-difference sets, and the target ring (e.g. Z) might
not contain a commutative exceptional set of size three.

~U,~W variables (Step 1). This is the easiest phase, since we can directly reason
about f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (7) and its LUT Tf . Sumcheck {U, W}
(Figure 4) provides with the polynomials for these first 2m messages. All terms
in the sums of Figure 4 can be found, in turn, in the lookup table F produced
by Function Evaluations {U, W} (Figure 3).

The algorithm in Figure 3 follows from the simple observation that, because of
linearity, any RMLE f(~r, Ui,~t) ∈ RA[Ui]0,≤1 satisfies that f(~r, Ui,~t) = (f(~r, 1,~t)−
10 It would be easy to modify our algorithms to work by providing polynomial evalu-

ations instead. In fact, the set {0, 1, γ} is commutative and exceptional as long as
γ and γ − 1 are invertible. If 2 is not a zero divisor, we can always pick γ = 2.
Otherwise we may still find such γ easily (as e.g. in F2d ,GR(2k, d),Mn×n(Z/2kZ))
or resort to ring extensions (e.g. embed Z/2kZ in GR(2k, d) or Z in R).

22

Algorithm
Linear P Consistency(Tf ,Tm̂ultL

,TâddL
,TV̂L

,Tm̂ultR
,TâddR

,TV̂R
, ~χ, ~ψ, α, β, ~r)

Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (7) and its initial lookup table Tf .
Initial lookup tables of its constituent polynomials Tm̂ultL

,TâddL
,TV̂L

,Tm̂ultR
,TâddR

,TV̂R
.

Challenge vector ~r = (r1, . . . , r4m) ∈ A4m and 2-to-1 reduction challenges α, β ∈ A.
Output: Sum-check messages for the layer consistency Equation (7).

1. Run Sumcheck {U, W}(f,Tf , ~r[1,2m]) as described in Figure 4.

2. Run Setup X(m̂ultL,Tm̂ultL
, âddL,TâddL

, m̂ultR,Tm̂ultR
, âddR,TâddR

, ~χ, ~ψ, ~r[1,2m]) as

described in Figure 7 in order to obtain {Tm̂ultL
(x),TâddL

(x),Tm̂ultR
(y),TâddR

(y)}.
3. FV̂L

← Function Evaluations(V̂L,TV̂L
, r2m+1, . . . , r3m).

4. Run Sumcheck X Left(m̂ultL,Tm̂ultL
, âddL,TâddL

,FV̂L
, V̂R,TV̂R

, ~r[2m+1,3m]) as de-

scribed in Figure 8 in order to obtain {gmultL2m+i(Xi), g
addL
2m+i(Xi)}

m
i=1.

5. Run Sumcheck X Right(m̂ultR,Tm̂ultR
, âddR,TâddR

,FV̂L
, V̂R,TV̂R

, ~r[2m+1,3m]) as

described in Figure 9 in order to obtain {gmultR2m+i(Xi), g
addR
2m+i(Xi)}

m
i=1.

6. For i ∈ [m], compute:

g2m+i(Xi) = α ·
(
g
multL
2m+i(Xi) + g

addL
2m+i(Xi)

)
+ β ·

(
g
multR
2m+i(Xi) + g

addR
2m+i(Xi)

)
.

7. Run Setup Y(m̂ultL,Tm̂ultL
, âddL,TâddL

, ~r[2m+1,3m]) as described in Figure 10.

8. In order to obtain {g3m+i(Yi)}mi=1, run Sumcheck Y(m̂ultR,Tm̂ultR
, âddR,TâddR

, V̂R,

TV̂R
, V̂L(~r[2m+1,3m]), α · m̂ultL(~χ,~r[m+1,3m]), α · âddL(~χ,~r[m+1,3m]), ~r[3m+1,4m], β)

as described in Figure 11.

Fig. 2. Linear time prover for the sum-check protocol in Section 5.3.

23

f(~r, 0,~t)) ·Ui+f(~r, 0,~t). Notice that, whereas the initial lookup table Tf contains
all the 24m evaluations of f from Equation (7) in H = {0, 1}, modifications only
occur on the first 2m indices, which are the ones related to variables U and W.

Algorithm Function Evaluations {U, W}(f,Tf , r1, . . . , r2m)

Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (7), initial lookup table Tf , random
challenges ~r = (r1, . . . , r2m) ∈ A2m.
Output: Polynomials f(r1, . . . , ri−1, Ui,~ti,b) ∈ RA[Ui]0,≤1 for i ∈ [1,m] and ~ti,b ∈
H4m−i. Polynomials f(r1, . . . , ri−1, Wi−m,~ti,b) ∈ RA[Wi−m]≤1,0 for i ∈ [m + 1, 2m]
and ~ti,b ∈ H4m−i.

– For i ∈ [1, 2m] let ~0 be the length-(i− 1) zero vector and r[1,i) = (r1, . . . , ri−1).
• For i ∈ [1,m]: For b ∈ H, and for every ~y ∈ Hm, ~x(i,m] ∈ Hm−i, ~x[1,i) ∈
Hi−1, define ~ti,b = (~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y) ∈ H4m−i and do:

f(r[1,i), Ui,~ti,b)← Tf [~0, 1,~ti,b] · Ui + Tf [~0, 0,~ti,b] · (1− Ui) (8)

Tf [~0, 0,~ti,b]← Tf [~0, 1,~ti,b] · ri + Tf [~0, 0,~ti,b] · (1− ri)

• For i ∈ [m+ 1, 2m]: For b ∈ H, and for every ~x ∈ Hm, ~y(i−m,m] ∈ H2m−i,

~y[1,i−m) ∈ Hi−m−1, define ~ti,b = (~y(i−m,m], ~x, ~y[1,i−m), b, ~y(i−m,m]) ∈
H4m−i and do:

f(r[1,i), Wi−m,~ti,b)← Wi−m · Tf [~0, 1,~ti,b] + (1− Wi−m) · Tf [~0, 0,~ti,b] (9)

Tf [~0, 0,~ti,b]← ri · Tf [~0, 1,~ti,b] + (1− ri) · Tf [~0, 0,~ti,b]

– Let F contain all polynomials in RA[Ui]0,≤1 (resp. RA[Wi]≤1,0) defined at Equa-
tion (8) (resp. Equation (9)) throughout the execution.

Fig. 3. Evaluations of toast multi-linear polynomials prior to sum-check.

~X variables (Steps 2-6). In this phase, rather than reasoning about f ∈
RA[~U,~W,~X,~Y]≤2,≤2 from Equation (7), we look at its constituent polynomials

(m̂ultL, âddL, V̂L, m̂ultR, âddR, V̂R) separately. Dealing with non-commutative
rings is the main reason for the different algorithms in these steps, compared
with the simpler description in Libra [XZZ+19]. Whereas in Libra expressions
of the form

∑
~x,~y∈Hm wp(~g, ~x, ~y)f2(~x)f3(~y) are rewritten as

∑
~x∈Hm f2(~x) ·h~g(~x),

where h~g(~x) =
∑
~y∈Hm wp(~g, ~x, ~y)f3(~y), we cannot assume this to be possible in

our setting, since f2(~x) ∈ R might not commute with wp(~g, ~x, ~y).
Instead, we start by using the algorithm SetupX (Figure 7), which substitutes

the ~Z,~U,~W variables in the LUTs of m̂ultL, âddL, m̂ultR and âddR with their cor-
responding challenges. Next, applying Function Evaluations (Figure 5) to the
(updated) LUTs, we can produce LMLEs in the ~X variables for V̂L (in Step 3) and

m̂ultL, âddL (which happens within Sumcheck X Left). Given two multi-linear
polynomials f(X), g(X), we know that we can compute the sum-check protocol

24

Algorithm Sumcheck {U, W}(f,Tf , r1, . . . , r2m)

Input: f ∈ RA[~U,~W,~X,~Y]≤2,≤2 from Equation (7), initial lookup table Tf , random
challenges ~r = (r1, . . . , r2m) ∈ A2m.
Output: First 2m sumcheck messages for f .

– F ← Function Evaluations {U, W}(f,Tf , r1, . . . , r2m)
– For i ∈ [1,m] and b ∈ H, define ~ti,b = (~x(i,m], ~y, ~x[1,i), b, ~x(i,m], ~y) ∈ H4m−i for

every ~y ∈ Hm, ~x(i,m] ∈ Hm−i, ~x[1,i) ∈ Hi−1. Compute and send:

gi,b(Ui) =
∑

~ti,b∈H4m−i

f(r1, . . . , ri−1, Ui,~ti,b).

– For i ∈ [m+ 1, 2m] and b ∈ H, define ~ti,b = (~y(i−m,m], ~x, ~y[1,i−m), b, ~y(i−m,m]) ∈
H4m−i for every ~x ∈ Hm, ~y(i−m,m] ∈ H2m−i, ~y[1,i−m) ∈ Hi−m−1. Compute
and send:

gi,b(Wi−m) =
∑

~ti,b∈H4m−i

f(r1, . . . , ri−1, Wi−m,~ti,b).

– Return {gi,b(Ui)}b∈H,i∈[1,m], {gi,b(Wi−m)}b∈H,i∈[m+1,2m].

Fig. 4. Sum-check polynomials for the block of ~U,~W variables.

on their product f(X) · g(X) in linear time [Tha13]. That is what we do in algo-
rithms Sumcheck X Left (Figure 8) and Sumcheck X Right (Figure 9), where we
compute, in linear time and without reordering its terms, the sum-check mes-
sages for

∑
~x,~y∈Hm wp(~g, ~x, ~y)f2(~x)f3(~y) corresponding to the ~X variables. The

key observation for the latter two algorithms is that, for i ∈ [m], ~x ∈ Hm−i and

wp ∈ {âddL, m̂ultL, âddR, m̂ultR}, the set

N i
~x = {~y ∈ Hm : ∃~z ∈ Hm, (x1, . . . , xi) ∈ Hi s.t. wp(~z, (x1, . . . , xi), ~x, ~y) 6= 0},

is s.t.
∑
~x∈Hm−i |N i

~x| ∈ O(2m−i). We exploit the sparseness of our wiring predi-
cates to keep an O(2m)-time prover without reordering the terms of Eq. (7).

~Y variables (Steps 7-8). Setup Y (Figure 10) substitutes the ~X variables

with ~r[2m+1,3m] ∈ Am in the LUTs of m̂ultL, âddL, so that P obtains val-

ues âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]). Applying

Function Evaluations (Figure 5) to the LUT of V̂R and the LUTs of m̂ultR
and âddR (which were previously updated in SetupX, Figure 7), we can produce
the different RMLEs in the ~Y variables that are required for the execution of
Sumcheck Y (Figure 11): For i ∈ [m], ~y ∈ Hm−i, polynomials V̂R(~r[3m+1,3m+i−1], Yi, ~y),

âddR(~r[3m+1,3m+i−1], Yi, ~y) and m̂ultR(~r[3m+1,3m+i−1], Yi, ~y).

25

Algorithm Function Evaluations(f ,Tf ,r1,. . . ,rm)

Input: Lookup table Tf corresponding to either f ∈ RA[X1, . . . , Xm]≤1,0 or f ∈
RA[Y1, . . . , Ym]0,≤1, random challenges ~r = (r1, . . . , rm) ∈ Am.

Output: Polynomials f(r1, . . . , ri−1, Xi,~b) ∈ RA[Xi] (or f(r1, . . . , ri−1, Yi,~b) ∈
RA[Yi]) for i ∈ [1,m] and ~b ∈ {0, 1}m−i.

– For i = 1, . . . ,m let ~0 be the length-(i− 1) zero vector and do:

• For ~b = (bm−i, . . . , b1) ∈ Hm−i do:
∗ If f ∈ RA[Y1, . . . , Ym]0,≤1, define:

f(r1, . . . , ri−1, Yi,~b)←
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
· Yi + Tf [~0, 0,~b] (10)

Tf [~0, 0,~b]←
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
· ri + Tf [~0, 0,~b]

∗ Else (i.e. if f ∈ RA[X1, . . . , Xm]≤1,0), define:

f(r1, . . . , ri−1, Xi,~b)← Xi ·
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
+ Tf [~0, 0,~b] (11)

Tf [~0, 0,~b]← ri ·
(
Tf [~0, 1,~b]− Tf [~0, 0,~b]

)
+ Tf [~0, 0,~b]

– Let F contain all polynomials in RA[Xi]≤1,0 (resp. RA[Yi]0,≤1) defined at Equa-
tion (11) (resp. Equation (10)) throughout the execution.

Fig. 5. Evaluations of toast multi-linear polynomials for sum-check.

Algorithm Precompute(g1, . . . , g`)

Input: Random challenge ~g = (g1, . . . , g`) ∈ A`.
Output: Lookup table {T~g[~b]}~b∈{0,1}` containing the evaluations of I(~g,~b) =∏m
i=1

(
gi · bi + (1− gi) · (1− bi)

)
.

– Set T~g[~0]← (1− g1) and T~g[0, . . . , 0, 1]← g1.
– For i = 1, . . . , `− 1, do:
• For (bi, . . . , b1) ∈ {0, 1}i, do:

∗ T~g[~0, 0, bi, . . . , b1]← T~g[~0, bi, . . . , b1] · (1− gi+1).
∗ T~g[~0, 1, bi, . . . , b1]← T~g[~0, bi, . . . , b1] · gi+1.

Fig. 6. Computing LUT for identity polynomial evaluated at a challenge.

26

Algorithm Setup X(f1,Tf1 , f2,Tf2 , f3,Tf3 , f4,Tf4 , ~χ,
~ψ, ~r)

Input: Multi-linear f1(z, x, y), f2(z, x, y) ∈ RA[~X,~W,~Z]≤1,0, f3(z, x, y), f4(z, x, y) ∈
RA[~Y,~U,~Z]≤1,0 and their initial look-up tables. Random challengesa ~χ, ~ψ ∈ Am,
~r ∈ A2m.
Output: Look-up tables Tfi for the block of ~X variables.

– T~χ[~z]← Precompute(~χ).

– T~ψ[~z]← Precompute(~ψ).
– T~r[1,m]

[~x]← Precompute(~r[1,m]).
– T~r[m+1,2m]

[~y]← Precompute(~r[m+1,2m]).
– ∀~x, ~y ∈ {0, 1}m, set Tf1 [~x] = Tf2 [~x] = Tf3 [~y] = Tf4 [~y] = 0.
– For i = 1, 2 and for every (~z, ~x, ~y) ∈ H3m such that fi(~z, ~x, ~y) 6= 0, do:

Tfi [~x]← Tfi [~x] + T~χ[~z] · T~r[m+1,2m]
[~y] · fi(~z, ~x, ~y).

– For i = 3, 4 and for every (~z, ~x, ~y) ∈ H3m such that fi(~z, ~x, ~y) 6= 0, do:

Tfi [~y]← Tfi [~y] + fi(~z, ~x, ~y) · T~ψ[~z] · T~r[1,m]
[~x].

– Return Tf1 [x],Tf2 [x],Tf3 [y],Tf4 [y].

a For a shorter write-up, we describe this algorithm as if ~z, ~x, ~y ∈ {0, 1}m. In
practice, since ~z comes from a different layer, it might have different length.

Fig. 7. Substituting ~Z,~U,~W in LUTs with their corresponding challenges.

27

Algorithm
Sumcheck X Left(m̂ultL,Tm̂ultL

(~x), âddL,TâddL
(~x),FV̂L

, V̂R,TV̂R
(~y), ~r[2m+1,3m])

Input: Parse ~X = (X1, . . . , Xm) and ~Y = (Y1, . . . , Ym). Toast polynomi-

als m̂ultL(~χ,~r[m+1,2m],~X), âddL(~χ,~r[m+1,2m],~X), V̂L(~X) ∈ RA[~X]≤1,0 and V̂R(~Y) ∈
RA[~Y]0,≤1, given by their lookup tables Tm̂ultL

(x),TâddL
(x),TV̂R

(y) containing all

evaluations at Hm. Random challenges ~r[2m+1,3m] ∈ Am and table FV̂L
←

Function Evaluations(V̂L,TV̂L
, r2m+1, . . . , r3m).

Output: 2m partial sumcheck messages, half for
∑
~x,~y∈Hm g

multL
2m+i(~x, ~y) and half for∑

~x,~y∈Hm g
addL
2m+i(~x, ~y). Each message is a polynomial in RA[Xi]≤2,0.

– Fm̂ultL
← Function Evaluations(m̂ultL,Tm̂ultL

, r2m+1, . . . , r3m).

– FâddL
← Function Evaluations(âddL,TâddL

, r2m+1, . . . , r3m).

– Compute Y =
∑
~y∈Hm V̂R(~y) from TV̂R

(~y) and store it for the next steps.
– For i ∈ [m], compute as follows:

g
multL
2m+i(Xi) =

∑
~x∈Hm−i

m̂ultL(~r[2m+1,2m+i−1], Xi, ~x) · V̂L(~r[2m+1,2m+i−1], Xi, ~x) · Y.

g
addL
2m+i(Xi) =

∑
~x∈Hm−i

âddL(~r[2m+1,2m+i−1], Xi, ~x)·
(
V̂L(~r[2m+1,2m+i−1], Xi, ~x)+Y

)
.

– Return each polynomial {gmultL2m+1(X1), g
addL
2m+1(X1), . . . , g

multL
3m (Xm), g

addL
3m (Xm)}.

Fig. 8. Sumcheck polynomials for ~X variables and “V̂
(i)
L -side” of Equation (7).

28

Algorithm
Sumcheck X Right(m̂ultR,Tm̂ultR

(~y), âddR,TâddR
(~y),FV̂L

, V̂R,TV̂R
(~y), ~r[2m+1,3m])

Input: Parse ~X = (X1, . . . , Xm) and ~Y = (Y1, . . . , Ym). Table FV̂L

with all evaluations of V̂L(~X) ∈ RA[~X]≤1,0 in Hm. Toast polyno-

mials m̂ultR(~ψ,~r[1,m],~Y), âddR(~ψ,~r[1,m],~Y), V̂R(~Y) ∈ RA[~Y]0,≤1 given by
their lookup tables Tm̂ultR

(~y),TâddR
(~y),TV̂R

(~y), containing all evalua-

tions at Hm. Random challenges ~r[2m+1,3m] ∈ Am and table FV̂L
←

Function Evaluations(V̂L,TV̂L
, r2m+1, . . . , r3m).

Output: 2m partial sumcheck messages, half for
∑
~x,~y∈Hm g

multR
2m+i(~x, ~y) and half

for
∑
~x,~y∈Hm g

addR
2m+i(~x, ~y). Each message is a polynomial in RA[Xi]≤1,0.

– For i ∈ [m], compute g
multR
2m+i ∈ RA[Xi]≤1,0 as follows. Notice

∑
~y∈Hm V̂R(~y) ·

m̂ultR(~y) can be computed once and in time O(2m) from TV̂R
(~y) and Tm̂ultR

(~y)
for all the steps.

g
multR
2m+i(Xi) =

∑
~x∈Hm−i

V̂L(~r[2m+1,2m+i−1], Xi, ~x) ·
(∑
~y∈Hm

V̂R(~y) · m̂ultR(~y)
)
.

– For i ∈ [m], compute g
addR
2m+i ∈ RA[Xi]≤1,0 as follows. First, compute∑

~y∈Hm âddR(~y). Next, compute
∑
~y∈Hm V̂R(~y) · âddR(~y). Given those, the next

expression can be computed in O(2m−i) time.

g
addR
2m+i(Xi) =

∑
~x∈Hm−i

∑
~y∈Hm

(
V̂L(~r[2m+1,2m+i−1], Xi, ~x) + V̂R(~y)

)
· âddR(~y).

– Return each polynomial {gmultR2m+1(X1), g
addR
2m+1(X1), . . . , g

multR
3m (Xm), g

addR
3m (Xm)}.

Fig. 9. Sumcheck polynomials for ~X variables and “V̂
(i)
R -side” of Equation (7).

Algorithm Setup Y(m̂ultL,Tm̂ultL
(~x), âddL,TâddL

(~x), ~r[2m+1,3m])

Input: m̂ultL(~χ,~r[m+1,2m],~X), âddL(~χ,~r[m+1,2m],~X) ∈ RA[~X]≤1,0 and their look-up
tables after Setup X (Figure 7). Random challenge ~r[2m+1,3m] ∈ Am.

Output: Values m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]).

– T~r[2m+1,3m]
[~x]← Precompute(~r[2m+1,3m]).

– Compute:

âddL(~χ,~r[m+1,2m], ~r[2m+1,3m]) =
∑
~x∈H

T~r[2m+1,3m]
[~x] · TâddL

[~x].

m̂ultL(~χ,~r[m+1,2m], ~r[2m+1,3m]) =
∑
~x∈H

T~r[2m+1,3m]
[~x] · Tm̂ultL

[~x].

– Return m̂ultL(~g, ~r[m+1,2m], ~r[2m+1,3m]) and âddL(~g, ~r[m+1,2m], ~r[2m+1,3m]).

Fig. 10. Substituting ~X with ~r[2m+1,3m] ∈ Am in the LUTs of m̂ultL, âddL.

29

Algorithm Sumcheck Y

(m̂ultR,Tm̂ultR
(y), âddR,TâddR

(y), V̂R,TV̂R
(y), V̂L(~r[2m+1,3m]),mL, aL, ~s, β)

Input: Toast polynomials m̂ultR(~ψ,~r[1,m],~Y), âddR(~ψ,~r[1,m],~Y), V̂R(~Y) ∈ RA[~Y]0,≤1

given by their lookup tables Tm̂ultR
(~y),TâddR

(~y) (after the execution of Setup X

(Figure 7)) and TV̂R
(~y). Values mL = α · m̂ultL(~χ,~r[m+1,3m]) and aL = α ·

âddL(~χ,~r[m+1,3m]). Random challenges ~s = ~r[3m+1,4m] ∈ Am.
Output: Last m sumcheck messages for Equation (7). Each message is a polyno-
mial g3m+i(Yi) ∈ RA[Yi]≤2,0.

– FV̂R
← Function Evaluations(V̂R,TV̂R

, s1, . . . , sm).

– FâddR
← Function Evaluations(âddR,TâddR

, s1, . . . , sm).

– Fm̂ultR
← Function Evaluations(m̂ultR,Tm̂ultR

, s1, . . . , sm).

– For i ∈ [m], compute g3m+i(Yi) = (gL3m+i(Yi) + gR3m+i(Yi)) ∈ RA[Yi]0,≤2 as
follows. Notice that given FV̂R

,FâddR
,Fm̂ultR

, computation takes O(2m−i) time:

gL3m+i(Yi) = aL · V̂L(~r[2m+1,3m]) +
∑

~y∈Hm−i

(
aL · V̂R(~s[1,i−1], Yi, ~y)

+mL · V̂L(~r[2m+1,3m]) · V̂R(~s[1,i−1], Yi, ~y)
)
.

gR3m+i(Yi) = β ·
(∑
~y∈Hm−i

(
V̂L(~r[2m+1,3m]) + V̂R(~s[1,i−1], Yi, ~y)

)
· âddR(~s[1,i−1], Yi, ~y)

+ V̂L(~r[2m+1,3m]) · V̂R(~s[1,i−1], Yi, ~y) · m̂ultR(~s[1,i−1], Yi, ~y)
)
.

– Return each polynomial {g3m+1(Y1), . . . , g4m(Ym)}.

Fig. 11. Sumcheck polynomials for the block of ~Y variables

30

	Doubly Efficient Interactive Proofs over Infinite and Non-Commutative Rings

