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Abstract. Homomorphic encryption (HE) protects data in-use, but can
be computationally expensive. To avoid the costly bootstrapping proce-
dure that refreshes ciphertexts, some works have explored client-aided
outsourcing protocols, where the client intermittently refreshes cipher-
texts for a server that is performing homomorphic computations. But is
this approach secure against malicious servers?
We present a CPA-secure encryption scheme that is completely insecure
in this setting. We define a new notion of security, called funcCPA, that
we prove is sufficient. Additionally, we show:
– Homomorphic encryption schemes that have a certain type of circuit

privacy – for example, schemes in which ciphertexts can be “sani-
tized” – are funcCPA-secure.

– In particular, assuming certain existing HE schemes are CPA-secure,
they are also funcCPA-secure.

– For certain encryption schemes, like Brakerski-Vaikuntanathan, that
have a property that we call oblivious secret key extraction, funcCPA-
security implies circular security – i.e., that it is secure to provide
an encryption of the secret key in a form usable for bootstrapping
(to construct fully homomorphic encryption).

Namely, funcCPA-security lies strictly between CPA-security and CCA2-
security (under reasonable assumptions), and has an interesting relation-
ship with circular security, though it is not known to be equivalent.

1 Introduction

Homomorphic encryption (HE) supports computing over encrypted data without
access to the secret key. HE is a prominent approach to safeguarding data and
minimizing the impact of potential breaches, especially useful for outsourcing
of computations over sensitive data, as required by the industry cloud-based
architecture.
⋆ The first author thanks the Israel Science Foundation (grant 3380/19) and Israel
National Cyber Directorate via the Haifa, BIU and Tel-Aviv cyber centers for their
support. The fourth author thanks Yaron Sheffer for helpful discussions. Pre-prints
for preliminary versions of this works appeared in [3,8,2].
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The security notion achievable for HE schemes is security against chosen-
plaintext attack (CPA-security), whereas it is well known that security against
chosen-ciphertext attack (CCA2-security) is not achievable due to the inherent
malleability of HE schemes. However, CPA-security is not always sufficient for
securing protocols, as it considers only honestly generated ciphertexts and has
no guarantees in settings where an adversary is allowed to inject its own ma-
liciously crafted ciphertexts into an honest system (see e.g. [41], Chapter 10).
Therefore, relying on CPA-security typically secures protocols only against semi-
honest adversaries e.g. in [43,9,1,26,7,30,5] (unless further cryptographic tools
are employed to enhance security).

In practice however security against malicious adversaries is desired to com-
bat real-life attacks. A natural question therefore is the following:

Is there a relaxation of CCA2-security that is achievable for HE schemes
and secures protocols against malicious attackers?

Our Contribution. In this work we answer affirmatively the above question
by providing a new security notion, showing it is achievable for HE schemes and
that it guarantees privacy against malicious adversaries for a wide and natural
family of protocols.

The new security notion, named function-chosen-plaintext-attack
(funcCPA-security), is a relaxation of CCA2 security for public key encryption
schemes. Concretely, while CCA2 security captures resiliency against adversaries
that receive decryptions of ciphertexts of their choice, funcCPA guarantees re-
siliency only against adversaries that receive re-encryptions of the underlying
cleartext values of ciphertexts of their choice (or, more generally, encryptions of
the result of a computation on those values); See Definition 6. That is, in funcCPA
the adversary sees only ciphertexts, no cleartext values; nonetheless, the adver-
sary has full control on the computation performed on the underlying values,
even without knowing them, and can inject maliciously crafted ciphertexts.

We note that funcCPA-security is clearly implied by CCA2, moreover, we show
it is a strict weakening of CCA2 by showing it is achievable for HE schemes (where
CCA2-security is not). Furthermore, funcCPA-security implies CPA-security, but
not vice-versa. To prove the latter, we provide: (1) a security proof showing,
for a wide and natural family of outsourcing protocols (named, client-aided out-
sourcing protocols), that they preserve privacy when instantiated with any func-
CPA-secure encryption scheme; and (2) an attack that breaks privacy in these
protocols when instantiated with a (carefully crafted) CPA-secure encryption
scheme. This shows that funcCPA-security lies strictly between CPA and CCA2
security.

To prove that funcCPA is achievable for HE schemes we show how to construct
funcCPA-secure HE schemes from any CPA-secure HE scheme equipped with
a sanitization algorithm, including the HE schemes of Gentry [24], Brakerski-
Vaikuntanathan [13] and Ducas and Micciancio [20] (where sanitization is as
defined in [21], see Definition 3).
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Theorem 1 (funcCPA-secure HE scheme achievability, informal). Every
CPA-secure HE scheme with a sanitization algorithm can be transformed into a
funcCPA-secure HE scheme.

To further motivate the definition of funcCPA-security we note that many
secure outsourcing protocols in the literature provide the server with the capa-
bility of seeing re-encryptions of ciphertexts of its choice, and even encrypted
results of computations performed on the underlying values of such ciphertexts.
For example, in [43] the client provides the server with re-encryptions for ci-
phertexts of the server’s choice, with the goal of avoiding costly bootstrapping
at the server’s side. Likewise, in [9,1,5,26,7,30] the server obtains, via interac-
tion with the client, the encrypted results of applying various computations on
the underlying cleartext values of ciphertexts of its choice, including computing
comparisons [9], minima [1,5], linear equations solutions [26,7], ReLU [30].

To capture and generalize secure outsourcing protocols such as discussed
above [9,1,5,26,7,30], we define a natural family of protocols named: client-aided
outsourcing protocols. This family consists of all protocols where a client gen-
erates keys and uploads encrypted data to a server; the server executes com-
putations over the encrypted data and sends encrypted results to the client;
moreover, the server may send the client (typically few and lightweight) queries
of the form (e, G), for e a vector of ciphertexts and G a function, so that the
client computes G on the underlying cleartext values and sends the server the
encrypted result e′ ← Encpk(G(Decsk(e))).

We prove that client-aided outsourcing protocols instantiated with funcCPA-
secure schemes preserve privacy against malicious servers.

Theorem 2 (privacy against malicious servers, informal). Client-aided
outsourcing protocols instantiated with any funcCPA-secure scheme preserve pri-
vacy against malicious servers.

Conversely, the attack we exhibit exemplifies that CPA-security does not provide
privacy against malicious servers for this class of protocols.

Theorem 3 (attack, informal). There exist CPA-secure HE schemes so that
for client-aided outsourcing protocols instantiated with these schemes, there is
an attack by the server that recovers the client’s input.

Achievability by existing schemes of funcCPA-security. To avoid the performance
overhead incurred due to using sanitization we examine the achievability of func-
CPA-security for popular HE schemes. We prove that the leveled HE schemes of
BV [13], BGV [12] and B/FV[11,22] are leveled-funcCPA-secure (based on their
CPA-security). That is, they satisfy a natural adaptation of funcCPA to leveled
settings, where the funcCPA oracle answers queries with ciphertexts for the next
level.5 Our security proof requires essentially no modifications to the schemes

5 This leveled-funcCPA oracle is useful, for example, in applications where the oracle is
employed to replace deep homomorphic computations that will consume many levels
of the scheme by a query to the oracle that consumes only a single level.
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(other than a slight change in their evaluation keys generation that has little
influence on performance) and without any extra security assumptions.

Theorem 4 (leveled HE are leveled-funcCPA-secure, informal). The lev-
eled HE schemes of BV, BGV, B/FV are leveled-funcCPA-secure.

More generally, the above holds for every leveled HE scheme with keys generated
independently for each level (as specified in Definition 9).

In contrast, for the homomorphic schemes of BV and BGV we show that
funcCPA-security implies (weak) circular security. Concretely, we show that the
funcCPA oracle enables generating from the public key an encryption of the se-
cret key (in the encoding required for bootstrapping), and thus funcCPA-security
eliminates the need for the weak circular security assumption. This can be inter-
preted as a barrier on proving funcCPA-security for these schemes, as it would
resolve the long standing open problem on the necessity of circular security as-
sumption (see e.g. Question 11 in Peikert’s survey [38]).

Theorem 5 (funcCPA vs. circular security, informal). If the homomorphic
encryption scheme of BV or BGV is funcCPA-secure, then it is weakly circular
secure.

On the necessity of funcCPA against semi-honest adversaries. To further study
the funcCPA-security notion, we examine its necessity against semi-honest adver-
saries. We prove that for client-aided outsourcing protocols satisfying a natural
property, CPA-security suffices against semi-honest adversaries. The property we
require is that the protocol is cleartext computable in the sense that the client’s
input determines the underlying cleartext values of the ciphertexts transmitted
throughout the protocol. This captures the fact that the encryption in the pro-
tocol is an external wrapping of the cleartext values, used merely for achieving
privacy against the server, and does not affect the underlying cleartext compu-
tation. This property is natural in outsourcing protocols, where the server does
not contribute any input to the computation but rather it is only a vessel for
storing and processing encrypted data on behalf of the client.

Theorem 6 (privacy against semi-honest servers, informal).
Cleartext-computable client-aided outsourcing protocols using a CPA-secure en-
cryption scheme preserve privacy against semi-honest servers.

Our Techniques. Our definition of funcCPA (Definition 6) extends CPA by
granting the adversary in the CPA experiment access to an Encpk(G(Decsk(·)))
oracle for a family of functions G. Namely, the adversary can submit (possibly,
adaptive) queries (e, G), for ciphertexts e and a function G ∈ G of its choice,
and receive an encrypted result e′ ← Encpk(G(Decsk(e))).

To prove achievability of funcCPA for sanitized HE schemes (Theorem 1), we
first define the notion of circuit-privacy+ that lies between the semi-honest and
malicious definitions of circuit privacy in allowing maliciously formed ciphertexts
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but requiring honestly generated keys. We then show how to transform CPA-
secure schemes with a sanitization algorithm into CPA-secure circuit-private+

schemes (Lemma 2). Finally, we prove that CPA-secure circuit-private+ schemes
are funcCPA-secure.

For our attack proving the insufficiency of CPA-security (Theorem 3) we
first show that every CPA-secure scheme can be slightly modified to yield a
punctured CPA-secure scheme with which our attack is applicable. The attack
uses a single query e′ ← Encpk(G(Decsk(e))), where e is a concatenation of the
client’s encrypted input with a special “trapdoor” ciphertexts planted in the
public-key. The query e hits the puncturing of the scheme so that the result e′

reveals the client’s input. The encryption scheme remains CPA secure, despite the
puncturing, because the trapdoor ciphertext is infeasible to generate honestly
i.e. by encrypting an efficiently samplable message.

Related Work. Several CCA relaxations were previously considered. Relax-
ing CCA2 by forbidding querying the decryption oracle on any ciphertext that
decrypt to the same message as the challenge ciphertext (or extensions of this
notion) was proposed in [42,14,39]. However, for HE this is unachievable (be-
cause the adversary can produce ciphertexts that decrypt to related messages,
query the decryption oracle on those, and consequently recover the message in
the challenge ciphertext).

CCA1-secure HE schemes were constructed in a line of work including [34,32].
This however seems insufficient for privacy against malicious servers in client-
aided outsourcing protocols, because CCA1 does not guarantee security if non-
trivial queries are submitted after the challenge. Moreover, CCA1 is known to
be unachievable for fully homomorphic encryption schemes that follow Gentry’s
blueprint (because they provide an encryption of the secret key for the pur-
pose of bootstrapping, and querying the CCA1 oracle on this ciphertext would
recover the secret key and break security); and even when deviating from Gen-
try’s blueprint, CCA1 is only known to be achievable from non-standard as-
sumptions [15]: indistinguishability obfuscation (iO) or succinct non-interactive
arguments of knowledge (SNARKs).

In contrast, we show that funcCPA-security is: (1) sufficient for guarantee-
ing privacy against malicious servers in client-aided outsourcing protocols; (2)
achievable for HE schemes, even fully homomorphic ones that follow Gentry’s
blueprint; and (3) achievable from standard assumptions.

Insufficiency of CPA-security for protocols utilizing homomorphic encryption
was considered by Li and Micciancio [33]. They show that protocols instantiated
with the CPA-secure approximate HE schemes of CKKS [17] are insecure when
the protocol exposes decryptions to the attacker, even for semi-honest adver-
saries. In contrast, our attack applies both to exact and approximate schemes
and even when no decryptions are provided (albeit with a malicious adversary).

Prior versions of this work. Preliminary versions of this work appeared in [3,8,2]:
The notion of funcCPA-security and its implication to privacy against malicious
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servers (Theorem 2) was introduced in [3], in the context of presenting new
privacy preserving machine learning protocols. We remark that these protocols
were published in [4,6], albeit with security only against semi-honest servers. The
study of funcCPA was extended in [8] by introducing the generic construction
of funcCPA-secure encryption from sanitization (Theorem 1); proving the insuf-
ficiency of CPA-security for privacy against malicious servers (Theorem 3); and
proving the sufficiency of CPA-security for privacy against semi-honest servers
in cleartext computable client-aided outsourcing protocols (Theorem 6). Open
problems presented in [8] were addressed in [2], where we proved that leveled HE
schemes are (leveled) funcCPA-secure (Theorem 4), and introduced connections
between funcCPA and circular-security (Theorem 5). In addition, [2] introduced
the observation that funcCPA w.r.t the identity function (i.e., with an oracle that
can only refresh ciphertexts) implies funcCPA w.r.t an oracle that can compute
all the circuits for which the scheme is homomorphic (Lemma 1).

Follow-up work. A follow-up work by Nuida [36] proposed a different definition
of funcCPA (albeit, using the same name funcCPA). It was shown in [36] that
their definition does not guarantee privacy in client-aided outsourcing protocols,
and the thrust of that work was to study several possible treatments of invalid
ciphertexts.

We stress that the results from [36] have no bearing on our funcCPA definition,
in particular we show in Theorem 2 that our definition does imply privacy for
client-aided protocols. We note that our results hold regardless of how invalid
ciphertexts are treated (as long as funcCPA holds wrt an oracle that uses the
same treatment as the client in the protocol). See Remark 2. We also note that
[36, Theorems 3 and 5] are special cases of [8, Theorem 7].

Paper organization. Preliminary definitions are given in Section 2. Our results
on funcCPA definition, sufficiency and achievability in Section 3. Our result on
the insufficiency of CPA against malicious adversaries in Sections 4, and on
its sufficiency against semi-honest ones for natural protocols in Section 5. We
conclude in Section 6.

2 Preliminaries

We briefly specify standard definitions. See details in our full version [2].

Terminology and notations. For n ∈ N, we denote by [n] the set {1, . . . , n}. We
use standard definitions (see e.g. Goldreich [27]) for negligible and polynomial
functions with respect to the security parameter λ, denoted neg(λ) and poly(λ);
probabilistic polynomial time algorithms, denoted ppt; random variables; prob-
ability ensembles; computationally indistinguishability ; statistical distance de-
noted by ∆(·, ·); and (strong) one-way function.
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CPA-secure public key encryption. We use the standard definition for public key
encryption (PKE) scheme E = (Gen,Enc,Dec) and its properties of correctness,
CPA-indistinguishability experiment against an adversary A denoted EXPcpa

A,E(λ),
and CPA-security for single and multiple messages. A scheme is fully decryptable
if applying the decryption algorithm on any ciphertext in the ciphertext space
returns an element from the message space (and requiring, in addition, that the
ciphertext space is efficiently recognizable). See the formal definitions in [31].

Homomorphic encryption. A homomorphic public-key encryption scheme (HE)
is a public-key encryption scheme equipped with an additional ppt algorithm
called Eval that supports “homomorphic evaluations” on ciphertexts. The cor-
rectness requirement is extended to hold with respect to any sequence of homo-
morphic evaluations performed on ciphertexts. A fully homomorphic encryption
scheme must satisfy an additional property called compactness requiring that
the size of the ciphertext does not grow with the complexity of the sequence of
homomorphic operations.

Definition 1 (Homomorphic encryption (HE)). A homomorphic public-
key encryption (HE) scheme E = (Gen,Enc,Dec,Eval) with message space M
is a tuple of ppt algorithms as follows: (Gen,Enc,Dec) is a correct PKE. Eval
(homomorphic evaluation) takes as input the public key pk, a circuit C :Mℓ →
M, and ciphertexts c1, . . . , cℓ, and outputs a ciphertext ĉ← Evalpk(C, c1, . . . , cℓ).

The scheme is secure if it is a CPA-secure PKE; compact if its decryption
circuit is of polynomial size (in the security parameter); C-homomorphic for a
circuit family C if for all C ∈ C and all inputs x1, . . . , xℓ to C, letting (pk, sk)←
Gen(1λ) and ci ← Enc(pk, xi) it holds that:

Pr[Decsk(Evalpk(C, c1, . . . , cℓ)) ̸= C(x1, . . . , xℓ)] ≤ neg(λ)

where the probability is taken over all the randomness in the experiment; and
fully homomorphic if it is compact and C-homomorphic for C the class of all
circuits.

A C-homomorphic encryption scheme is bootstrappable if it supports homo-
morphic evaluation of all circuits composed from copies of its decryption circuit
connected by a single gate from the set of gates (see [23, Definitions 4.1.2-4.1.3]).

A HE scheme is leveled (leveled HE) if for each L ∈ Z+ given as an extra pa-
rameter to Gen, denoted (pk, sk)← Gen(1λ, 1L), the scheme compactly evaluates
all circuits of depth at most L. The complexity of its algorithms is polynomial
in L on top of λ. CPA-security for leveled HE is defined similarly to the standard
CPA definition except for the capability of the adversary to choose the level to
which the challenge ciphertext is encrypted (to guarantee security of the scheme
for all the levels). More formally,

The CPA indistinguishability experiment EXPcpa
A,E(λ, L) for leveled HE is parame-

terized by the security parameter λ and number of levels L, and executed between
a challenger Chal and an adversary A as follows:
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1. Gen(1λ, 1L) is run by Chal to obtain keys (pkℓ, skℓ)ℓ∈{0,...,L} (we consider the
public key pkℓ to include the evaluation key evkℓ if exists).

2. Chal provides the adversary A with (pkℓ)ℓ∈{0,...,L}. A sends to Chal two
messages x0, x1 ∈M s.t. |x0| = |x1| and ℓ ∈ {0, . . . , L}.

3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c← Encpkℓ
(xb)

and sends c to A. We call c the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 2 (CPA security for leveled HE). A leveled HE scheme E =
(Gen,Enc,Dec,Eval) is CPA-secure if for every ppt adversary A, there exists a
negligible function neg such that for all sufficiently large λ and every L polyno-
mial in λ,

Pr[EXPcpa
A,E(λ, L) = 1] <

1

2
+ neg(λ)

where the probability is over all randomness in the experiment.

Sanitization. A ciphertext sanitization algorithm for a homomorphic encryption
re-randomizes ciphertexts to make them statistically close to other (sanitized)
ciphertexts decrypting to the same plaintext. Sanitization algorithms exists for
most contemporary HE schemes [21].

Definition 3 (Sanitization algorithm [21]). A Sanitize algorithm for a ho-
momorphic public-key encryption scheme E = (Gen,Enc,Dec,Eval) is a ppt al-
gorithm that takes a public key pk and a ciphertext c and returns a ciphertext,
so that with probability ≥ 1 − neg(λ) over the choice of (pk, sk) ← Gen(1λ) the
following holds:

– (Message-preservation) ∀c in the ciphertext space:
Decsk(Sanitizepk(c)) = Decsk(c).

– (Sanitization) ∀c, c′ in the ciphertext space s.t. Decsk(c) = Decsk(c
′):

∆ ((Sanitizepk(c), (pk, sk)) , (Sanitizepk(c
′), (pk, sk))) ≤ neg(λ).

Interactive client-server protocols. The protocols considered in this work involve
two-parties, client and server, denoted by Clnt and Srv respectively, where the
client has input and output, the server has no input and no output, and both
receive the security parameter λ. The client and server interact in an interactive
protocol denoted by π = ⟨Clnt,Srv⟩. The server’s view in an execution of π,
on client’s input x, no server’s input (denoted by ⊥), and security parameter
λ, is a random variable viewπ

Srv(x,⊥, λ) capturing what the server has learned,
and defined by viewπ

Srv(x,⊥, λ) = (r,m1, . . . ,mt)where r is the random coins of
Srv, and m1, . . . ,mt are the messages Srv received during the protocol’s exe-
cution. The client’s output in the execution is denoted by outπClnt(x,⊥, λ). The
protocol preserves privacy if the views of any server on (same length) inputs are
computationally indistinguishable [28, Definition 2.6.2 Part 2]:6

6 The server has no input or output, so we do not require security against the client.
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Definition 4 (Correctness and privacy). An interactive client-server pro-
tocol π = ⟨Clnt,Srv⟩ for computing F : A→ B, where the server has no input or
output is said to be:

Correct: if Srv and Clnt are ppt and for all x ∈ A,
Pr[outπClnt(x,⊥, λ) = F (x)] > 1− neg(λ).

Private: if for every ppt server Srv∗ and every ppt distinguisher D that chooses
x0, x1 ∈ A s.t. |x0| = |x1|, there exists a negligible function neg(·) such that
for every λ ∈ N, it holds that:

|Pr[D(viewπ
Srv∗(x0,⊥, λ)) = 1]− Pr[D(viewπ

Srv∗(x1,⊥, λ)) = 1]| ≤ neg(λ)

where the probability is taken over the random coins of Clnt and Srv∗.

Definition 4 captures malicious adversaries, but can be relaxed to semi-honest
ones by quantifying only over the prescribed Srv rather than every ppt Srv∗. We
call the former privacy against malicious servers and the latter privacy against
semi-honest servers.

Client-aided outsourcing protocols. We formally define the family of client-aided
outsourcing protocols, or (E ,G)-aided outsourcing protocols, parameterized by a
PKE scheme E with message spaceM and a family of functions G = {Gn :M→
M}n∈N. We note that E can be any PKE scheme (i.e., not necessarily an HE
scheme).

Definition 5 ((E ,G)-aided outsourcing protocol). Let E = (Gen, Enc,Dec)
be a public-key encryption scheme with message spaceM, and G = {Gn :M→
M}n∈N a family of functions. An interactive client-server protocol π = ⟨Clnt,Srv⟩
for computing a function F : A→ B is called an (E ,G)-aided outsourcing proto-
col if it has the following three stage structure:

1. Client’s input outsourcing phase (on input x ∈ A): Clnt runs (pk, sk)←
Gen(1λ), encrypts its input c← Encpk(x), and sends c and pk to Srv.

2. Server’s computation phase: Srv performs some computation and in ad-
dition may interact (multiple times) with Clnt by sending it pairs (e, n), for e
a vector of ciphertexts and n ∈ N, receiving in response Encpk(Gn(Decsk(e))).

3. Client’s output phase: Srv sends to Clnt the last message of the protocol;
upon receiving this message, Clnt produces an output.

Remark 1 (multiple inputs and outputs). The query e and response e′ can be
vectors of ciphertexts, with decryption and encryption in Encpk(Gn(Decsk(e)))
computed entry-by-entry. Throughout the paper we slightly abuse notations and
denote byM, Dec, Enc, e and e′ also their extension to vectors.

3 A Sufficient and Achievable Relaxation of CCA2

In this section we formally define funcCPA-security and prove that client-aided
protocols instantiated with a funcCPA-secure scheme preserve privacy against
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malicious adversaries (Section 3.1); Show that funcCPA-secure HE is achievable
from any HE equipped with a sanitization algorithm (Section 3.2); Prove that
funcCPA-security is satisfied by all leveled schemes satisfying a natural prop-
erty, e.g., the leveled HE schemes of BV [13], BGV [12] and B/FV [11,22] (Sec-
tion 3.3); Conversely, show that funcCPA-security for homomorphic schemes with
(another) natural property, e.g., the schemes of BV [13] and BGV [12], implies
weak circular security (Section 3.4).

3.1 funcCPA-Security: A Sufficient Relaxation of CCA2

We define the function-chosen-plaintext attack (funcCPA-security) security no-
tion of public-key encryption, and show that (E ,G)-aided outsourcing protocols
preserve privacy against malicious servers if E is funcCPA-secure. We remark
that E may be a PKE that is not necessarily a HE.

The definition captures a weaker adversary than the standard CCA2 adver-
sary in the sense that the adversary has access to a “decrypt-function-encrypt”
oracle, specified with respect to a family of functions, where the adversary may
submit a ciphertext together with a function identifier and receive in response
a ciphertext that is produced as follows. The submitted ciphertext is first de-
crypted, then the requested function is calculated on the plaintext and the result
is encrypted and returned to the adversary.

More formally, we define funcCPA-security via a funcCPA-experiment speci-
fied for a public-key encryption scheme E = (Gen,Enc,Dec) with message space
M, a family of functions G = {Gn : M → M}n∈N, and an adversary A, as
follows:

The funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ):

1. Gen(1λ) is run to obtain a key-pair (pk, sk)
2. The adversary A is given pk and access to a decrypt-function-encrypt oracle,

denoted Encpk(G(Decsk(·))), defined as follows: queries to Encpk(G(Decsk(·)))
are pairs consisting of a ciphertext e and a function index n, and the response
is e′ ← Encpk(Gn(Decsk(e))).

3. A outputs a pair of messages x0, x1 ∈M with |x0| = |x1|.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpk(xb) is

computed and given to A. We call c the challenge ciphertext. A continues
to have access to the Encpk(G(Decsk(·))) oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined to be
1 if b′ = b, and 0 otherwise.

Definition 6 (funcCPA). A PKE scheme E = (Gen,Enc,Dec) with message
spaceM is funcCPA-secure w.r.t. a family of functions G = {Gn :M→M}n∈N
( funcCPA-secure w.r.t. G) if for all ppt adversaries A, there exists a negligible
function neg(·) such that for all sufficiently large λ,

Pr[EXPFcpa
A,E,G(λ) = 1] ≤ 1

2
+ neg(λ)
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where the probability is taken over the random coins used by A, as well as the
random coins used to generate (pk, sk), choose b, and encrypt.

Remark 2 (Handling decryption errors). In Definitions 5 and 6 we do not in-
clude an explicit discussion of how decryption errors are treated. This is because
our theorem showing that funcCPA implies privacy (Theorem 7) holds with any
treatment of errors, as long as errors are treated identically by both the client in
the client-aided outsourcing protocol and the oracle in the funcCPA-experiment.
An example of a possible treatment of errors follows: if decryption fails on a
query (e, n) submitted to the client or oracle, they return Encpk(Gn(m)) for an
arbitrary message m ∈M. Another example is provided in our preprint [3].

Theorem 7 (funcCPA implies privacy). Let E be a PKE with message space
M and G = {Gn :M → M}n∈N a family of functions. If E is funcCPA-secure
w.r.t. G, then every (E ,G)-aided outsourcing protocol preserves privacy against
malicious servers.

Proof. Let π be a (E ,G)-aided outsourcing protocol for a function F : A → B.
Assume by contradiction that privacy does not hold for π. That is, there exists
a ppt distinguisher D that chooses x0, x1 ∈ A with |x0| = |x1|, a malicious ppt
server Srv∗, and a polynomial p(·) such that for infinitely many λ ∈ N:

Pr[D(viewπ
Srv∗(x1,⊥, λ)) = 1]− Pr[D(viewπ

Srv∗(x0,⊥, λ)) = 1] ≥ 1

p(λ)
(1)

We show that given D and Srv∗ we can construct an adversary A that violates
the funcCPA security of E with respect to the family G.

The adversary A participates in EXPFcpa
A,E,G as follows:

1. Upon receiving pk, A outputs x0, x1 (as computed by D).
2. Upon receiving cx ← Encpk(xb) from the challenger, A internally executes

Srv∗ and behaves as the Clnt in the execution of the protocol π: in the
client’s input outsourcing phase of π, A sends (cx, pk) to Srv∗; in the server’s
computation phase of π, every incoming message (e, n) to Clnt is redirected
to the oracle Encpk(G(Decsk(·))) and the response is sent to Srv∗ as if it were
coming from Clnt.

3. A runs the distinguisher D on viewSrv∗ (Srv∗’s view in A during Step 2) and
outputs whatever D outputs.

The adversary A is ppt due to Srv∗ and D being ppt. Note that π is perfectly
simulated.

We denote by viewEXPFcpa

Srv∗ (xb,⊥, λ) the view of Srv∗, simulated by A, in

the execution of EXPFcpa
A,E,G with bit b being selected by the challenger. Since A

behaves exactly as Srv∗ in π, it holds that for every b ∈ {0, 1},

Pr[D(viewπ
Srv∗(xb,⊥, λ)) = 1] = Pr[D(viewEXPFcpa

Srv∗ (xb,⊥, λ)) = 1] (2)
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From Equations 1 and 2 it follows that:

Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1] ≥ 1

p(λ)
(3)

Therefore, we obtain that:

Pr[EXPFcpa
A,E,G(λ) = 1]

=
1

2
·
(
Pr[EXPFcpa

A,E,G(λ) = 1|b = 1] + Pr[EXPFcpa
A,E,G(λ) = 1|b = 0]

)
=

1

2
·
(
Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1] + Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 0]
)

=
1

2
+

1

2
·
(
Pr[D(viewEXPFcpa

Srv∗ (x1,⊥, λ)) = 1]− Pr[D(viewEXPFcpa

Srv∗ (x0,⊥, λ)) = 1]
)

≥ 1

2
+

1

2
· 1

p(λ)

where the last inequality follows from Equation 3. Combining this with A being
ppt we derive a contradiction to E being funcCPA secure. This concludes the
proof. ⊓⊔

We observe that for fully decryptable C-homomorphic schemes, it suffices to
prove funcCPA-security w.r.t the identity function I to obtain funcCPA-security
w.r.t C. We note that full decryption holds for well-known schemes includ-
ing [40,12,11,25,20,18].

Lemma 1. Let E = (Gen,Enc,Dec,Eval) be a fully decryptable 7 C-homomorphic
PKE scheme. If E is funcCPA-secure w.r.t the identity function I then it is
funcCPA-secure w.r.t C.

Proof. Let E = (Gen,Enc,Dec,Eval) be a fully decryptable C-homomorphic en-
cryption scheme with message spaceM and ciphertext T that is funcCPA-secure
w.r.t the identity function I :M → M. For any ppt adversary A that partic-
ipates in EXPFcpa

A,E,C we construct an adversary B for EXPFcpa
B,E,I that behaves as

follows: The adversary B runs A internally while relaying messages between the
challenger and A, with the exception that Encpk(C(Decsk(·))) queries are treated
as follows: first the queried ciphertext is forwarded to the challenger that returns
a fresh ciphertext of the encrypted value, then Eval is executed over this fresh
ciphertext and the result ciphertext is forwarded again to the challenger that
returns a fresh ciphertext for its underlying value. That is, B does the following:

7 We note that the fully decryptable requirement addresses decryption errors. This
requirement can be replaced by including in Definition 6 the following treatment of
errors: in case of a decryption error, the funcCPA oracle returns an encryption of the
queried function on an arbitrary message in the message space.
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– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by sending (e, I) to the chal-

lenger and obtaining a fresh ciphertext e′ (and ⊥ if e /∈ T ), computing
e′′ ← Evalpk (Cn, e

′) and sending (e′′, I) to the challenger. The response to
the second query is given to A.

– Once A generates x0, x1 forward them to the challenger and return the re-
sponse c← Encpk(xb) to A.

– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the interaction
of A is perfectly simulated by B due to E being fully decryptable together with
C-homomorphic. More formally, letting (pk, sk) ← Gen(1λ), for all C ∈ C and
c1, . . . cℓ ∈ T it holds that:

Pr

[
Decsk(Evalpk(C,Encpk(Decsk(c1)),...,Encpk(Decsk(cℓ))))

̸=
C(Decsk(c1),...,Decsk(cℓ))

]
≤ neg(λ)

(if A submits a ciphertext not in T then the challenger’s response is ⊥ in both
executions). Since the number of queries of A is polynomial in λ the indistin-

guishability of EXPFcpa
A,E,C(λ) and EXPFcpa

B,E,I(λ) follows. Finally, from the funcCPA-
security of E w.r.t I we conclude that

Pr[EXPFcpa
A,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

as required. ⊓⊔

3.2 Sanitized HE Schemes are funcCPA-Secure

We show how to transform any HE scheme E that has a sanitization algorithm
into a sanitized HE scheme, denoted E santz, so that if E is CPA-secure, then E santz
is funcCPA-secure.

Definition 7 (Sanitized scheme E santz). Let E = (Gen,Enc,Dec,Eval) be HE
scheme with message spaceM and a sanitization algorithm Sanitize. We define
its sanitized scheme E santz = (Gen,Encsantz,Dec,Evalsantz) as follows: Gen and Dec
are as in E; Encsantz takes a public key pk and a message m ∈M and outputs:

Encsantzpk (m) = Sanitizepk (Encpk(m)) ;

Evalsantz takes pk, a circuit C, and ciphertexts c1, . . . , cℓ and outputs:

Evalsantzpk (C, c1, . . . , cℓ) = Sanitizepk (Evalpk(C, Sanitizepk(c1), . . . ,Sanitizepk(cℓ))) .

We note that E santz inherits the compactness, security and correctness properties
of E (in particular, correctness holds due to correctness of E and the message-
preservation property of Sanitize). The homomorphism of E santz may, in gen-
eral, hold with respect to a subset of the circuits for which E is homomorphic.
Nonetheless, when employing the sanitization algorithm of Ducas and Stehlé [21]
both E and E santz are fully homomorphic.
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Theorem 8 (E santz is funcCPA-secure). Let E be a fully decryptable CPA-
secure HE scheme with a sanitization algorithm; E santz its sanitized scheme. If
E santz is C-homomorphic, then it is funcCPA-secure w.r.t. C.8

Proof. To prove the theorem we first enhance the definition of circuit privacy to
circuit-privacy+ (cf. Definition 8 below); then show that the sanitized scheme
E santz satisfies circuit-privacy+ for C (cf. Lemma 2 below); and show that if a
C-homomorphic CPA-secure encryption scheme satisfies circuit-privacy+ for C,
then it is funcCPA-secure w.r.t. C (cf. Lemma 3 below). We conclude that E santz
is funcCPA-secure w.r.t. C. ⊓⊔

Circuit-privacy+. Our definition of circuit-privacy+ addresses maliciously gen-
erated ciphertexts by quantifying over all ciphertexts in the ciphertext space,
rather than only over ciphertexts that were properly formed by applying the
encryption algorithm on a message. Prior definitions of circuit privacy either
considered the semi-honest settings where both the keys and the ciphertext are
properly formed [29,24,10], or considered settings where both keys and cipher-
texts may be maliciously formed [29,37,19,35]. In contrast, in our settings the
keys are properly formed whereas the ciphertexts may be maliciously formed.

Definition 8 (Circuit-privacy+). A C-homomorphic PKE scheme E = (Gen,
Enc,Dec,Eval) is circuit-private+ for C if the following holds with probability
≥ 1 − neg(λ) over the choice of (pk, sk) ← Gen(1λ): For every circuit C ∈ C
over ℓ inputs and ciphertexts c1, . . . , cℓ in the ciphertext space of E the following
distributions are statistically close:

∆ (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))) ,Evalpk (C, c1, . . . , cℓ)) ≤ neg(λ)

where the distributions are over the random coins of Enc and Eval.

We prove that the sanitized scheme E santz is circuit-private+.

Lemma 2 (E santz is circuit-private+). Let E be a fully decryptable HE scheme
with a sanitization algorithm, and E santz its sanitized scheme. If E santz is C-
homomorphic, then it is circuit-private+ for C.

Proof. We highlight the key steps; the formal details appear in Appendix A.
To prove that E santz is circuit-private+ we show that ciphertexts resulting

from homomorphic evaluation over maliciously crafted ciphertexts are statisti-
cally close to those resulting from first decrypting then computing in cleartext
and then encrypting the output. Sanitizing these ciphertexts (as done in E santz)
is aimed for guaranteeing this statistical closeness. However, the sanitization
guarantee holds only if these ciphertexts decrypt to the same message; proving
the latter is the heart of our proof.

We cannot rely on homomorphism to argue the latter, because correct evalua-
tion is guaranteed only on “fresh” encryptions (cf.maliciously crafted ciphertexts

8 We slightly abuse notations and allow funcCPA with respect to a circuit family.
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as in our scenario). To address this issue we introduce a “hybrid” experiment,
where we decrypt-and-then-encrypt the ciphertexts given as input to Eval, which
guarantees that they are fresh encryptions. (We rely on full decryption to en-
sure that decryption yields some element in the message space.) In this hybrid
experiment correct evaluation indeed holds.

To guarantee that correct evaluation holds even without re-encryption, we
rely on the fact that in E santz we sanitize also the input to Eval and not just its
output. This “inner” sanitization guarantees that the sanitized input ciphertexts
are statistically close to those in the hybrid experiment (since they decrypt to
the same message); from this (together with their statistical independent due to
injecting fresh randomness in each sanitization) we derive that the ciphertext
produced by the homomorphic evaluation is statistically close to the one pro-
duced in the hybrid experiment. This in turn implies that they decrypt to the
same message. ⊓⊔

Circuit-privacy+ implies funcCPA. We prove that a HE scheme is funcCPA-secure
if it is CPA-secure and circuit-private+.

Lemma 3 (circuit-privacy+ implies funcCPA). Let E be a CPA-secure PKE.
If E is C-homomorphic and circuit-private+ for C, then E is funcCPA-secure w.r.t.
C.

Proof. The main proof idea is to carefully replace Encpk(G(Decsk(·))) oracle calls
with Eval operations; details follow.

Let E = (Gen,Enc,Dec,Eval) be a CPA-secure C-homomorphic encryption
scheme with message spaceM that is circuit-private+ for C. For any ppt adver-
sary A that participates in EXPFcpa

A,E,C we construct an adversary B for EXPcpa
B,E

that behaves as follows: The adversary B runs A internally while relaying mes-
sages between the challenger and A, with the exception that Encpk(C(Decsk(·)))
queries are answered using Eval. That is, B does the following:

– Upon receiving pk from challenger, forward it to A.
– Answer queries (e, n) to Encpk(C(Decsk(·))) by e′ ← Evalpk (Cn, e).
– Once A generates x0, x1 forward them to the challenger and return the re-

sponse c← Encpk(xb) to A.
– Output the b′ that A outputs.

The adversary B is ppt (due to A and Eval being ppt), and all the inter-
action of A is perfectly simulated by B except for the responses to queries to
Encpk(C(Decsk(·))) that are simulated using Eval. Circuit privacy+ of E guar-
antees that these responses are indistinguishable from decrypting, applying Cn

and encrypting the result.
More formally, we define a series of hybrid executions that gradually move be-

tween EXPFcpa
A,E,C experiment (where Encpk(C(Decsk(·))) oracle is used) to EXPcpa

B,E
experiment (where Eval is used). Let q denote an upper bound on the number
of queries done by A, we define q + 1 hybrids as follows:

Hybrid H0 is defined as the execution of EXPFcpa
A,E,C .
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Hybrid Hi is defined for i ∈ [q]. The hybrid Hi is defined as EXPFcpa
Ai,E,C , where

Ai’s last i queries are answered using Eval instead of oracle Encpk(C(Decsk(·))).

Note that Hq is equivalent to the CPA-experiment EXPcpa
B,E , and hence,

Pr[EXPcpa
B,E(λ) = 1] = Pr[EXPFcpa

Aq,E,C(λ) = 1] (4)

In each pair of adjacent hybrids Hi−1 and Hi the difference is that in Hi the
(q− i+ 1)’th query is done using Eval instead Encpk(C(Decsk(·))) oracle. In this
case the indistinguishability follows from E being circuit private+ for C. Namely,

|Pr[EXPFcpa
Ai,E,C(λ) = 1]− Pr[EXPFcpa

Ai−1,E,C(λ) = 1]| ≤ neg(λ).

Since q is polynomial in λ, by the hybrid argument the indistinguishability of
EXPFcpa

A,E,C and EXPcpa
B,E follows. Finally, from the CPA-security of E and Equation

4 we conclude that

Pr[EXPFcpa
A,E,C(λ) = 1] ≤ 1

2
+ neg(λ)

As required. ⊓⊔

3.3 funcCPA Security of leveled HE Schemes

We show that CPA implies funcCPA for leveled HE schemes satisfying a natural
property. This property is satisfied, e.g., by BV [13], BGV [12] and B/FV [11,22]
(with a slight modification of their evaluation key), see Corollary 1.

Concretely, we address leveled HE schemes where each level is associated
with a set of keys (usually, public, secret and evaluation keys), each ciphertext is
associated with a (efficiently recognizable) level corresponding to the keys used
for this ciphertext, and the scheme has independent level keys in the sense that
the public and secret key pair can be sampled independently for each level, and
the evaluation key for each level can be efficiently generated from the secret key
for the current level and the public key for the next level.

Definition 9 (independent level keys). We say that a leveled HE scheme
E = (Gen,Enc,Dec,Eval) has independent level keys if Gen (level key gener-
ation) takes as input the security parameter 1λ and a number of levels 1L,
uses ppt algorithms GenKey and GenEvKey, and outputs for each level ℓ ∈
{0, . . . , L} a public key, secret key, and an evaluation key defined by: (pkℓ, skℓ)←
GenKey(1λ) and evkℓ ← GenEvKey(skℓ, pkℓ−1)denoted: (pkℓ, evkℓ, skℓ, )ℓ∈[L] ←
Gen(1λ, 1L)

We reformulate the definition of funcCPA to capture security for leveled HE
schemes (leveled-funcCPA) as follows: the adversary can choose the level to which
the challenge ciphertext is encrypted, and the “decrypt-function-encrypt” oracle
is modified to return a ciphertext for the next level. That is, to answer a query
on a ciphertext of level ℓ, the ciphertext is first decrypted using skℓ, then the
requested function is calculated on the plaintext and the result is encrypted
under the public-key for the next level pkℓ−1 and returned to the adversary, see
Definition 10.



Achievable CCA2 Relaxation for Homomorphic Encryption 17

The leveled-funcCPA indistinguishability experiment EXPFcpa
A,E,G(λ, L) for leveled

HE is parameterized by the security parameter λ and number of levels L, and
executed between a challenger Chal and an adversary A:

1. Gen(1λ, 1L) is run to obtain keys (pkℓ, skℓ)ℓ∈{0,...,L} (we consider the public
key pkℓ to include the evaluation key evkℓ if it exists).

2. The adversary A is given (pkℓ)ℓ∈{0,...,L} and access to a decrypt-function-
encrypt oracle, denoted {Encpkℓ−1

(G(Decskℓ
(·)))}ℓ∈[L], defined as follows: the

queries to this oracle are pairs (eℓ, n) consisting of a ciphertext eℓ of some
level ℓ ∈ [L] (where the level is efficiently identifiable given the ciphertext)
and a function index n, and the response is e′ ← Encpkℓ−1

(Gn(Decskℓ
(eℓ))).

9

3. A outputs a pair of messages x0, x1 ∈M s.t. |x0| = |x1| and ℓ ∈ {0, . . . , L}.
4. A random bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encpkℓ

(xb) is
computed and given to A. We call c the challenge ciphertext. A continues
to have access to the oracle.

5. The adversary A outputs a bit b′. The experiment’s output is defined to be
1 if b′ = b (0 otherwise).

Definition 10 (funcCPA for leveled HE). A leveled HE scheme E = (Gen,Enc,
Dec,Eval) with message spaceM is leveled-funcCPA-secure with respect to a fam-
ily of functions G = {Gn :M→M}n∈N ( leveled-funcCPA-secure w.r.t. G) if for
all ppt adversaries A, there exists a negligible function neg(·) such that for all
sufficiently large λ and every L polynomial in λ,

Pr[EXPFcpa
A,E,G(λ, L) = 1] <

1

2
+ neg(λ)

where the probability is taken over all random coins of the experiment.

We prove that CPA-secure leveled HE schemes with independent level keys are
funcCPA-secure w.r.t any admissible family G. Admissible here says that all Gn ∈
G are polynomial-time computable and have fixed output length |Gn(x0)| =
|Gn(x1)| for all x0, x1 ∈M. (We note that the latter trivially holds when G is a
family of circuits.)

Theorem 9 (leveled HE is funcCPA). Let E be a leveled HE scheme with
independent level keys. If E is CPA-secure, then E is leveled-funcCPA-secure w.r.t.
any admissible family G.

Proof. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure public-key leveled HE
scheme with message space M. Assume by contradiction that there exists an
admissible family of functions G = {Gn : M → M}n∈N over M such that E
is not funcCPA-secure w.r.t G. That is, there exists a ppt adversary A and a
polynomial p(·) such that for infinity many λ and L it holds that:

Pr[EXPFcpa
A,E,G(λ, L) = 1] >

1

2
+

1

p(λ)
(5)

9 In case of an error, compute e′ ← Encpkℓ−1(Gn(m)) for an arbitrary m ∈M.
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We show below that given A we can construct an adversary B that wins in
EXPcpa

B,E(λ, L) with non-negligible advantage, violating the CPA security of E .
The adversary B executes A, relaying messages between the challenger and

A, while responding to any query (eℓ, n) from A with an encryption using pkℓ−1
of Gn on an arbitrary message m ∈M. That is B does the following,

– Upon receiving (pkℓ)ℓ∈{0,...,L} from challenger, forward it to A.
– Answer queries (eℓ, n) for a ciphertext eℓ of level ℓ by e′ ← Encpkℓ−1

(Gn(m))
for an arbitrary m ∈M.

– Once A generates x0, x1 and ℓ forward them to the challenger and return
the response c← Encpkℓ

(xb) to A.
– Output the b′ that A outputs.

The adversary B is ppt due to adversary A being ppt and admissibility of
G. Moreover all the interaction of A is perfectly simulated by B except for the
responses to queries to {Encpkℓ−1

(G(Decskℓ
(·)))}ℓ∈[L] that are simulated using

encryption of the image of Gn on an arbitrary message.

Let EXPFcpa#

experiment denote this variant of EXPFcpa that is simulated

by A, namely EXPFcpa#

is an experiment identical to EXPFcpa except that each
query (eℓ, n) to Chal is answered by the encryption of Gn(m) under pkℓ−1 for
arbitrary m ∈M.

By definition of EXPFcpa#

it holds that,

Pr[EXPFcpa#

A,E,G (λ, L) = 1] = Pr[EXPcpa
B,E(λ, L) = 1] (6)

Furthermore, the CPA security and independent level keys of E guarantees (as

shown in Lemma 4 below) thatA’s winning probability in EXPFcpa#

and EXPFcpa

is computationally indistinguishable. In particular,

|Pr[EXPFcpa#

A,E,G (λ, L) = 1]

−Pr[EXPFcpa
A,E,G(λ, L) = 1]| ≤ neg(λ) .

(7)

Putting Equation 7 together with Equations 5-6 it follows that

Pr[EXPcpa
B,E(λ, L) = 1] ≥ 1

2
+

1

p(λ)
− neg(λ). (8)

Combining this with A being ppt we derive a contradiction to E being CPA
secure. This concludes the proof. ⊓⊔

Let EXPFcpa#

be as defined in the proof of Theorem 9, i.e., it is identical to
EXPFcpa except that Chal, upon receiving queries (eℓ, n), instead of responding
as in step 2 in Definition 10, responds by sending the encryption under pkℓ−1 of
Gn(m) for an arbitrary message m ∈M (rather then m = Decskℓ

(eℓ)). We show
that the adversary is indifferent to the correctness of answers it receives from

the Chal in the sense that its output distribution in EXPFcpa and EXPFcpa#

is
indistinguishable.



Achievable CCA2 Relaxation for Homomorphic Encryption 19

Lemma 4. Let E = (Gen,Enc,Dec,Eval) be a CPA-secure leveled HE scheme
with a message spaceM. Let G = {Gn :M→M}n∈N be a family of admissible
functions. If E has independent level keys then for any ppt adversary A, there
exists a negligible function neg(·) such that for all sufficiently large λ and every
L polynomial in λ the following holds:

|Pr[EXPFcpa#

A,E,G (λ, L) = 1]− Pr[EXPFcpa
A,E,G(λ, L) = 1]| ≤ neg(λ)

Proof. The proof relies on keys independence; details appear in the full ver-
sion [2]. ⊓⊔

Schemes with independent level keys. In BV, BGV and B/FV, for example, in-
deed each ciphertext is associated with a level and there are independent encryp-
tion and decryption keys (pkℓ, skℓ) for each level ℓ. Moreover, the evaluation key
evkℓ (called key switching in BV, BGV and B and re-linearization keys in FV) is
essentially the encryption of an efficiently computable function of the secret key
skℓ of the current level (concretely, the encryption of sk′ℓ = Powersof2(skℓ⊗skℓ))
under the public key pkℓ−1 for the next level.

More accurately, to generate evkℓ they use a fresh public key pk′ℓ−1 with
which they mask sk′ℓ. This is important when instantiating their scheme as a
fully homomorphic encryption, i.e., when there’s a single key tuple (pk, evk, sk)
used for all levels, in which case using pk (rather than pk′) to encryt a function
of sk would require a circular security assumption. In contrast, when using these
schemes as a leveled HE, as we do, then anyhow the keys (pkℓ, skℓ) are sampled
independently from (pkℓ−1, skℓ−1), and so encrypting sk′ℓ under pkℓ−1 requires
no circular security assumption. Therefore, their generation of the evaluation
keys can be modified to output the encryption of sk′ℓ under pkℓ−1, without
harming correctness or security.10 With this slight modification indeed these
scheme satisfy Definition 9.

Proposition 1. The leveled HE schemes of BV, BGV and B/FV [13,12,11,22]
(with the aforementioned evaluation key) have independent level keys.

Corollary 1. The leveled HE schemes of BV, BGV and B/FV [13,12,11,22]
(with the aforementioned evaluation key) are leveled-funcCPA-secure.

3.4 Barriers on Proving funcCPA for Existing HE Schemes

In this section we prove that if the homomorphic encryption scheme of BV [13] or
BGV [12] is funcCPA-secure, then it is (weakly) circular secure. More generally,
we show the above holds for all schemes satisfying a property we call oblivious
secret key extraction (ObvSK). In the following we first formally define weak
circular security and ObvSK; then prove that for schemes supporting ObvSK,
funcCPA-security w.r.t a proper family F implies weak circular security; and
conclude by showing that the schemes of BV and BGV support ObvSK.

10 We remark that the noise in the modified evaluation keys is slightly larger: the noise
of a fresh ciphertext, rather than a sample from the error distribution; nonetheless,
this makes essentially no difference when using the scheme.
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Circular security extends CPA-security to capture security of public key en-
cryption schemes against adversaries seeing an encryption of the secret key [16,
Definition 2.5].

Circular security is required by all fully homomorphic encryption schemes
following Gentry’s [23] blueprint, as they publish an encryption of the secret
key to be used during bootstrapping (where bootstrapping [23] is the process of
homomorphically evaluating the scheme’s decryption circuit with a hardwired
ciphertext on an encrypted secret key as input). Specifically, they require security
to hold against adversaries seeing an encryption of the secret key in the encoding
by which it is specified as input to the decryption circuit (see [13, Definition 3.8]).

Weak circular security is formally stated, for a public key encryption scheme
E = (Gen,Enc,Dec), using the following experiment between a challenger Chal
and an adversary A (where sk denotes the secret key when specified in the
encoding as required for the decryption circuit):

The weak circular indistinguishability experiment EXPwc
A,E(λ):

1. Chal computes (pk, sk)← Gen(1λ) and csk ← Encpk(sk), and sends (pk, csk)
to A.

2. A sends to Chal two messages x0, x1 s.t. |x0| = |x1|.
3. Chal chooses a random bit b ∈ {0, 1}, computes a ciphertext c ← Encpk(xb)

and sends c to A. We call c the challenge ciphertext.
4. A outputs a bit b′.
5. The output of the experiment is defined to be 1 if b′ = b (0 otherwise).

Definition 11 (weak circular security). A PKE scheme E = (Gen,Enc,Dec)
is weakly circular secure if for every ppt adversary A, there exists a negligible
function neg(·) such that for all sufficiently large λ,

Pr[EXPwc
A,E(λ) = 1] ≤ 1

2
+ neg(λ)

where the probability is taken over the random coins of A and Chal.

Oblivious secret key extraction captures the ability to generate, from the public
key, ciphertexts encrypting data related to the secret key, so that from their
decryption one can efficiently compute the secret key in the encoding as required
for the decryption circuit.

Definition 12 (oblivious secret key extraction (ObvSK)). Let E = (Gen,
Enc,Dec) be a PKE scheme with message spaceM, and F = {Fn :M→M}n∈N
be a family of functions. We say that E supports oblivious secret key extraction
(ObvSK) w.r.t F if there exists a ppt algorithm Alg that takes a public key pk
and outputs n = n(λ) ciphertexts under pk, so that the following holds. There
exists a negligible function neg(·) such that for all λ ∈ N the following holds:

Pr

[
(pk,sk)←Gen(1λ)
(c1,...,cn)←Alg(pk)

Fn(Decsk(c1),...,Decsk(cn))=sk

]
≥ 1− neg(λ) (9)
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where the secret key sk outputted by Fn is in the encoding required for the de-
cryption circuit, and where the probability is taken over the randomness in Gen
and Alg.

funcCPA-security for schemes supporting ObvSK implies weak circular security.
Next we show that if a public key encryption scheme E support ObvSK w.r.t F
and is funcCPA-secure w.r.t G that contains F , then E is weakly circular secure.

Theorem 10. Let E = (Gen,Enc,Dec) be a PKE scheme that is funcCPA-secure
w.r.t a family of functions G. If E is ObvSK w.r.t F and F ⊆ G then E is weakly
circular-secure.

Proof. The proof idea is, given pk, to first use Alg (from the ObvSK property) to
get encrypted data related to sk; then use Encpk(G(Decsk(·))) (from the funcCPA
property) to transform them to ciphertexts csk encrypting sk (in the encoding
for the decryption circuit); finally show that –if the scheme is not circular secure–
then using csk we can break funcCPA-security. The formal details follow.

Suppose by contradiction that E is not circular-secure, i.e., there exists a
ppt adversary A that wins EXPwc

A,E with non-negligible advantage over a random
guess. We construct an adversary B that runs A internally and breaks funcCPA-
security of the scheme.

The adversary B participates in the funcCPA-security experiment as fol-
lows. First, given pk from Chal, B computes (c1, . . . , cn) ← Alg(pk) (for Alg
as guaranteed by the ObvSK property), sends a query ((c1, . . . , cn), n) to the
Encpk(G(Decsk(·))) oracle (provided as part of the funcCPA experiment), and
receives in response (the vector of ciphertexts)

csk = Encpk(Fn(Decsk(c1), . . . ,Decsk(cn))),

which is an encryption of the secret key sk in the encoding as needed for boot-
strapping with 1−neg(λ) probability (by the ObvSK property). Next B, internally
runs A, while providing to it csk together with pk, relaying messages between
A and Chal, and outputting the guess b′ outputted by A.

The view of A in EXPFcpa
B,E is identical to its view in EXPwc

A,E (except with
a neg(λ) probability, for the case of failure in the ObvSK). Implying (by the
contradiction assumption)

Pr[EXPFcpa
B,E (λ) = 1] >

1

2
+

1

p(λ)

for some polynomial p(·), in contradiction to the funcCPA-security of E . ⊓⊔

As a corollary from Theorem 10 we conclude that for bootstrappable ObvSK
schemes, funcCPA-security implies full homomorphism without relying on any
circular security assumption.

Corollary 2. Let E = (Gen,Enc,Dec,Eval) be a bootstrappable HE scheme that
supports ObvSK w.r.t F . If E is funcCPA-secure w.r.t G and F ⊆ G then E is
fully homomorphic.
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Proof. The proof is derived by combining the following two facts. First, by The-
orem 4.3.2 in [23], bootstrappable HE schemes that are weakly circular secure
are fully homomorphic. Second, by Theorem 10, if E support ObvSK w.r.t F and
it is funcCPA-secure w.r.t G that contains F , then E is weakly circular secure.
Combining the above, we conclude that E is fully homomorphic. ⊓⊔

Schemes supporting ObvSK. BV and BGV are examples of schemes supporting
ObvSK. More generally, we show that ObvSK is supported by all public key
encryption schemes E = (Gen,Enc,Dec) satisfying the following:

1. The secret key sk = (1, s) and ciphertext c are from the ring:
– LWE-based schemes: Zn+1

q

– RLWE-based schemes: R2
q for Rq = Zq[x]/F [X]

where q, n, d are positive integers, d a power of 2, F [X] = Xd + 1, and
s has small coefficients in the sense that decryption correctness holds on
ciphertexts encrypting each coefficient of s.

2. Decryption is via inner-product (with messages encoded in the least signifi-

cant bits): Decsk(c) =
[
[⟨c, sk⟩]q

]
p
where [z]x is the remainder of z in division

by x and p a positive integer.

In the following let FLWE = {FLWE
n : Zn

q → {0, 1}n·⌈log q⌉}q,n denote a
family of functions that given (s1, . . . , sn) ∈ Zn

q outputs sk = (1, s) ∈ Zn+1
q

in the encoding as required by the decryption circuit in LWE-based schemes
satisfying the above properties. Similarly, let FRLWE = {FRLWE

d : Rq →
R2

q}q,d denote a family of functions that given (s′d−1, . . . , s
′
0) ∈ Rq outputs

sk = (1, (−s′0, s′d−1, . . . , s′1)) ∈ R2
q in the encoding as required by the decryp-

tion circuit in the RLWE-based schemes satisfying the above properties. (Here
(s′d−1, . . . , s

′
0) is a vector of coefficients specifying a polynomial s′(X) ∈ Rq, and

1 denotes the unit element in Rq.) Moreover, for a scheme E satisfying the above
properties, either in the LWE-based or RLWE-based form, we use the short hand
notation of denoting by FGLWE the family FLWE in case E is LWE-based, and
FRLWE otherwise.

Proposition 2. Suppose E = (Gen,Enc,Dec) satisfies (1)-(2) above. Then E
supports ObvSK w.r.t to FGLWE.

Proof. The proof appears in the full version [2].

As an immediate corollary from Proposition 2 we obtain that the addressed
schemes support ObvSK.

Corollary 3 (BV and BGV support ObvSK). The HE schemes from BV [13]
and BGV [12] support ObvSK w.r.t to FGLWE.

Since these schemes are known to be bootstrappable, then combining Corol-
lary 3 with Corollary 2 we derive that if they are funcCPA-secure then they are
fully homomorphic.

Corollary 4. If BV [13] or BGV [12] is funcCPA-secure w.r.t to G containing
FGLWE, then it is fully homomorphic.
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4 CPA insufficiency against Malicious Adversaries

We show that CPA-security is insufficient for guaranteeing privacy in client-
aided outsourcing protocols. For this purpose we construct a CPA-secure PKE
scheme and exhibit an input-recovery attack that completely breaks privacy in
client-aided outsourcing protocols instantiated with our scheme. In fact, we can
transform any CPA-secure encryption scheme E with message spaceM of super
polynomial size, using a one-way function f and any function G, into a CPA-
secure encryption scheme Ef for which our attack works on any (Ef ,G)-aided
outsourcing protocol for any G containing G . Moreover, if E was an HE scheme
then so is Ef . For simplicity of the presentation we concentrate on G being the
identity function I for the construction of Ef . The scheme Ef is similar to E ,
except for the key difference that its encryption and decryption are “punctured”
on a random point m∗ ∈ M, where its public key implicitly specifies m∗ by
augmenting it with f(m∗) and Encpk(m

∗).11 See our construction in Figure 1
and Theorem 11. Our attack breaks security in the strong sense that the server
is able to completely recover the client’s input; See Theorem 12.

Theorem 11 (properties of Ef). For every PKE scheme E and one-way func-
tion f over the message-space of E, the scheme Ef (cf. Figure 1) is a PKE scheme
satisfying the following. If E is CPA-secure, compact, and C-homomorphic, then
Ef is CPA-secure, compact, and C × C-homomorphic.12

Proof. Correctness, compactness and homomorphism of Ef follow directly from
the properties of E . The CPA-security of Ef follows from the CPA-security of E
and the one-wayness of f : the encryption in Ef is identical to encrypting pairs
(m1,m2) of messages under E , except if m2 is a pre-image of f(m∗), but the
latter occurs with no more than a negligible probability due to f being a one-
way function and m∗ being a random message. See formal details in the full
version [2]. ⊓⊔

We present our attack in which the server recovers the client’s input in any
(Ef ,G)-aided outsourcing protocol for G containing the identity function I. We
remark that our attack is applicable from every PKE E , regardless of whether it
is a HE scheme.

Theorem 12 (CPA-security does not imply privacy). For every PKE scheme
E with message-space M and every one-way function f over M, there exists a
CPA-secure PKE scheme Ef so that for every family of functions G = {Gn :M→
M}n∈N containing the identity function I and every (Ef ,G)-aided outsourcing
protocol there is a server’s strategy that recovers the client’s input.

11 In case our G of interest does not contain the identity function, we slightly modify Ef
by replacing each occurrence of Encpk(m

∗) and f(m∗) in Figure 1 with Encpk(G(m∗))
and f(G(m∗)) respectively for an efficiently computable G ∈ G, and slightly modify
the proof by replacing each occurrence of I by G.

12 We note that a C × C-homomorphic encryption scheme is also C-homomorphic, as
we can embed C in C × C, e.g., by mapping every C ∈ C into (C,C) ∈ C × C.
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Genf (1λ): Given 1λ, output (pkf , skf ) computed as follows. Let (pk, sk) ← Gen(1λ)
and sample a uniformly random m∗ ∈M. Set

pkf := (pk,Encpk(m
∗), f(m∗)) and skf := (sk, f(m∗)).

Encf
pkf (m): Given m = (m1,m2) ∈ M×M, if f(m2) = f(m∗) then output (m1,m2),

else output
(Encpk(m1),Encpk(m2)).

Decf
skf (c): Given c = (c1, c2), if f(c2) = f(m∗) then output (c1, c2), else output

(Decsk(c1),Decsk(c2)).

Evalf
pkf (C, c1, ..., cℓ): Given a circuit C = C1 × C2 over ℓ inputs, and ℓ ciphertexts

ci = (ci,1, ci,2) for i ∈ [ℓ], do the following. For each i ∈ [ℓ], if f(ci,2) = f(m∗) then set
c′i = (Encpk(ci,1),Encpk(ci,2)), else set c′i = ci. Output

(Evalpk(C1, c
′
1,1, ..., c

′
ℓ,1),Evalpk(C2, c

′
1,2, ..., c

′
ℓ,2)).

Fig. 1. The construction of the scheme Ef = (Genf ,Encf ,Decf ,Evalf ) from a PKE
scheme E = (Gen,Enc,Dec,Eval) with message spaceM and ciphertext space T and a
one-way function f overM. The message-space and ciphertext-space of Ef areM×M
and (T × T ) ∪ (M×M) respectively.

Proof. Denote E = (Gen,Enc,Dec). Set Ef = (Genf ,Encf ,Decf ) to be the en-
cryption scheme constructed from E and f in Figure 1.

Our active input-recovery attack is applicable on any (Ef ,G)-aided outsourc-
ing protocol π = ⟨Clnt,Srv⟩ as follows.

1. Clnt executes phase 1 of π. That is, it runs (pkf , skf )← Genf (1λ) to obtain a
public key pkf = (pk,Encpk(m

∗), f(m∗)), encrypts its input x by computing

cx ← Encf
pkf (x, x) and sends cx and pkf to Srv.

2. Upon receiving cx = (c1, c2) and pkf , Srv generates a new ciphertext e =
(c1,Encpk(m

∗)), where Encpk(m
∗) is taken from pkf , and sends (e, I) to

Clnt.
3. Clnt sends (c′1, c

′
2)← Encf

pkf (I(Decfskf (e))) to Srv.

4. Upon receiving the client’s response (c′1, c
′
2), Srv outputs c′1.

The attack recovers the client’s input x because c′1 = x as explained next.

Observe that I(Decf
skf (e)) = (x,m∗) is a message where the encryption algo-

rithms Encf
pkf is punctured, implying that

Encf
pkf (I(Decfskf (e))) = (x,m∗).

Namely, (c′1, c
′
2) = (x,m∗) in Step 3, and so c′1 = x. ⊓⊔
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5 CPA Implies Privacy against Semi-Honest Adversaries

We define a natural property for (E ,G)-aided outsourcing protocols (called clear-
text computable), and show that for protocols satisfying this property, CPA-
security guarantees privacy against semi-honest servers; See Theorem 13.

Cleartext computable protocols. A protocol is cleartext computable if the mes-
sages whose encryption constitutes the client’s responses to the server’s queries
are efficiently computable given only the client’s input. To formalize this we
first define the client’s cleartext response. Let π = ⟨Clnt,Srv⟩ be an (E ,G)-aided
outsourcing protocol (cf. Definition 5). The client’s cleartext response in an ex-
ecution of π on client’s input x and randomness rClnt, server’s randomness rSrv,
and security parameter λ ∈ N, is defined by:

clear-resπ((x, rClnt), rSrv, λ) = (Gn1
(Decsk(e1)), . . . , Gnq

(Decsk(eq)))

where (sk, pk) ← Gen(1λ) is the key pair generated by the client in Phase 1 of
π; q is the number of queries sent from server to client in Phase 2 of π; and for
each j ∈ [q], (ej, nj) and Encpk(Gnj

(Decsk(ej))) are the jth server’s query and
the corresponding client’s response respectively with Gnj

(Decsk(ej)) being the
underlying cleartext response message.

Definition 13 (cleartext computable). An (E ,G)-aided outsourcing protocol
π = ⟨Clnt,Srv⟩ for computing a function F : A → B is cleartext computable if
Srv is ppt and there exists a ppt function h such that for all inputs x ∈ A, all
client and server randomness rClnt and rSrv, respectively, and all λ ∈ N

clear-resπ((x, rClnt), rSrv, λ) = h(x)

CPA-security implies privacy for cleartext computable protocols. We show that
for cleartext computable (E ,G)-aided outsourcing protocols, CPA-security of E
implies that the protocol preserves privacy against semi-honest servers.

Similarly to Theorem 9, the family G should be admissible in the sense that
all Gn ∈ G are polynomial-time computable (in the security parameter) and
have fixed output length, i.e., |Gn(x0)| = |Gn(x1)| for all x0, x1 ∈M.

Theorem 13 (privacy of cleartext computable protocols). Every cleart-
ext computable (E ,G)-aided outsourcing protocol preserves privacy against semi-
honest servers, provided that E is CPA-secure and G is admissible.

Proof. We show that for cleartext computable protocols, when instantiated with
a CPA-secure encryption scheme, a semi-honest server cannot distinguish en-
crypted response of correct or random values, and hence privacy follows. The
formal proof appears in the full version [2].



26 Adi Akavia , Craig Gentry, Shai Halevi, and Margarita Vald

6 Conclusions

In this work we introduce the notion of funcCPA, which is a strict relaxation of
CCA2-security, show it is achievable for HE schemes (unlike CCA2) and sufficient
for ensuring privacy against malicious servers for the wide an natural family of
client-aided outsourcing protocols (unlike CPA, as we prove). In contrast, against
semi-honest adversaries, we prove that CPA-security suffices for ensuring privacy
in all cleartext computable client-aided outsourcing protocols.
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A Proof of Lemma 2.

We prove Lemma 2 showing that for every fully decryptable HE scheme E
that has a sanitization algorithm Sanitize, if its sanitized version E santz is C-
homomorphic, then it is circuit-private+ for C.
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Proof (of Lemma 2). Let E = (Gen,Enc,Dec,Eval) be a fully decryptable HE
scheme with a sanitization algorithm Sanitize. Denote by E santz = (Gen,Encsantz,
Dec,Evalsantz) its sanitized version as specified in Definition 7. Let C be the set of
circuits so that E santz is C-homomorphic. We show that E santz is circuit-private+
for C.

Fix a circuit C ∈ C over ℓ inputs, ciphertexts c1, . . . , cℓ, a security pa-
rameter λ. To prove circuit-privacy+ holds we need to show the two cipher-
texts Encsantzpk (C (Decsk(c1), · · · ,Decsk(cℓ))) and Evalsantzpk (C, c1, . . . , cℓ) are sta-
tistically close, with overwhelming probability over the choice of (pk, sk) ←
Gen(λ).

By definition of E santz,

Encsantzpk (C (Decsk(c1), · · · ,Decsk(cℓ)))

= Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))

(10)

and

Evalsantzpk (C, c1, . . . , cℓ)

= Sanitizepk (Evalpk (C, Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

(11)

By the sanitization property of Sanitize, if two ciphertexts decrypt to the
same plaintext then their sanitized version is statistically close. Therefore it is
sufficient to show that the corresponding ciphertexts in the above two equa-
tions (i.e., Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))) and Evalpk(C,Sanitizepk(c1), . . . ,
Sanitizepk(cℓ))) decrypt to the same plaintext.

The correctness property of E together with it being fully decryptable ensures
that for every (pk, sk)← Gen(1λ):

∀i ∈ [ℓ] : Pr[Decsk(Encpk(Decsk(ci))) = Decsk(ci)] ≥ 1− neg(λ) (12)

and

Pr
[
Decsk(Encpk(C(Decsk(c1),...,Decsk(cℓ))))

=C(Decsk(c1),...,Decsk(cℓ))

]
≥ 1− neg(λ) (13)

where the probabilities are taken over the random coins of the encryption algo-
rithm.

From Equation 12 together with the sanitization property of Sanitize, we
obtain that, for each i ∈ [ℓ], with probability ≥ 1 − neg(λ) over the choice of
(pk, sk)← Gen(1λ):

∆ ((Sanitizepk(Encpk(Decsk(ci))), (pk, sk)) , (Sanitizepk(ci), (pk, sk))) ≤ neg(λ)

Moreover, with probability ≥ 1− neg(λ), the above holds for all i ∈ [ℓ] simulta-
neously (by union bound).

Since Sanitize uses independent randomness for each i ∈ [ℓ], its output on
distinct i’s is statistically independent. So the joint distribution over all i ∈ [ℓ]
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is likewise negligible (since the statistical distance of the joint distribution of
independent random variables is the sum of their statistical distances, and the
number of random variables is ℓ = poly(λ)). Namely,

∆
(
(Sanitizepk(Encpk(Decsk(c1))),...,Sanitizepk(Encpk(Decsk(cℓ))),(pk,sk)),

(Sanitizepk(c1),...,Sanitizepk(cℓ),(pk,sk))

)
≤ neg(λ) (14)

The C-homomorphism of E santz guarantees that E∗ = (Gen,Encsantz,Dec,Eval)
is likewise C-homomorphic (due to the message-preservation property of Sanitize),
and hence for every (pk, sk)← Gen(1λ) it holds that,

Pr
[
Decsk(Evalpk(C,Sanitizepk(Encpk(Decsk(c1))),...,Sanitizepk(Encpk(Decsk(cℓ)))))

=C(Decsk(c1),...,Decsk(cℓ))

]
≥ 1− neg(λ)

(15)

Combining Equations 14-15 we guarantee correctness of Eval on the sanitized
c1, . . . , cℓ. That is, for every (pk, sk)← Gen(1λ) it holds that,

Pr
[
Decsk(Evalpk(C,Sanitizepk(c1),...,Sanitizepk(cℓ)))

=C(Decsk(c1),...,Decsk(cℓ))

]
≥ 1− neg(λ)

Using the correctness property of E as stated in Equation 13 we obtain that
for every (pk, sk) ← Gen(1λ) it holds that with probability ≥ 1 − neg(λ) over
the random coins of the experiment,

Decsk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

=Decsk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))

This concludes the proof as by the sanitization property of Sanitize, we obtain
that with probability ≥ 1−neg(λ) over the choice of (pk, sk)← Gen(1λ) and the
random coins in Enc and Eval the following distributions are statistically close,

Sanitizepk (Encpk (C (Decsk(c1), . . . ,Decsk(cℓ))))

and
Sanitizepk (Evalpk (C,Sanitizepk(c1), . . . ,Sanitizepk(cℓ)))

as desired. ⊓⊔
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