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Abstract. An ℓ-server Private Information Retrieval (PIR) scheme en-
ables a client to retrieve a data item from a database replicated among ℓ
servers while hiding the identity of the item. It is called b-error-correcting
if a client can correctly compute the data item even in the presence of
b malicious servers. It is known that b-error correction is possible if and
only if ℓ > 2b. In this paper, we first prove that if error correction is per-
fect, i.e., the client always corrects errors, the minimum communication
cost of b-error-correcting ℓ-server PIR is asymptotically equal to that of
regular (ℓ − 2b)-server PIR as a function of the database size n. Sec-
ondly, we formalize a relaxed notion of statistical b-error-correcting PIR,
which allows non-zero failure probability. We show that as a function
of n, the minimum communication cost of statistical b-error-correcting
ℓ-server PIR is asymptotically equal to that of regular (ℓ− b)-server one,
which is at most that of (ℓ − 2b)-server one. Our main technical contri-
bution is a generic construction of statistical b-error-correcting ℓ-server
PIR for any ℓ > 2b from regular (ℓ− b)-server PIR. We can therefore re-
duce the problem of determining the optimal communication complexity
of error-correcting PIR to determining that of regular PIR. In particu-
lar, our construction instantiated with the state-of-the-art PIR schemes
and the previous lower bound for single-server PIR result in a separa-
tion in terms of communication cost between perfect and statistical error
correction for any ℓ > 2b.

1 Introduction

Private Information Retrieval (PIR) scheme [8] involves a client holding a search
index τ ∈ [n] and ℓ servers sharing a database a = (a1, . . . , an) ∈ {0, 1}n. The
scheme enables the client to fetch its desired bit aτ from the database while
hiding the client’s index τ from the servers. A trivial solution is to ask a server
to send the entire database a, which has communication cost Θ(n). When ℓ = 1,
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the trivial solution cannot be improved since it was shown in [8] that a single-
server PIR must have communication cost Ω(n). To achieve communication cost
o(n), Chor et al. [8] considered ℓ-server PIR schemes for ℓ ≥ 2 in which servers
do not collude. More generally, a PIR scheme is called t-private if any coalition
of t servers learns no information on τ . Since then, many ℓ-server PIR schemes
have been developed to improve communication cost [1, 3, 4, 7–10, 13, 21].

As more servers are involved, there is a higher possibility that servers are
malicious or faulty, or that the databases are not updated simultaneously. It
is then important to enable a client to correct errors when part of the servers
return false answers. Beimel and Stahl [5] introduced b-error-correcting PIR, in
which a client can obtain a correct value aτ even if b (or less) servers return false
answers. Note that they only considered perfect error correction, which requires
that a client corrects errors with probability 1. They showed that perfect b-
error correction is possible if and only if ℓ > 2b. In particular, they proposed
a generic construction of a perfect b-error-correcting ℓ-server PIR scheme from
any (ℓ− 2b)-server PIR scheme for any ℓ > 2b.

It has remained an open problem: what is the optimal communication com-
plexity of b-error-correcting ℓ-server PIR as a function of n? For perfect error
correction, since the previous construction [5] preserves t-privacy and asymptotic
communication cost, the optimal communication complexity of b-error-correcting
ℓ-server PIR is asymptotically upper bounded by that of (ℓ− 2b)-server one. To
the best of our knowledge, we have not seen work that studies the optimal
communication complexity of statistical error-correcting PIR, in which non-zero
failure probability is allowed.5 It is unknown whether we can realize statistical
error-correcting PIR with strictly lower communication cost than the perfect
one. In this paper, we concern the following problems: (1) Is the minimum com-
munication cost of perfect b-error-correcting ℓ-server PIR asymptotically equal
to that of (ℓ− 2b)-server PIR? (2) What if small failure probability is allowed?

1.1 Our Results

We show answers to the above problems.

1. The optimal communication complexity of perfect b-error-correcting ℓ-server
PIR is asymptotically equal to that of (ℓ − 2b)-server PIR as a function of
the database size n.

2. We formalize a relaxed notion of statistical b-error-correcting PIR. The opti-
mal communication complexity of statistical b-error-correcting ℓ-server PIR
is asymptotically equal to that of (ℓ− b)-server PIR as a function of n.

In conclusion, we can reduce the problem of determining the optimal commu-
nication complexity of error-correcting PIR to determining that of regular PIR.

5 For regular PIR, the authors of [12, 18] introduced the statistical analogue of per-
fect correctness to derive lower bounds for the communication cost of two-server
PIR. Statistical correctness allows a client to output an incorrect value with small
probability even if all servers behave honestly (Definition 2).
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As a corollary, we obtain a separation in terms of communication cost between
perfect and statistical error correction. For ℓ > 2b,

– The minimum communication cost of perfect b-error-correcting (ℓ − 2b)-
private ℓ-server PIR is Ω(n) since it is equal to that of (ℓ − 2b)-private
(ℓ− 2b)-server one, which is Ω(n) [8].6

– The minimum communication cost of statistical b-error-correcting (ℓ − 2b)-
private ℓ-server PIR is o(n) since it is equal to that of (ℓ−2b)-private (ℓ−b)-
server one, which can be instantiated with the scheme [19].

Optimal Communication Complexity for Perfect Error Correction.
We show that perfect b-error-correcting ℓ-server PIR implies regular (ℓ − 2b)-
server PIR with the same communication cost (Theorem 4). Combined with the
results of [5], the optimal communication complexity of perfect b-error-correcting
ℓ-server PIR is asymptotically equal to that of regular (ℓ − 2b)-server PIR as a
function of n (Corollary 2).

Optimal Communication Complexity for Statistical Error Correction.
We show that even statistical b-error-correcting ℓ-server PIR is impossible if
ℓ ≤ 2b (Theorem 5). For ℓ > 2b, we show that as a function of n, the optimal
communication complexity of statistical b-error-correcting ℓ-server PIR is asymp-
totically equal to that of regular (ℓ − b)-server PIR with statistical correctness
(Corollary 4).

Technically, it follows from our generic transformations preserving t-privacy
and asymptotic communication complexity between regular, error-detecting, and
error-correcting PIR. Error-detecting PIR [11] is a relaxed notion of error-correcting
one in a sense that a client can only detect the existence of errors. We first
provide a transformation from statistical regular k-server PIR to statistical
b-error-detecting k-server one for any k > b with communication overhead
(log ϵ−1)2k4+o(1), where ϵ is the failure probability (Corollary 1). Next, we trans-
form b-error-detecting (ℓ− b)-server PIR to statistical b-error-correcting ℓ-server
one with communication overhead

(
ℓ
b

)
(Theorem 3). We therefore obtain a trans-

formation from statistical regular (ℓ−b)-server PIR to statistical b-error-correcting
ℓ-server one with communication overhead (log ϵ−1)22ℓ+o(ℓ) (Corollary 3). Since
the overhead is independent of n, our transformation preserves asymptotic com-
munication cost as a function of n. Although it is exponential in ℓ, the overhead
is not significant from a practical point of view since the number of servers is
typically small, e.g., ℓ = 3 [7, 10, 13, 21]. Finally, we show that statistical b-error-
correcting ℓ-server PIR implies statistical regular (ℓ−b)-server one with the same
communication cost (Theorem 6).

Instantiation of Our Transformation. Since all of the state-of-the-art schemes
satisfy perfect correctness, we show a more communication-efficient transfor-

6 Note that ℓ-private ℓ-server PIR is equivalent to single-server PIR since all the ℓ
servers are allowed to collude and hence can be viewed as a single server.
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mation that is tailored to perfect regular PIR than Corollary 3 (see Corol-
lary 6). Applying it to [9], we obtain a 1-private statistical b-error-correcting
ℓ-server scheme with communication cost Ln[r

−1, vk] · log ϵ−1, where k = ℓ− b,
r = ⌊log k⌋+1 and vk is a constant depending on k.7 Based on [19], we obtain a
t-private statistical b-error-correcting ℓ-server scheme with communication cost
n⌊(2k−1)/t⌋−1

(log ϵ−1)2ℓ+o(ℓ) for any t ≥ 1. We also provide a non-generic con-
struction of error-correcting PIR tailored to the ones satisfying a certain alge-
braic property (Theorem 7). We then obtain a t-private error-correcting scheme

with communication cost n⌊(2k−1)/t⌋−1

(log n+ log ϵ−1)ℓO(1) for any t ≥ 1. Note
that these t-private schemes are incomparable since the complexity of the latter
is polynomial in ℓ while as a function of n, it is larger than the former by a factor
of log n.

For any ℓ > 2b, Corollary 7 gives statistical b-error-correcting (ℓ−2b)-private
schemes with o(n) communication, while any perfect b-error-correcting (ℓ− 2b)-
private scheme has Ω(n) communication since we show that it must be based
on single-server PIR. This shows a separation in terms of communication cost.

Table 1. Our statistical b-error-correcting t-private ℓ-server PIR schemes for ℓ > 2b.
Let n denote the database size and ϵ denote the failure probability. Let k = ℓ − b,
r = ⌊log k⌋+ 1 and vk denote a constant depending on k.

Method Communication t-Privacy Reference

Corollary 6 + [9] Ln[r
−1, vk] · log ϵ−1 t = 1 Corollary 7

Corollary 6 + [19] n⌊(2k−1)/t⌋−1

(log ϵ−1)2ℓ+o(ℓ) t ≥ 1 Corollary 7

Theorem 7 + [19] n⌊(2k−1)/t⌋−1

(log n+ log ϵ−1)ℓO(1) t ≥ 1 Corollary 8

1.2 Related Work

The scheme [19] is a t-private perfect b-error-correcting PIR scheme with commu-

nication cost n⌊(2k−1)/t⌋−1

ℓO(1), where k = ℓ−2b. Kurosawa [14] proposed a more
time-efficient error correction algorithm for the scheme [19]. On the other hand,
the generic construction of [5] instantiated with [19] leads to a perfect error-

correcting scheme with communication cost n⌊(2k−1)/t⌋−1

2O(k)ℓO(1). Although
the former has smaller communication cost, they have the same complexity as a
function of n.

Error-correcting PIR schemes are considered in the setting where the size of
each block of a database is large (see [2, 16, 17, 20] and references therein). Since
only the download cost is of interest, the schemes are incomparable with those
considered in this paper, where total communication cost is of interest.

7 We define Ln[s, c] = exp(c(log n)s(log log n)1−s) for 0 ≤ s ≤ 1 and c > 0 (see
Section 3).
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Eriguchi et al. [11] considered t-private b-error-detecting PIR in a model in
which t out of b malicious servers can collude, while we consider a stronger model
in which all b malicious servers can collude, which is the same as the one in [5].

The authors of [12, 18] considered regular PIR with statistical correctness and
derived lower bounds for the communication cost of two-server PIR. We note that
there is no known separation in terms of communication cost between perfect
and statistical regular PIR in contrast to our separation for error-correcting PIR.

2 Technical Overview

In this section, we provide an overview of our techniques. We give more detailed
descriptions and formal proofs in the following sections.

2.1 Optimal Communication Complexity of Error-Correcting PIR

The Case of Perfect Error Correction. First, we consider perfect error-
correcting PIR. Beimel and Stahl [5] showed a generic construction of perfect
b-error-correcting ℓ-server PIR from any k-server PIR preserving asymptotic
communication complexity, where k = ℓ−2b. To determine the optimal commu-
nication complexity, we prove the converse of their results: any perfect b-error-
correcting ℓ-server PIR scheme Π implies a regular k-server PIR scheme Π ′ with
the same communication cost (Theorem 4).

Let C denote a client with a search index τ and S1, . . . , Sℓ denote ℓ servers
sharing a database a ∈ {0, 1}n. For simplicity, we here set ℓ = 3 and b = 1,
and assume that S1 is honest. For a fixed query by C in Π, let ansi(a

′) denote
the (deterministic) answer that is generated by Si when Si is honest and has
database a′. We can see that the two sets Xh := {ans1(a′) | a′ satisfies a′τ = h}
(h ∈ {0, 1}) have empty intersection. Then C can determine aτ solely from a given
ans1(a), which implies single-server PIR, since only the Xaτ

contains ans1(a).
To see that X0 ∩ X1 = ∅, assume the contrary, i.e., α := ans1(a

′) = ans1(a
′′)

with a′τ = 0 and a′′τ = 1. Then a malicious server S2 with database a′ can falsely
answer ans2(a

′′), yielding the tuple of answers a⃗ns := (α, ans2(a
′′), ans3(a

′)).
On the other hand, a malicious server S3 with database a′′ can falsely answer
ans3(a

′), yielding the same tuple of answers a⃗ns. Now C cannot determine with
certainty from a⃗ns which of a′ or a′′ was actually used, contradicting the perfect
error correction of Π. See Section 7.1 for the details.

The Case of Statistical Error Correction. Next, we consider statistical
b-error-correcting PIR. We show equivalence among statistical regular k-server
PIR, statistical b-error-detecting k-server PIR, and statistical b-error-correcting
ℓ-server PIR, where k = ℓ−b. We mean by equivalence that a PIR scheme can be
transformed to another preserving asymptotic communication complexity as a
function of the database size n, and vice versa. Our results on the optimal com-
munication complexity immediately follow from the equivalence between regular
k-server PIR and statistical b-error-correcting ℓ-server PIR.
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From Regular to Error-Detecting PIR. Our transformation from any statistical
k-server PIR scheme Π0 to a statistical b-error-detecting k-server PIR scheme
Π ′ (Corollary 1) is obtained by composing the following three transformations:

1. From a statistical k-server PIR scheme Π0 to a k-server PIR scheme Π1 with
sufficiently small error probability (Lemma 1). This is done by repeating Π0

λ times for some λ and taking the majority of the outputs; now the error
probability is negligible in λ due to the Chernoff bound.

2. FromΠ1 to a b-error-detecting k-server PIR schemeΠ2 where the correctness
error probability (i.e., for the case of all honest servers) is sufficiently small
and the error detection failure probability is smaller than 1 (see below).

3. From Π2 to Π ′ where the error detection failure probability is also negligible
(Theorem 2). This is done by repeating Π2 λ′ times for some λ′ and letting
the final output be a bit h if all the λ′ outputs are h, otherwise ⊥ meaning
“error detected”. Now, to fool Π ′, a malicious adversary needs to fool all the
λ′ instances of Π2; due to the structure of Π2, it is possible with exponen-
tially small probability in λ′ (when ignoring the negligible correctness error
probability of Π2).

We explain the second transformation from Π1 to Π2 (Theorem 1), for sim-
plicity with k = 2 and b = 1. Assume that S1 is honest. In Π2, the client C first
randomly guess which of S1 and S2 is honest. Suppose that C correctly guesses
(with probability 1/2) that S1 is honest. Secondly, together with a true instance
of Π1, C runs a dummy instance of Π1 where the query for S1 is replaced with
the same query as S2. In the dummy instance, an answer returned by a honest
server S1 tells C the correct answer which S2 should provide if she is honest (we
note that each honest server’s answer is supposed to be deterministic). Then C
runs the two instances in a random order; given servers’ answers, C first checks
if S2’s answer in the dummy instance is correct (otherwise outputs ⊥) and then
outputs the output in the true instance. Now a malicious server S2 who wants to
fool Π2 has to correctly guess which is the dummy instance, honestly behave in
the dummy instance, and modify the answer in the true instance. Since the two
instances are executed in a random order and are indistinguishable from S2’s
viewpoint, S2 can guess correctly with probability at most 1/2. In summary, C
can detect error with probability at least (1/2) · (1/2) = 1/4 (when ignoring the
negligible correctness error probability of Π1), while the correctness error prob-
ability of Π2 is almost the same as that of Π1 since Π2 runs only two instances
of Π1. See Section 5.1 for the details of the above method.

By carefully adjusting the parameters λ and λ′ in the above transformations,
we can make the error probability of the final scheme Π ′ bounded by a given
value ϵED > 0. If the communication cost of the initial scheme Π0 is c0, that of
Π ′ is c = c0(log ϵ

−1
ED)

2 ·poly(k), which is asymptotically equal to c0 as a function
of n. See Section 5.2 for the details.

From Error-Detecting to Error-Correcting PIR. Our transformation from any
statistical b-error-detecting k-server PIR schemeΠ ′ to a statistical b-error-correcting
ℓ-server PIR scheme Π simply executes N :=

(
ℓ

ℓ−b

)
independent instances of Π ′,
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each interacting with one of the N subsets of k = ℓ−b servers (Theorem 3). The
output of Π is any bit contained in the N outputs by Π ′ if it exists; otherwise
⊥. Now when all the N instances of Π ′ work correctly, the N outputs contain at
least one true bit aτ in the instance with k honest servers, due to the correctness
of Π ′; and do not contain the opposite bit due to the error-detection capability
of the other N − 1 instances. Therefore Π fails only if some of the N instances
of Π ′ fails, which happens with probability at most N times larger than the
failure probability of Π ′. Note that we can make the failure probability of Π
arbitrarily small by starting from Π ′ with sufficiently small failure probability.
See Section 6 for the details.

From Error-Correcting to Regular PIR. Finally, we prove that any statistical
b-error-correcting ℓ-server PIR scheme Π implies a statistical regular k-server
PIR scheme with the same error probability and communication complexity
(Theorem 6). This is simply done as follows: When the client C receives correct
answers in Π from k = ℓ − b honest servers only, C feds b arbitrary answers to
the reconstruction algorithm of Π. Since those b answers can be viewed as false
answers by the remaining b malicious servers, C correctly retrieves an item due
to the error correction capability of Π. See Section 7.2 for the details.

2.2 Instantiation of Our Transformation

We instantiate our transformation from regular to statistical error-correcting
PIR with the state-of-the-art schemes [9, 19]. Although the above transformation
(Corollary 3) can be used, we show a construction tailored to regular PIR with
perfect correctness since the schemes [9, 19] are perfectly correct. We observe
that if a regular scheme is perfect, we do not need to make correctness error
negligible at the first step of our construction of error-detecting PIR. We show
a more communication-efficient construction than the above one (Corollary 6).
Instantiated with [9, 19], it gives the statistical error-correcting schemes shown
in the first and second rows of Table 1. Note that if a statistical regular PIR
scheme advances state of the art in the future, we should use the transformation
in Corollary 3 instead of that in Corollary 6.

The third scheme can be obtained as follows. The construction follows the
framework of the Rabin-BenOr robust secret sharing scheme [15]. Their scheme
uses tags produced by a message authentication code (MAC, for short) to verify
the integrity of shares. Since a client needs to verify the authenticity of com-
putations by servers in PIR, we use a homomorphic MAC of [6]. The answer
computed by any honest server is accepted by all honest servers while any in-
correct answer is detected by them. If ℓ > 2b, at least ℓ− b answers are declared
to be correct after verification procedures. A client runs the reconstruction al-
gorithm of (ℓ − b)-server PIR on them and obtains a correct value. Note that
the tag size of [6] grows linearly in the depth of the evaluated arithmetic circuit.
The above construction is non-generic in a sense that it requires that server-side
computation is represented by a shallow arithmetic circuit. Since the scheme [19]
satisfies it, we obtain the third scheme of Table 1. See Section 8.1 for the details.
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3 Preliminaries

For m ∈ N, define [m] = {1, . . . ,m}. For a subset X of a set Y , we define
X = {y ∈ Y : y /∈ X} if Y is clear from the context. We write u←$Y if u is

chosen uniformly at random from a set Y . Define
(
[m]
k

)
as the set of all subsets

of [m] of size k. Let RA denote the set of all random strings for a probabilistic
algorithm A. Namely, on input x, A outputs A(x; r) for r←$RA. For a vector x,
let xi denote the i-th entry of x. Let log x denote the base-2 logarithm of x and
lnx denote the base-e logarithm of x, where e denotes the Napier’s constant. Let
Ln[s, c] denote the function of n defined as Ln[s, c] = exp(c(log n)s(log log n)1−s),
where 0 ≤ s ≤ 1 and c > 0.

4 Private Information Retrieval (PIR)

4.1 Definitions

Definition 1 (Syntax). An ℓ-server PIR scheme Π for a universe of databases
{0, 1}n consists of three algorithms Π = (Q,A,D), where Q is probabilistic while
A and D are deterministic:

– A query algorithm Q takes a search index τ ∈ [n] as input. It then samples
a random string r←$RQ and outputs quei ∈ {0, 1}cque for i ∈ [ℓ] and aux ∈
{0, 1}caux . That is, Q(τ ; r) = (que1, . . . , queℓ; aux).

– An answer algorithm A takes i ∈ [ℓ], quei ∈ {0, 1}cque and a = (a1, . . . , an) ∈
{0, 1}n as input and outputs ansi ∈ {0, 1}cans . That is, A(i, quei,a) = ansi.

– A reconstruction algorithm D takes (ans1, . . . , ansℓ) ∈ ({0, 1}cans)ℓ and aux ∈
{0, 1}caux as input, and outputs y ∈ {0, 1}. That is, D(ans1, . . . , ansℓ; aux) = y.

The (total) communication complexity of Π is given by ℓ(cque + cans).

Definition 2 (Statistical correctness). An ℓ-server PIR scheme Π = (Q,A,D)
is said to be (1 − ϵ)-correct if for any a = (a1, . . . , an) ∈ {0, 1}n and any
τ ∈ [n], it holds that Pr[r←$RQ : D(ans1, . . . , ansℓ; aux) = aτ ] ≥ 1 − ϵ, where
(que1, . . . , queℓ; aux) = Q(τ ; r) and ansi = A(i, quei,a) for i ∈ [ℓ].

Remark 1. In the literature, a PIR scheme is usually required to satisfy perfect
correctness, i.e., ϵ = 0. We use the above generalized notion of (1−ϵ)-correctness
for ϵ ≥ 0 to show the equivalence between (1− ϵ)-correct (ℓ− b)-server PIR and
(b; 1− ϵ)-error-correcting ℓ-server PIR.

Definition 3 (t-Privacy). An ℓ-server PIR scheme Π = (Q,A,D) is said to

be t-private if for any X ∈
(
[ℓ]
t

)
and any τ, τ ′ ∈ [n], the distributions of (quei)i∈X

and (que′i)i∈X are perfectly identical, where r, r′←$RQ, (que1, . . . , queℓ; aux) =
Q(τ ; r) and (que′1, . . . , que

′
ℓ; aux

′) = Q(τ ′; r′).
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4.2 Robust PIR

(k, ℓ)-Robust PIR [5] guarantees that a client can compute aτ from answers of
any k out of ℓ servers. We provide a general notion of (k, ℓ; 1 − ϵ)-robust PIR
with statistical correctness.

Definition 4. A PIR scheme Π = (Q,A,D) is said to be (k, ℓ; 1− ϵ)-robust if

– D takes X ∈
(
[ℓ]
k

)
, (ansi)i∈X ∈ ({0, 1}cans)k and aux ∈ {0, 1}caux as input, and

outputs y ∈ {0, 1};
– It holds that Pr[r←$RQ : D(X, (ansi)i∈X ; aux) = aτ ] ≥ 1 − ϵ for any a ∈
{0, 1}n, any τ ∈ [n] and any X ∈

(
[ℓ]
k

)
, where (que1, . . . , queℓ; aux) = Q(τ ; r)

and ansi = A(i, quei,a) for i ∈ [ℓ].

4.3 Error-Correcting and Error-Detecting PIR

We can identify an ℓ-server PIR scheme Π with a protocol (Π;C, S1, . . . , Sℓ)
between a client C and ℓ servers S1, . . . , Sℓ as follows:

Query. On input τ ∈ [n], C chooses r←$RQ and computes (que1, . . . , queℓ; aux) =
Q(τ ; r). Then, C sends quei to Si for i ∈ [ℓ].

Answer. On input a ∈ {0, 1}n, each Si returns ansi = A(i, quei,a) to C.
Reconstruction. C outputs y = D(ans1, . . . , ansℓ; aux).

We consider a malicious adversary B who corrupts a set B of at most b servers
and returns a possibly modified answer ãnsi to C instead of ansi for each i ∈ B.8

Definition 5 (Error-correcting PIR). A PIR scheme Π is said to be (b; 1−
ϵEC)-error-correcting if for any a ∈ {0, 1}n, any τ ∈ [n] and any malicious
adversary B who corrupts at most b servers, it holds that Pr[C outputs aτ ] ≥
1− ϵEC in the protocol (Π;C, S1, . . . , Sℓ).

Remark 2. In the definition, in order to achieve stronger error correction capa-
bility, we allow the modified answers to depend on all of the b queries even if
b > t for t-privacy (though now b queries may leak some information on the
client’s index). This model follows the original definition in [5].

Definition 6 (Error-detecting PIR). A PIR scheme Π is said to be (b; 1−
ϵED)-error-detecting if the following conditions hold:

– Π is (1− ϵED)-correct.
– C is allowed to output a special symbol ⊥ and for any a ∈ {0, 1}n, any τ ∈ [n]

and any malicious adversary B who corrupts at most b servers, it holds that
Pr[C outputs aτ ] ≥ 1− ϵED in the protocol (Π;C, S1, . . . , Sℓ).

8 More formally, we formalize B by using a tampering function [11]. See [11] or Ap-
pendix A for the details.
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5 Transformation from Regular to Error-Detecting PIR

We show a generic transformation from any t-private k-server PIR scheme Π0 =
(Q0,A0,D0) to a t-private (k − 1; 1− ϵED)-error-detecting k-server PIR scheme
Π. The communication overhead is independent of the database size n.

We first give our transformation for larger ϵED in Section 5.1, which is then
reduced to arbitrarily small ϵED > 0 in Section 5.2.

5.1 Basic Transformation

GivenΠ0 = (Q0,A0,D0), we consider the following two query algorithmsΠCompute
0

and Π
Verify,(i,j)
0 . ΠCompute

0 is used to actually compute aτ and Π
Verify,(i,j)
0 is used

to verify whether Sj correctly computes her answer assuming that Si is honest.

ΠCompute
0 : On input τ ∈ [n], C chooses r←$RQ0 and computes Q0(τ ; r) =
(que1, . . . , quek; aux). Then, he sends (m, quem) to Sm for m ∈ [k].

Π
Verify,(i,j)
0 : On input τ ∈ [n], C chooses r←$RQ0 and computes Q0(τ ; r) =
(que1, . . . , quek; aux). Then, he sends (m, quem) to Sm for m ∈ [k] \ {i}, and
(j, quej) to Si.

Now we consider a k-server PIR scheme Π1 = (Q,A,D) as shown in Fig. 1,
where the client C chooses i ̸= j ∈ [k] uniformly at random, randomly permutes

two instances of ΠCompute
0 and Π

Verify,(i,j)
0 , and executes them in parallel with

S1, . . . , Sk. C verifies that Sj correctly computes her answer using Π
Verify,(i,j)
0

and then he runs D0 on the answers obtained during the execution of ΠCompute
0 .

We obtain the following theorem. We sketch the proof here. The formal proof
is given in Appendix B, where a more general result (Theorem 2) is proved.

Theorem 1. If Π0 is t-private and (1 − ϵ)-correct, then Π1 is t-private and
(k−1; 1− ϵED)-error-detecting for ϵED = 1−1/(2k(k − 1))+2ϵ. Furthermore, if
Π0 has communication cost c0, then Π1 has communication cost O(c0+k log k).

Proof (Sketch). It is easy to see that Π1 is (1− ϵ)-correct. It is also easy to see
that Π1 is t-private and has the communication complexity 2c0 + O(k log k) =
O(c0 + k log k). We will prove that Π1 is (k − 1; 1− ϵED)-error-detecting.

First, we assume that ϵ = 0. Without loss of generality, we suppose that S1
is honest and a malicious adversary B corrupts S2, . . . , Sk. Clearly, if S2, . . . , Sk
return correct answers, the client C obtains the correct value aτ . We may assume
that at least one malicious server, say S2, modifies her answer.

Consider the case where C chooses (i, j) = (1, 2) at Step 1(a) in Fig. 1,
which occurs with probability 1/(k(k − 1)). To make C output the incorrect

value 1 − aτ , S2 needs to honestly behave in the instance Π
Verify,(1,2)
0 and to

modify her answer in the other instance ΠCompute
0 . Note that B cannot distinguish

between two instancesΠCompute
0 ,Π

Verify,(1,2)
0 since the distributions of queries that
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Components.
– A k-server PIR scheme Π0 = (Q0,A0,D0)

– Query algorithms ΠCompute
0 and Π

Verify,(i,j)
0

Query. On input τ ∈ [n], C chooses i ̸= j ∈ [k] uniformly at random and executes

ΠCompute
0 , Π

Verify,(i,j)
0 in a random order. Specifically, C does the following:

1. He chooses i ̸= j ∈ [k] uniformly at random.

2. He randomly permutes two protocols ΠCompute
0 , Π

Verify,(i,j)
0 . Let Π

(1)
0 , Π

(2)
0 de-

note the resulting sequence.
3. He generates queries for Π

(1)
0 , Π

(2)
0 . Let que(α)

m and aux(α) denote the query

sent to Sm and auxiliary information obtained during the execution of Π
(α)
0 ,

respectively.
4. He sends quem = (que(1)m , que(2)m ) to each Sm.

Answer. On input a ∈ {0, 1}n, each Sm does the following:

1. For each que(α)
m = (x, quex), she computes ans

(α)
m = A0(x, quex,a).

2. She returns ans
(α)
m to C for α ∈ {1, 2}.

Error detection. If he receives ãns(α)
m from Sm as ans

(α)
m , C does the following:

1. For α ∈ {1, 2} withΠ
(α)
0 = ΠCompute

0 , he sets z ← D0(ãns
(α)
1 , . . . , ãns

(α)
k ; aux(α)).

2. For α ∈ {1, 2} with Π
(α)
0 = Π

Verify,(i,j)
0 , he verifies whether ãns

(α)
j = ãns

(α)
i

holds. If it holds, then he outputs z. Otherwise, he outputs ⊥.

Fig. 1. A basic error-detecting PIR protocol Π1

S2, . . . , Sk receive are the same in both cases. Hence, the distribution of an answer
returned by S2 is independent of the permutation chosen by C at Step 1(b). With

probability at least 1/2, S2 fails to guess the instance Π
Verify,(1,2)
0 , in which she

has to behave honestly. Therefore, C can detect errors with probability 1/(2k(k−
1)) = 1− ϵED. We conclude that Π1 is (k − 1; 1− ϵED)-error-detecting.

In the general case of ϵ ≥ 0, the previous argument still holds unless C
chooses a bad random string such that D0 outputs 1 − aτ even if all servers
return correct answers. Since Π1 involves two instances of Π0 and Π0 is (1− ϵ)-
correct, we can upper bound by 2ϵ the fraction of such bad random strings.
Therefore the previous bound for the error probability is increased by 2ϵ, which
results in the value of ϵED in the statement. ⊓⊔

5.2 General Transformation

We consider a PIR scheme Π obtained by running sufficiently many independent
instances of the basic error-detecting scheme (Fig. 2). We obtain the following
theorem. The formal proof is given in Appendix B.

Theorem 2. Let b < k, λ ∈ N, ϵ ≥ 0, and ϵED = 2λϵ+ (1− 1/(2k(k − 1)))λ. If
there exists a (1 − ϵ)-correct t-private k-server PIR scheme Π0 = (Q0,A0,D0)
with communication cost c0, then there exists a (b; 1 − ϵED)-error-detecting t-
private k-server PIR scheme with communication cost c = O(λ(c0 + k log k)).
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1. For each ν ∈ [λ], run the protocol Π1 (Fig. 1) in parallel.
2. Let z(ν) denote the output of C for ν ∈ [λ].
3. If {z(ν) : ν ∈ [λ]} = {z} for some z ∈ {0, 1}, C outputs z. Otherwise C outputs ⊥.

Fig. 2. A general error-detecting PIR Protocol Π

Proof (Sketch). Since Π runs λ instances of Π1, the claim for the communication
complexity follows from Theorem 1. When ϵ = 0, a malicious adversary has
to fool all the λ independent instances in order to make the client output an
incorrect value. Therefore the claimed bound follows from that of Theorem 1.
In the general case of ϵ ≥ 0, since Π runs Π0 2λ times in total, the bound is
increased by 2λϵ. ⊓⊔

We show that the optimal communication complexity of (k − 1; 1 − ϵED)-
error-detecting k-server PIR is asymptotically upper bounded by that of (1−ϵ0)-
correct k-server PIR for any ϵED > 0 and ϵ0 < 1/2. Lemma 1 shows that the
correctness error of a (1− ϵ0)-correct PIR scheme can be made arbitrarily small.
We defer the formal proof to Appendix C.

Lemma 1. Let 0 ≤ ϵ0 < 1/2 and λ ∈ N. If there exists a (1 − ϵ0)-correct t-
private k-server PIR scheme Π0 with communication cost c0, then there exists
a (1− ϵ)-correct t-private k-server PIR scheme Π with communication cost c0λ,
where ϵ = (2

√
ϵ0(1− ϵ0))

λ ≤ exp(−2(1/2− ϵ0)
2λ).

Proof (Sketch). We construct Π in a way that it runs λ independent instances
of Π0 and takes the majority of their outputs. Since each instance fails with
probability at most ϵ0, the Chernoff bound implies that the majority fails with
probability at most ϵ as in the statement. The claimed upper bound for ϵ is
deduced by an elementary analysis. ⊓⊔

Corollary 1 shows a general transformation from any (1−ϵ0)-correct k-server
PIR scheme to a (k − 1; 1− ϵED)-error-detecting PIR scheme.

Corollary 1. Let b < k, 0 ≤ ϵ0 < 1/2 and ϵED > 0. If there exists a (1 − ϵ0)-
correct t-private k-server PIR scheme with communication cost c0, then there
exists a (b; 1− ϵED)-error-detecting t-private k-server PIR scheme with commu-
nication cost c = c0(log ϵ

−1
ED)

2(1/2− ϵ0)
−2k4+o(1).

Proof. Let λ, λ′ ∈ N be the smallest integers such that λ ≥ 2k(k − 1)(log 3ϵ−1
ED)

and λ′ ≥ (1/2 − ϵ0)
−2λ. We have that λ = O(k2 log ϵ−1

ED) and λ′ = O((1/2 −
ϵ0)

−2λ). Let ϵ = (2
√
ϵ0(1− ϵ0))

λ′ ≤ exp(−2(1/2−ϵ0)2λ′) ≤ exp(−2λ). It follows
from Lemma 1 that there exists a (1 − ϵ)-correct t-private k-server PIR scheme
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with communication cost c′0 = c0λ
′. Note that

2λϵ+

(
1− 1

2k(k − 1)

)λ

≤ 2 exp(−λ) +
(
1− 1

2k(k − 1)

)λ

≤ 3 exp

(
− λ

2k(k − 1)

)
≤ ϵED.

It then follows from Theorem 2 that there exists a (b; 1 − ϵED)-error-detecting
t-private k-server PIR scheme with communication cost c = O(λ(c′0+k log k)) =
c0(log ϵ

−1
ED)

2(1/2− ϵ0)
−2k4+o(1). ⊓⊔

6 Transformation from Error-Detecting to
Error-Correcting PIR

We show a transformation from any (b; 1−ϵED)-error-detecting (ℓ−b)-server PIR
scheme to a (b; 1−ϵEC)-error-correcting ℓ-server PIR scheme. Our transformation
simply executes

(
ℓ

ℓ−b

)
independent instances of the error-detecting PIR scheme.

In particular, the communication overhead is independent of the database size
n. We sketch the proof here but refer to Appendix D for the details.

Theorem 3. Let b < ℓ/2, k = ℓ− b and N =
(
ℓ
k

)
. If there exists a (b; 1− ϵED)-

error-detecting t-private k-server PIR scheme Π0 with communication cost c ,
then there exists a (b; 1 − ϵEC)-error-correcting t-private ℓ-server PIR scheme
with communication cost Nc for ϵEC = NϵED.

Proof (Sketch). We consider a PIR scheme Π where N independent instances of
Π0 are executed between a client and every subset of k servers. Let z1, . . . , zN ∈
{0, 1,⊥} be the N outcomes. If {z1, . . . , zN} is {s} or {s,⊥} for some s ∈ {0, 1},
then the client outputs s and otherwise outputs 0.

Clearly, the communication complexity of Π is Nc. It is also easy to see that
Π is t-private since all executions of Π0 are independent.

For the correctness, a malicious adversary can make the output incorrect
only if either the unique instance of Π0 with k honest servers does not output
aτ (happening with probability at most ϵED) or some of the other N − 1 in-
stances of Π0 with possibly corrupted servers fails to detect error (happening
with probability at most ϵED each). Therefore the error probability is bounded
by ϵED + (N − 1)ϵED = ϵEC. ⊓⊔

7 Optimal Communication Complexity of
Error-Correcting PIR

In this section, we show the relation between the optimum communication com-
plexity of error-correcting PIR and that of regular PIR as a function of the
database size n. We use the following notations: For the database size n,
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– PIRk,t;1−ϵ(n) denotes the minimum communication cost of t-private (1− ϵ)-
correct k-server PIR schemes and;

– EC-PIRℓ,t,b;1−ϵ(n) denotes the minimum communication cost of t-private
(b; 1− ϵ)-error-correcting ℓ-server PIR schemes.

7.1 The Case of Perfect Error Correction

Beimel and Stahl [5] showed a generic transformation from a t-private 1-correct
k-server PIR scheme to a t-private 1-correct (b; 1)-error-correcting ℓ-server PIR
scheme for b ≤ (ℓ − k)/2. The communication overhead is 2O(k)ℓ log ℓ, which is
independent of the database size n. We show the converse.

Theorem 4. Let b < ℓ/2. If there exists a (b; 1)-error-correcting ℓ-server PIR
scheme Π = (Q,A,D), then there exists a deterministic algorithm D′ such that
Π ′ = (Q,A,D′) is a (k, ℓ; 1)-robust PIR scheme, where k = ℓ− 2b.

Proof. Let X ∈
(
[ℓ]
k

)
and τ ∈ [n]. Below we show that for any possible output

((quei)i∈[ℓ]; aux) of Q(τ), if two databases a′ and a′′ satisfy a′τ = 0 and a′′τ =
1, then we always have (A(i, quei,a′))i∈X ̸= (A(i, quei,a′′))i∈X . Once this is
proved, the desired D′ can be constructed as follows: Given (ansi)i∈X , it first finds
(by an exhaustive search) a database â ∈ {0, 1}n such that (A(i, quei, â))i∈X =
(ansi)i∈X , and then outputs z = âτ . Note that the actual database â = a indeed
satisfies the equality and the uniqueness yields z = aτ .

Now we show the claim. Assume for the contrary that (A(i, quei,a′))i∈X =
(A(i, quei,a′′))i∈X , which we denote by (αi)i∈X . We fix a partition [ℓ] = X ∪
Y ∪Z into mutually disjoint parts with Y, Z ∈

(
[ℓ]
b

)
. For each i ∈ [ℓ], define α̃i ∈

{0, 1}cans by α̃i = αi if i ∈ X, α̃i = A(i, quei,a′) if i ∈ Y , and α̃i = A(i, quei,a′′)
if i ∈ Z. Now if Y (resp. Z) is the set of corrupted servers, then a malicious
adversary with database a′′ (resp. a′) can let the tuple of answers be α̃ by
setting ãnsi = A(i, quei,a′) for i ∈ Y (resp. A(i, quei,a′′) for i ∈ Z). Therefore,
the perfect correctness of Π implies that D(α̃; aux) must output a′′τ = 1 (resp.
a′τ = 0). This is a contradiction. Therefore the claim holds. ⊓⊔

A t-private (k, ℓ; 1)-robust PIR scheme trivially implies a t-private 1-correct
k-server PIR scheme. By combining the results of [5] and Theorem 4, we obtain
the following corollary.

Corollary 2. For any b < ℓ/2 and t ≥ 1, it holds that

EC-PIRℓ,t,b;1(n) = Θℓ,b (PIRℓ−2b,t;1(n)) ,

where the notation Θℓ,b(·) hides any constant depending on ℓ and b.

7.2 The Case of Statistical Error Correction

In [5], it is claimed that (b; 1)-error-correcting ℓ-server PIR is impossible if
b ≥ ℓ/2. We show a more general impossibility result in the case of statisti-
cal correctness. The proof is given in Appendix E.
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Theorem 5. Let b ≥ ℓ/2. If there exists a (b; 1− ϵEC)-error-correcting ℓ-server
PIR scheme Π = (Q,A,D), then ϵEC ≥ 1/2.

For b < ℓ/2, we obtain a generic construction of (b; 1 − ϵ)-error-correcting
ℓ-server PIR from (1 − ϵ)-correct (ℓ − b)-server PIR by combining Corollary 1
and Theorem 3.

Corollary 3. Let b < ℓ/2, k = ℓ − b, 0 < ϵ0 < 1/2 and ϵ > 0. If there exists
a (1 − ϵ0)-correct t-private k-server PIR scheme with communication cost c0,
then there exists a (b; 1− ϵ)-error-correcting t-private ℓ-server PIR scheme with
communication cost c = c0(log ϵ

−1)2(1/2− ϵ0)
−22ℓ+o(ℓ).

Proof. Let ϵED = ϵ/
(
ℓ
b

)
. Corollary 1 implies that there exists a (b; 1 − ϵED)-

error-detecting t-private k-server PIR scheme with communication cost c1 =
c0(log ϵ

−1
ED)

2(1/2−ϵ0)−2k4+o(1) = c0(log ϵ
−1)2(1/2−ϵ0)−2ℓO(1). Then, Theorem 3

implies that there exists a (b; 1−ϵ)-error-correcting t-private ℓ-server PIR scheme
with communication cost c = c1

(
ℓ
b

)
= c0(log ϵ

−1)2(1/2− ϵ0)
−22ℓ+o(ℓ). ⊓⊔

The following theorem shows the converse of Corollary 3.

Theorem 6. Let b < ℓ/2 and ϵEC ≥ 0. If there exists a (b; 1 − ϵEC)-error-
correcting ℓ-server PIR scheme Π = (Q,A,D), there exists an algorithm D′ such
that Π ′ = (Q,A,D′) is a (k, ℓ; 1− ϵEC)-robust PIR scheme, where k = ℓ− b.

Proof. Let X ∈
(
[ℓ]
k

)
, τ ∈ [n] and a ∈ {0, 1}n. Given X, (ãnsi)i∈X , and aux as

input, D′ is defined in a way that it sets ãnsi = 0 ∈ {0, 1}cans for i ∈ X and runs
D((ãnsi)i∈[ℓ]; aux). Now the input for the internal D is equivalent to the case of
Π where the database is a and a malicious adversary corrupting the servers in
X has modified each ãnsi, i ∈ X to 0. Therefore the correctness of D implies
that D′ outputs aτ with probability at least 1 − ϵEC. ⊓⊔

A t-private (k, ℓ; 1−ϵ)-robust PIR scheme trivially implies a t-private (1−ϵ)-
correct k-server PIR scheme. By combining Corollary 3 and Theorem 6, we
obtain the following corollary.

Corollary 4. For any b < ℓ/2, t ≥ 1 and 0 < ϵ < 1/2, it holds that

EC-PIRℓ,t,b;1−ϵ(n) = Θℓ,b,ϵ (PIRℓ−b,t;1−ϵ(n)) ,

where the notation Θℓ,b,ϵ(·) hides any constant depending on ℓ, b and ϵ.

8 Instantiation of Our Transformation

We have shown the generic construction of statistical error-correcting PIR from
regular PIR with statistical correctness. The reason is that we aim at relating
its optimal communication complexity to that of statistical regular PIR. Since
all the state-of-the-art schemes satisfy perfect correctness, we use a construction
tailored to perfect regular PIR in the following instantiations. If an initial scheme
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is 1-correct, the resulting error-correcting scheme has better communication cost
than Corollary 3.

The following corollary shows that if an initial scheme is 1-correct, it is pos-
sible to construct a more efficient error-detecting PIR scheme than Corollary 1.

Corollary 5. Let b < k and ϵED > 0. If there exists a 1-correct t-private k-
server PIR scheme with communication cost c0, then there exists a (b; 1− ϵED)-
error-detecting t-private k-server PIR scheme with communication cost c =
O((c0 + k log k)k2(log ϵ−1

ED)).

Proof. Let λ ∈ N be the smallest integer such that λ ≥ 2k(k − 1) log ϵ−1
ED.

Observe that λ = O(k2 log ϵ−1
ED). Also, observe that (1 − 1/(2k(k − 1)))λ ≤

exp(−λ/(2k(k − 1))) ≤ ϵED. The statements then follow from Theorem 2. ⊓⊔

By combining Theorem 3 with Corollary 5, we obtain the following corollary.

Corollary 6. Let b < ℓ/2, k = ℓ − b and ϵ > 0. If there exists a 1-correct
t-private k-server PIR scheme with communication cost c0, then there exists a
(b; 1−ϵ)-error-correcting t-private ℓ-server PIR scheme with communication cost
c = c0(log ϵ

−1)2ℓ+o(ℓ).

Proof. Let ϵED = ϵ/
(
ℓ
b

)
. Corollary 5 implies that there exists a (b; 1− ϵED)-error-

detecting t-private k-server PIR scheme with communication complexity c1 =
c0(log ϵ

−1
ED)k

3+o(1) = c0(log ϵ
−1)ℓO(1). Then, Theorem 3 implies that there exists

a (b; 1 − ϵ)-error-correcting t-private ℓ-server PIR scheme with communication
complexity c = c1

(
ℓ
b

)
= c0(log ϵ

−1)2ℓ+o(ℓ). ⊓⊔

We apply Corollary 6 to the state-of-the-art PIR schemes [9, 19] to obtain
the following corollary.

Corollary 7. Let b < ℓ/2, k = ℓ − b, t ≥ 1 and ϵ > 0. There exist (b; 1 − ϵ)-
error-correcting ℓ-server PIR schemes Π1,Π2 such that:

– Π1 is 1-private and has communication cost Ln[(⌊log k⌋+1)−1, vk]·(log ϵ−1)2ℓ+o(ℓ),
where vk is a constant depending only on k and;

– Π2 is t-private and has communication cost n⌊(2k−1)/t⌋−1

(log ϵ−1)2ℓ+o(ℓ).

Observe that if ℓ > b + t, i.e., k ≥ t + 1 ≥ 2, then Corollary 7 gives t-
private (b; 1− ϵ)-error-correcting ℓ-server PIR with o(n) communication. On the
other hand, if ℓ ≤ 2b + t, any (b; 1)-error-correcting t-private ℓ-server scheme
has communication cost Ω(n) since it must be based on single-server PIR in
view of Corollary 2. Thus, there is a separation in terms of communication
cost between perfect and statistical b-error-correcting t-private ℓ-server PIR if
max{2b, b+ t} < ℓ ≤ 2b+ t.

In the next section, we show a non-generic construction assuming a certain
algebraic property. If we apply it to the scheme of [19], we obtain a (b; 1 − ϵ)-
error-correcting ℓ-server PIR scheme which is more communication-efficient in
terms of ℓ than Π2 in Corollary 7.
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8.1 Statistical Error-Correcting PIR Based on Homomorphic MAC

We show a construction of a (b; 1 − ϵ)-error-correcting ℓ-server PIR scheme Π
from a (ℓ− b, ℓ; 1− ϵ′)-robust PIR scheme Π0 = (Q0,A0,D0). Our construction
requires that A0 is represented by low-degree polynomials. The communication
overhead is polynomial in ℓ while that of Corollary 3 is exponential in ℓ.

Our construction is based on the framework of the Rabin-BenOr robust secret
sharing scheme [15]. Suppose that the client C wants a server Si to compute
a function Fa,i(·) := A0(i, ·,a) on input quei. Since C does not know a, he
verifies the computation of Fa,i(quei) with help of the other servers Sj (j ̸= i).
Below we give a specific method to do so based on homomorphic MAC. Our
method guarantees that if Si computes Fa,i correctly, her answer is accepted
by any honest server Sj . Since the number of honest servers ℓ − b is greater
than that of dishonest ones b, C then knows that Si is honest. If Si does not
perform computation correctly, she will be detected with high probability by
honest servers. Again, since there are more honest servers than dishonest ones,
C can discard the answer returned by Si. After the above procedures, at least
ℓ− b answers are declared to be correct. The (ℓ− b, ℓ; 1− ϵ)-robustness implies
that C can run D0 based on those answers.

To verify computation of Fa,i, we uses some techniques for information-
theoretic MACs [6]. For simplicity, we assume that Fa,i is a single polynomial
of degree d over a finite field Fp and a query is a field element quei ∈ Fp. The
client C chooses a random field element αij from a sufficiently large field Fq,
which is used as a secret key to verify the computation of Si with help of Sj .
The authentication tag of the message quei is a random polynomial Tij(X) of
degree 1 over Fq that evaluates to quei on the point 0. C sends quei and Tij

to Si, and ρij = Tij(αij) to Sj . Then, Si computes ansi = Fa,i(quei) and also
Gij(X) = Fa,i(Tij(X)) while Sj computes σij = Fa,i(ρij). Finally, C verifies
whether it holds that ansi = Gij(0) and σij = Gij(αij). Even if Si sends an

incorrect answer ãnsi along with a modified tag G̃ij(X) such that ãnsi = G̃ij(0),
C can detect errors unless αij happens to be a root of a non-zero polynomial

G̃ij −Gij , which occurs with probability roughly O(d/q). The above argument
can be generalized into the case where quei is a vector over Fp and Fa,i is a tuple
of multiple polynomials.

Note that the size of each tag grows linearly with the degree of the evaluated
polynomial. Since the above verification procedure is performed over every pair
of servers, the communication complexity of the resulting scheme Π is ℓ2d times
larger than Π0 ignoring logarithmic factors of d, ℓ and q. We obtain the following
theorem. See the full version for the proof.

Theorem 7. Let b < ℓ/2, k = ℓ−b, ϵ0 ≥ 0 and ϵ >
(
ℓ
b

)
ϵ0. Let Π0 = (Q0,A0,D0)

be a (k, ℓ; 1− ϵ0)-robust t-private ℓ-server PIR scheme such that:

– For any i ∈ [ℓ], a query quei is an M -dimensional vector over a finite field
Fp, i.e., quei ∈ FM

p ;
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– For any a ∈ {0, 1}n and any i ∈ [ℓ], A0(i, ·,a) is a tuple (F
(µ)
a,i )µ∈[N ] of M -

variate polynomials of total degree at most d over Fp, i.e., A0(i, quei,a) =

(F
(µ)
a,i (quei))µ∈[N ] for quei ∈ FM

p .

Then there exists a (b; 1− ϵ)-error-correcting t-private ℓ-server PIR scheme with
communication complexity

c = O

(
ℓ2(M +Nd) log

Ndℓ

ϵ−
(
ℓ
b

)
ϵ0

)
.

The scheme in [19] satisfies the assumptions of Theorem 7 with ϵ0 = 0,
p = O(log ℓ), d = ⌊(2k − 1)/t⌋ and M,N ∈ O(dn1/d). Thus we obtain the
following corollary.

Corollary 8. Let b < ℓ/2, k = ℓ − b, t ≥ 1 and ϵ > 0. There exists a t-private
(b; 1 − ϵ)-error-correcting ℓ-server PIR scheme with communication complexity

n⌊(2k−1)/t⌋−1

(log n+ log ϵ−1)k1+o(1)ℓ2+o(1).
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A Definitions

Following [11], we use the notion of tampering functions to formalize a malicious
server who corrupts a set of servers and modifies their answers.

Definition 7 (Tampering function). Let Π = (Q,A,D) be an ℓ-server PIR
scheme. Let T ⊆ [ℓ] be a subset. Let f be a function which takes (que1, . . . , queℓ) ∈
({0, 1}cque)ℓ and a ∈ {0, 1}n as input, and outputs (ãns1, . . . , ãnsℓ) ∈ ({0, 1}cans)ℓ.
We say that f is a tampering function for Π with respect to T if for each i ∈ [ℓ],
it holds that

ãnsi =

{
A(i, quei,a), if i /∈ T,

fi({quei′}i′∈T ,a), if i ∈ T,
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for some function fi. We denote the family of all such tampering functions by
FΠ

T .

Definition 8 (Error-correcting PIR). We say that an ℓ-server PIR scheme
Π = (Q,A,D) is (1 − ϵEC)-error-correcting with respect to T if for any a =
(a1, . . . , an) ∈ {0, 1}n, any τ ∈ [n] and any f ∈ FΠ

T , it holds that

Pr[r←$RQ : D(f(que1, . . . , queℓ,a); aux) = aτ ] ≥ 1− ϵEC,

where (que1, . . . , queℓ; aux) = Q(τ ; r). We say that an ℓ-server PIR scheme Π is
(b; 1− ϵEC)-error-correcting if it is (1− ϵEC)-error-correcting with respect to any
T ⊆ [ℓ] of size b.

Definition 9 (Error-detecting PIR). We say that an ℓ-server PIR scheme
Π = (Q,A,D) is (1 − ϵED)-error-detecting with respect to T if the following
conditions hold:

– Π is (1− ϵED)-correct.
– D is allowed to output a special symbol ⊥ and it holds that for any a =

(a1, . . . , an) ∈ {0, 1}n, any τ ∈ [n] and any f ∈ FΠ
T ,

Pr[r←$RQ : D(f(que1, . . . , queℓ,a); aux) ∈ {aτ ,⊥} ] ≥ 1− ϵED,

where (que1, . . . , queℓ; aux) = Q(τ ; r).

We say that an ℓ-server PIR scheme Π is (b; 1 − ϵED)-error-detecting if it is
(1− ϵED)-error-detecting with respect to any subset T of size b.

B Proof of Theorem 2

Let I = {(i, j) ∈ [k]2 : i ̸= j}. Let Π be a k-server PIR scheme Π = (Q,A,D)
described in Figs. 3, 4 and 5.
Communication complexity. The communication complexity of Π is at most

λ(2c0 +O(log k)) = O(λ(c0 + log k)).

Correctness. Assume that all servers are honest. Let a ∈ {0, 1}n be a database
and τ ∈ [n] be a client’s index. Let ν ∈ [λ]. We show that the value z(ν) computed
at Step 2(b) of D is 0 or 1 with probability 1 and is equal to aτ with probability at
least 1−ϵ. If so, the union bound implies that it holds that {z(ν) : ν ∈ [λ]} = {aτ}
with probability at least 1 − λϵ, which shows the (1− ϵED)-correctness of Π.

Assume that b(ν) = 0. We can deal with the other case of b(ν) = 1 similarly.
Observe that the first row of Q(ν) is

row
(j)
1 =

(
(1, que

(ν)
1,1), . . . , (k, que

(ν)
1,k)
)
.

Since all servers are honest, the first row of A(ν) is

(ãns
(ν)
1,1 , . . . , ãns

(ν)
1,k; aux

(ν)
1 ) =

(
A(1, que(ν)1,1 ,a), . . . ,A(k, que

(ν)
1,k,a); aux

(ν)
1

)
.
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Notations.
– A (1− ϵ)-correct k-server PIR scheme Π0 = (Q0,A0,D0)
– I = {(i, j) ∈ [k]2 : i ̸= j}

Q(τ). Given τ ∈ [n]:
1. For each ν ∈ [λ], do the following:

(a) Choose r(ν) = (r
(ν)
m )m∈{1,2} ←$ (RQ0)

2.

(b) Choose (i, j) = (i(ν), j(ν))←$ I and b(ν) ←$ {0, 1}.
(c) Do the following:

– If b(ν) = 0, set

row
(ν)
1 =

(
(1, que

(ν)
1,1), . . . , , (k, que

(ν)
1,k)
)
,

row
(ν)
2 =

(
(1, que

(ν)
2,1), . . . , (j − 1, que

(ν)
2,j−1), (i, que

(ν)
2,i ),

(j + 1, que
(ν)
2,j+1), . . . , (k, que

(ν)
2,k)
)
,

where (que
(ν)
m,1, . . . , que

(ν)
m,k; aux

(ν)
m ) = Q0(τ ; r

(ν)
m ).

– If b(ν) = 1, set

row
(ν)
1 =

(
(1, que

(ν)
1,1), . . . , (j − 1, que

(ν)
1,j−1), (i, que

(ν)
1,i ),

(j + 1, que
(ν)
1,j+1), . . . , (k, que

(ν)
1,k)
)
,

row
(ν)
2 =

(
(1, que

(ν)
2,1), . . . , (k, que

(ν)
2,k)
)
,

where (que
(ν)
m,1, . . . , que

(ν)
m,k; aux

(ν)
m ) = Q0(τ ; r

(ν)
m ).

(d) Construct an 2-by-k matrix Q(ν) as

Q(ν) =

(
row

(ν)
1

row
(ν)
2

)
.

(e) Let que
(ν)
i be the i-th column of Q(ν) for i ∈ [k].

(f) Let aux(ν) = (aux
(ν)
1 , aux

(ν)
2 ).

2. Let quei = (que
(ν)
i )ν∈[λ] for i ∈ [k].

3. Let aux = ((aux(ν))ν∈[λ], (i
(ν), j(ν), b(ν))ν∈[λ]).

4. Output (que1, . . . , quek; aux).

Fig. 3. The query algorithm of the PIR scheme Π in Theorem 2
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A(i, quei,a). Given i ∈ [k], quei = (que
(ν)
i )ν∈[λ] and a ∈ {0, 1}n:

1. For each ν ∈ [λ], do the following:

(a) For each m = 1, 2, if them-th entry of que
(ν)
i is (xm, que(ν)m,xm

), let ans
(ν)
m,i =

A0(xm, que(ν)m,xm
,a).

(b) Let

ans
(ν)
i =

(
ans

(ν)
1,i

ans
(ν)
2,i

)
.

2. Output ansi = (ans
(ν)
i )ν∈[λ].

Fig. 4. The answer algorithm of Π

D(ãns1, . . . , ãnsk; aux). Given ãnsi = (ãns
(ν)
i )ν∈[λ] (i ∈ [k]), where ãns

(ν)
i has the same

form as ans
(ν)
i , and aux = ((aux(ν))ν∈[λ], (i

(ν), j(ν), b(ν))ν∈[λ]):
1. L = ∅.
2. For each ν ∈ [λ], do the following:

(a) Construct an 2-by-(k + 1) matrix A(ν) as

A(ν) =
(
ãns

(ν)
1 · · · ãns(ν)k aux(ν)

)
=

(
ãns

(ν)
1,1 · · · ãns

(ν)
1,k aux

(ν)
1

ãns
(ν)
2,1 · · · ãns

(ν)
2,k aux

(ν)
2

)
.

(b) Do the following:
– If b(ν) = 0:

i. Compute

y(ν) = D0

(
ãns

(ν)
1,1 , . . . , ãns

(ν)
1,k; aux

(ν)
1

)
.

ii. Check whether ãns
(ν)
2,i = ãns

(ν)
2,j holds. If the equality holds, set z(ν) =

y(ν) and otherwise, set z(ν) = ⊥.
– If b(ν) = 1:

i. Compute

y(ν) = D0

(
ãns

(ν)
2,1 , . . . , ãns

(ν)
2,k; aux

(ν)
2

)
.

ii. Check whether ãns
(ν)
1,i = ãns

(ν)
1,j holds. If the equality holds, set z(ν) =

y(ν) and otherwise, set z(ν) = ⊥.
(c) Add z(ν) to L.

3. If L = {z} for some z ∈ {0, 1}, output z. Otherwise, output ⊥.

Fig. 5. The reconstruction algorithm of Π
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The (1− ϵ)-correctness of Π0 implies that

y(ν) = D0(ãns
(ν)
1,1 , . . . , ãns

(ν)
1,k; aux

(ν)
1 ) = aτ

with probability 1− ϵ.
If the client chooses (i, j) ∈ I at Step 1(b) of Q, the (2, i)-th entry of Q(ν)

is equal to the (2, j)-th entry of Q(ν), which is (j, que
(ν)
2,j ). Since Servers i and j

are honest, it holds that

ãns
(ν)
2,i = A0(j, que

(ν)
2,j ,a) = ãns

(ν)
2,j .

Hence, at Step 2(b), the equality holds with probability 1.
Therefore, z(ν) is always set to y(ν) ∈ {0, 1}, which is equal to aτ with

probability 1− ϵ.

Privacy. Observe that a query vector (quei)i∈[k] generated by Q contains noth-

ing more than 2λ independent query vectors (que
(ν)
m,i)i∈[k] (m ∈ {1, 2}, ν ∈ [λ]),

each generated by Q0. Therefore, the t-privacy of Π follows from that of Π0.

Error detection. We prove that Π is (b; 1 − ϵED)-error-detecting. Let a ∈
{0, 1}n and τ ∈ [n]. Without loss of generality, we may assume that the server
S1 is honest. Let T = [k] \ {1} and f ∈ FΠ

T be a tampering function for Π with
respect to T .

Let I0 = I × {0, 1}. Let RQ denote the set of all random strings for Q,
that is, Iλ0 × (RN

Q0
)λ. We suppose that any (π, r) ∈ RQ is decomposed into

π = (i(ν), j(ν), b(ν))ν∈[λ] and r = (r
(ν)
m )m∈{1,2},ν∈[λ], where (i(ν), j(ν), b(ν)) ∈ I0

and r
(ν)
m ∈ RQ0 . We naturally identify any event A with a subset ofRQ consisting

of all random strings on which A occurs.
Let E denote the event in which D0 outputs an incorrect value even if all

servers are honest. Formally, we define

E =

{
(π, r) ∈ RQ :

∃ν ∈ [λ], ∃m ∈ {1, 2},
D0((A0(i, que

(ν)
m,i,a))i∈[k]; aux

(ν)
m ) = 1− aτ

}
,

where ((que
(ν)
m,i)i∈[k]; aux

(ν)
m ) = Q0(τ ; r

(ν)
m ) for any m ∈ {1, 2}, ν ∈ [λ]. The (1−ϵ)-

correctness of Π0 implies that E occurs with probability at most 2λϵ. Let

RE = {r ∈ (RQ0)
λ : ∃π ∈ Iλ0 , (π, r) ∈ E}.

For any (π, r) ∈ RQ, let w(π, r) ∈ {0, 1,⊥} denote the value outputted by
the client when (π, r) is used to generate queries. Let F denote the set of all
(π, r)’s such that w(π, r) = 1− aτ .

Let R be the random variable representing r←$ (RQ0)
λ. We have that

Pr[F ] = Pr[E ∩ F ] + Pr
[
E ∩ F

]
≤ Pr[E ] +

∑
r∈(RQ0

)λ

Pr
[
E ∩ F

∣∣R = r
]
· Pr[R = r ]

≤ 2λϵ+
∑
r/∈RE

Pr
[
E ∩ F

∣∣R = r
]
· Pr[R = r ] . (1)
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Fix r /∈ RE. For every ν ∈ [λ], let F(ν) be the event conditioned on R = r
that z(ν) = 1− aτ at the ν-th iteration of Step 2 of D. We have that

Pr
[
E ∩ F

∣∣R = r
]
≤ Prπ

[
F(1) ∩ · · · ∩ F(λ)

]
=
∏
ν∈[λ]

Prπ

[
F(ν)

∣∣∣F(1) ∩ · · · ∩ F(ν−1)
]

(2)

Furthermore, we have that

Prπ

[
F(ν)

∣∣∣F(1) ∩ · · · ∩ F(ν−1)
]

=
∑

π(1),...,π(ν−1),

π(ν+1),...,π(λ)

Pr
[
π(1), . . . , π(ν−1), π(ν+1), . . . , π(λ)

]

×Prπ(ν)

[
F(ν)

∣∣∣F(1) ∩ · · · ∩ F(ν−1), π(1), . . . , π(ν−1), π(ν+1), . . . , π(λ)
]
. (3)

Fix π(1), . . . , π(ν−1), π(ν+1), . . . , π(λ) ∈ I0. For ease of reading, let COND
denote the condition of the probability (3). Define an event BAD that the client
picks π(ν) = (i(ν), j(ν), b(ν)) ∈ I0 such that i(ν) ̸= 1. In other words, BAD means
that the client fails to guess that S1 is honest. Then, we have that

Prπ(ν)

[
F(ν)

∣∣∣COND ]
= Pr[BAD ] · Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ]
+Pr

[
BAD

]
· Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ]
≤ 2k(k − 1)− 2(k − 1)

2k(k − 1)
+

2(k − 1)

2k(k − 1)
· Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ]
≤ k − 1

k
+

1

k
· Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ] . (4)

We will show that

Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ] ≤ 1− 1

2(k − 1)
. (5)

Let X denote the set of all π(ν) ∈ I0 such that

– π(ν) ∈ BAD, i.e., it has the form of π(ν) = (1, j(ν), b(ν));
– COND occurs on π(ν), i.e., it holds that

π := (π(1), . . . , π(ν−1), π(ν), π(ν+1), . . . , π(λ)) ∈ F(1) ∩ · · · ∩ F(ν−1).

Let Y denote a subset consisting of all π(ν) ∈ X satisfying π ∈ F(1) ∩ · · · ∩
F(ν−1) ∩ F(ν).
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If X = ∅, then (5) clearly holds. If X ̸= ∅, choose π(ν) = (1, j(ν), b(ν)) ∈ X
arbitrarily. Denote the queries sent to the malicious servers S2, . . . , Sk when π(ν)

is picked at Step 1(b) of Q, by

(2, que
(µ)
1,2 ), . . . , (k, que

(µ)
1,k), (2, que

(µ)
2,2 ), . . . , (k, que

(µ)
2,k), µ ∈ [λ] (6)

We can see that if another (1, j, b) ∈ I0 is picked, the queries sent to the malicious
servers are the same as (6). Since the tampering function f is deterministic, the
answers returned by them are also the same regardless of what is picked as
(j(ν), b(ν)) at Step 1(b) of Q. Therefore, if COND occurs on π(ν), COND occurs
on every (1, j, b) ∈ I0. In particular, we have that |X| = 2(k − 1) if X ̸= ∅.

We have seen that the answers returned by the malicious servers S2, . . . , Sk
are the same for any π(ν) ∈ X. We denote the answers by

ãns
(ν)
1,2 , . . . , ãns

(ν)
1,k, ãns

(ν)
2,2 , . . . , ãns

(ν)
2,k.

If all of them are correct, i.e., ãns
(ν)
m,j = A0(j, que

(ν)
m,j ,a), we obtain that Y = ∅.

This is because at one of the rows of A(ν), the client computes

y(ν) = D0(ãns
(ν)
m,1, . . . , ãns

(ν)
m,k; aux

(ν)
m ).

Since we assume E does not occur, i.e., r /∈ RE, an outcome of D0 never results
in 1 − aτ and hence F(ν) never occurs. Assume that there exist m ∈ {1, 2} and
j ∈ {2, 3, . . . , k} such that

ãns
(ν)
m,j ̸= A0(j, que

(ν)
m,j ,a).

We can see that (1, j, 1) /∈ Y if m = 1, and that (1, j, 0) /∈ Y if m = 2. To see
this, consider the case of m = 1. If j(ν) = j and b(ν) = 1 are picked at Step 1(b)
of Q, the client detects errors (i.e., outputs ⊥) since he finds the inconsistency

ãns
(ν)
1,1 = A0(j, que

(ν)
1,j ,a) ̸= ãns

(ν)
1,j .

The other case of m = 2 is similar. Therefore, if X ̸= ∅,

Prπ(ν)

[
F(ν)

∣∣∣COND,BAD ] = |Y ||X| ≤ 2(k − 1)− 1

2(k − 1)
= 1− 1

2(k − 1)
,

which implies (5).
Finally, we obtain from (3) and (4) that

Prπ

[
F(ν)

∣∣∣F(1) ∩ · · · ∩ F(ν−1)
]

≤
∑

π(1),...,π(ν−1),

π(ν+1),...,π(λ)

Pr
[
π(1), . . . , π(ν−1), π(ν+1), . . . , π(λ)

]

×
(
k − 1

k
+

1

k
·
(
1− 1

2(k − 1)

))
≤ 1− 1

2k(k − 1)
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and hence (2) implies that

Pr
[
E ∩ F

∣∣R = r
]
≤
(
1− 1

2k(k − 1)

)λ

.

Therefore, the (b; 1− ϵED)-error detection follows from (1) and

Pr[F ] ≤ 2λϵ+

(
1− 1

2k(k − 1)

)λ

= ϵED.

C Proof of Lemma 1

Define Π as follows:

– Iterate Π0 λ times in parallel.
– Let yi ∈ {0, 1} be the output of the i-th iteration of Π0 for i ∈ [λ]. If there

exists y ∈ {0, 1} such that |{i : yi = y}| > |{i : yi = 1 − y}|, output y.
Otherwise, output 0.

Clearly, the communication complexity of Π is λ times larger than that of Π0

and the t-privacy of Π directly follows from that of Π0. Let a ∈ {0, 1}n be a
database and τ ∈ [n] be a client’s index. The outputs of Π0 are independent and
each output is equal to aτ with probability 1− ϵ0.

Let Xi be a random variable over {0, 1} defined as Xi = 1 if and only if
yi = aτ . X1, . . . , Xλ are i.i.d. random variables such that p = E [X1 ] = 1− ϵ0. It
then follows from the Chernoff bound that

Pr[Π outputs 1− aτ ] ≤ Pr

[
1

λ

λ∑
i=1

Xi ≤
1

2

]

= Pr

[
1

λ

λ∑
i=1

Xi ≤ p+

(
1

2
− p

)]

≤

((
p

1/2

)1/2(
1− p

1/2

)1/2
)λ

= (4p(1− p))λ/2

= (2
√

ϵ0(1− ϵ0))
λ

≤ exp

(
−2
(
1

2
− ϵ0

)2

λ

)
.

The last inequality follows from

1

2
ln(4ϵ0(1− ϵ0)) =

1

2
ln(1− 4x2) ≤ −2x2,

where x = 1/2− ϵ0.
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D Proof of Theorem 3

For Π0 = (Q0,A0,D0), we consider a PIR scheme Π = (Q,A,D) where (Q,A)
runs N independent instances of (Q0,A0) between a client and every subset of
k servers and D is defined as follows: For each of N executions of (Q0,A0), D
runs D0 on the corresponding input and adds the output to a list L. If L = {s}
or L = {s,⊥} for some s ∈ {0, 1}, then D outputs s and otherwise outputs 0.
The communication complexity of Π is Nc. Since each execution of Q0 is done
independently, Π is also t-private.

We prove that Π is (b; 1 − ϵEC)-error-correcting for ϵEC = NϵED. Let a ∈
{0, 1}n and τ ∈ [n]. Let H ∈

(
[ℓ]
k

)
be a set of honest servers. Let f ∈ FΠ

H
be a

tampering function for Π with respect to H.

Let A1, . . . , AN be all k-sized subsets of [ℓ] such that A1 = H. Let Π
(j)
0

denote the instance of Π0 executed by the client and servers in Aj . During the

execution of Π
(j)
0 , the client generates

Q0(τ ; rj) = ((que
(j)
i )i∈Aj

; aux(j)),

where rj ∈ RQ0
and que

(j)
i is sent to Si. Then, Si receives

que′i = {que
(j)
i : j ∈ [N ] with i ∈ Aj}.

In Π
(1)
0 , for any i ∈ A1, Si returns

ãns
(1)
i = ans

(1)
i = A0(i, que

(1)
i ,a).

In each Π
(j)
0 for j ̸= 1, any server Si in Aj returns

ãns
(j)
i =

{
ans

(j)
i = A0(i, que

(j)
i ,a), if i ∈ H,

f
(j)
i ({que′i′}i′∈H ,a), otherwise,

where f
(j)
i is a function determined by f . It then follows from our definition of

D that

Pr[D outputs y ̸= aτ ]

≤ Pr
[
D0((ans

(1)
i )i∈H ; aux(1)) ̸= aτ

]
+

N∑
j=2

Pr
[
D0((ans

(j)
i )i∈H∩Aj

, (ãns
(j)
i )i∈H∩Aj

; aux(j)) /∈ {aτ ,⊥}
]

≤ ϵED +

N∑
j=2

Pr
[
D0((ans

(j)
i )i∈H∩Aj

, (ãns
(j)
i )i∈H∩Aj

; aux(j)) /∈ {aτ ,⊥}
]
.

Therefore it is enough to show that

p0 := Pr
[
D0((ans

(j)
i )i∈H∩Aj

, (ãns
(j)
i )i∈H∩Aj

; aux(j)) /∈ {aτ ,⊥}
]
≤ ϵED
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for any j ∈ [N ] \ {1}.
Let j ∈ [N ]\{1}. Fix r−j = (rm)m∈[N ]\{j} arbitrarily. Then que

(m)
i is a fixed

constant for any m ∈ [N ] \ {j} and i ∈ Am. Therefore for i ∈ Aj , we can write

ãns
(j)
i = f

(j)
i ({que′i′}i′∈H ,a) = gi,r−j ({que

(j)
i′ }i′∈H∩Sj

,a)

using some function gi,r−j
. Let X−j denote the random variable which represents

r−j . Since |H ∩Aj | ≤ b and Π0 is (b, t; 1− ϵED)-error-detecting, we have that

p0 = Prrj ,r−j

[
D0((ans

(j)
i )i∈H∩Aj

, (ãns
(j)
i )i∈H∩Aj

; aux(j)) ̸∈ {aτ ,⊥}
]

=
∑
r−j

Pr[X−j = r−j ] Prrj

[
D0((ans

(j)
i )i∈H∩Aj

, (ãns
(j)
i )i∈H∩Aj

; aux(j)) ̸∈ {aτ ,⊥}
]

≤
∑
r−j

Pr[X−j = r−j ]× ϵED

= ϵED.

E Proof of Theorem 5

For a = (a1, . . . , an) ∈ {0, 1}n, define a∗ = (a∗1, . . . , a
∗
n) ∈ {0, 1}n as the same

database as a except that a∗1 = 1 − a1. Let B ⊆ [ℓ] be a subset of size b and
let B′ = [ℓ] \B. Let f be a tampering function such that f(que1, . . . , queℓ,a) =
(ãnsi)i∈[ℓ], where

ãnsi =

{
A(i, quei,a), if i /∈ B,

A(i, quei,a∗), if i ∈ B.

for any i ∈ [ℓ] and quei ∈ {0, 1}cque . Also, let f ′ be a tampering function such
that f ′(que1, . . . , queℓ,a) = (ãns

′
i)i∈[ℓ], where

ãns
′
i =

{
A(i, quei,a), if i /∈ B′,

A(i, quei,a∗), if i ∈ B′

for any i ∈ [ℓ] and quei ∈ {0, 1}cque . Note that f ∈ FΠ
B and f ′ ∈ FΠ

B′ . Also note
that (a∗)∗ = a and that i /∈ B is equivalent to i ∈ B′. Thus, we have that

f(que1, . . . , queℓ,a) = f ′(que1, . . . , queℓ,a
∗) (7)

for any a ∈ {0, 1}n and que1, . . . , queℓ ∈ {0, 1}cque .
Fix a ∈ {0, 1}n arbitrarily. Define a subset S (resp. S′) of RQ as

S = {r ∈ RQ : D(f(que1, . . . , queℓ,a); aux) = a1},
S′ = {r ∈ RQ : D(f ′(que1, . . . , queℓ,a

∗); aux) = a∗1},

where (que1, . . . , queℓ; aux) = Q(1; r). It follows from Eq. (7) and a∗1 = 1−a1 ̸= a1
that S ∩ S′ = ∅. On the other hand, since |B| = b and |B′| = ℓ − b ≤ b,
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the (b; 1 − ϵEC)-error correction of Π implies that |S| ≥ (1 − ϵEC)|RQ| and
|S′| ≥ (1− ϵEC)|RQ|. Therefore, we have that

|RQ| ≥ |S ∪ S′| = |S|+ |S′| ≥ 2(1− ϵEC)|RQ|

and ϵEC ≥ 1/2.


