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Abstract. The task of achieving full security (with guaranteed out-
put delivery) in secure multiparty computation (MPC) is a long-studied
problem. Known impossibility results (Cleve, STOC 86) rule out general
solutions in the dishonest majority setting. In this work, we consider
solutions that use an external trusted party (TP) to bypass the impos-
sibility results, and study the minimal requirements needed from this
trusted party. In particular, we restrict ourselves to the extreme setting
where the size of the TP is independent of the size of the functionality
to be computed (called “small” TP) and this TP is invoked only once
during the protocol execution. We present several positive and negative
results for fully-secure MPC in this setting.
– For a natural class of protocols, specifically, those with a universal

output decoder, we show that the size of the TP must necessarily be
exponential in the number of parties. This result holds irrespective
of the computational assumptions used in the protocol. The class
of protocols to which our lower bound applies is broad enough to
capture prior results in the area, implying that the prior techniques
necessitate the use of an exponential-sized TP. We additionally rule
out the possibility of achieving information-theoretic full security
(without the restriction of using a universal output decoder) using
a “small” TP in the plain model (i.e., without any setup).

– In order to get around the above negative result, we consider pro-
tocols without a universal output decoder. The main positive result
in our work is a construction of such a fully-secure MPC protocol
assuming the existence of a succinct Functional Encryption scheme.
We also give evidence that such an assumption is likely to be neces-
sary for fully-secure MPC in certain restricted settings.

– Finally, we explore the possibility of achieving full-security with
a semi-honest TP that could collude with other malicious parties
(which form a dishonest majority). In this setting, we show that
even fairness is impossible to achieve regardless of the “small TP”
requirement.

⋆ Most of the work was done while the author was affiliated with ETH Zürich, Switzer-
land and Visa Research USA.

⋆⋆ Corresponding Author.



1 Introduction

Secure Multiparty Computation (MPC) allows a set of mutually distrusting
parties to compute a joint function of their private inputs such that only the
output of the function is revealed. Security of MPC protocols is required to
hold even if the participating parties are controlled by a centralized malicious
adversary, who may instruct them to deviate from the protocol specification.

Two desired properties for MPC protocols are fairness and full security (a.k.a
guaranteed output delivery). Fairness requires that if the adversary learns the
output of the functionality, then all the honest parties also learn this output.
Full security strengthens fairness by requiring that the adversary cannot prevent
the honest parties from learning the output of the functionality. Unfortunately,
a classical impossibility result of Cleve [Cle86] shows that many functions can-
not be fairly computed in the presence of an adversary corrupting a majority
of the parties. Two ways to bypass this impossibility result are to restrict the
adversary to corrupt only a minority of the parties, or to make use of some
external help. In this work, we focus on the second approach, referring to the
external help as a trusted party (TP).6 A trusted party can be realized via dif-
ferent standard mechanisms, such as trusted execution environments, hardware
tokens, blockchain based approaches, or cloud service providers.

Size of the TP. TPs are useful in circumventing the above impossibility result
as they can be used as an ideal functionality that takes inputs from the parties
and provides them outputs. A simple way to obtain protocols that satisfy full
security in the TP model is for the TP to perform the entire computation on the
private inputs of the parties and provide them outputs. However, this approach
is less desirable as the size of the TP grows with the size of the function to
be computed. Fitzi et al. [FGMO01] showed how to make the TP in the above
solution universal, in the sense that it is independent of the function being
computed. They also showed that to achieve full security, it is necessary to use
TPs that take inputs from all the parties. However, this negative result does not
rule out a TP which is independent of circuit size of the functionality. Thus, an
interesting line of inquiry is to construct protocols where the size of the TP is
independent of the circuit size of the functionality to be computed.

Apart from being a theoretically interesting question, it is also motivated by
the practical goal of minimizing the use of trustworthy resources. For instance,
if a trusted party service is implemented by a cloud service provider who charges
fees for the use of its computational resources, it is obviously desirable (for the
clients) to minimize the fees. The same holds if the TP is emulated via the use
of a large-scale honest-majority MPC protocol. We refer to a setting of a trusted
party whose size is independent of the circuit size of the function as the small-TP
model. This problem is not new to our work and has already been considered

6 This notion differs from the line of work on token-based cryptography initiated by
Katz [Kat07], where the tamper-proof tokens are generated locally, and the main
challenge is to guarantee security even when tokens can be maliciously generated.
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in the works of Gordon et al. [GIM+10] and Ishai et al. [IOS12] for the case of
fairness and full security respectively. The state of the art result from [IOS12]
gave a protocol that achieves guaranteed output delivery with statistical security
(in the OT-hybrid model) with a small TP, where the parties make n sequential
calls to this TP. In the same work, the authors gave a protocol where the parties
make a single call to the TP but where the size of the TP grows exponentially in
the number of parties (and is otherwise independent of the size of the function
to be computed).

Number of Calls to TP. In this work, in addition to considering a small-TP
model, we are interested in designing fully-secure protocols that make a single
call to the TP. Theoretically, one call is the minimal requirement to circumvent
the impossibility of [Cle86] for fair and fully-secure MPC. It further opens up
the possibility of protocols in a minimal model, reminiscent of private simulta-
neous message (PSM) [FKN94] model, where given a common randomness, the
parties communicate one-shot message to the TP and compute the output on
receiving the reply from the TP. One call as opposed to many calls is also likely
to generate more practical solution in the real world settings where, for instance,
the TP is replaced with a cloud service provider, or a blockchain based approach.

The question which is the main focus to our work is:

Can we construct efficient protocols that make a single call to a “small” TP
and achieve full security?

1.1 Our Results

We obtain both positive and negative results on the existence of fully-secure
MPC protocols using a small TP. We first discuss the negative results below.

Impossibility with a Universal Output Decoder. We give evidence that
the prior approaches to this problem necessarily require a TP whose size is
exponential in the number of parties. To show this, we abstract out the key
features of prior protocols and show that any protocol having these features
requires an exponential-sized TP (irrespective of the computational assumptions
used in the protocol). More concretely, we consider the class of protocols where
the parties could interact with each other (in an arbitrary number of rounds),
then they make a single call to the trusted party, get a reply from TP, and
then apply a universal decoder on this reply and their state to compute the
output. By universal decoder, we mean that the size of the decoder is independent
of the size of the functionality to be computed (considering single bit output
functionalities). This model is interesting because it is quite natural and, more
importantly, it captures prior approaches of realizing TP-aided MPC protocols
[IOS12]. We show that for such protocols, the size of the TP necessarily grows
exponentially with the number of parties. Our result holds irrespective of the
computational assumptions used by the protocol. Additionally, our result holds
even if the size of the TP is allowed to grow with the size of the function output.
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Theorem 1 (Informal). For any fully-secure MPC protocol with a universal
output decoder, the size of the TP must necessarily be exponential in the number
of parties.

Necessity of Setup or Computational Assumptions. The above result
naturally leads to the question of whether we can have small TP-aided fully
secure MPC protocols once the restriction of using a universal decoder is re-
laxed. In this regard, we prove that any statistically secure protocol (without
any trusted setup or correlated randomness) that makes a single call to a small
TP cannot be even semi-honest secure. This impossibility holds even against
protocols that may not have a universal output decoder. This shows that to
achieve full security it is necessary to resort to computational assumptions, or
assume some sort of setup (such a correlated randomness).

Theorem 2 (Informal). There exists no MPC protocol that achieves information-
theoretic security against semi-honest adversaries in the plain model with a TP
whose size is a fixed polynomial in the input size of the functionality.

Positive Results. We now focus on the problem of achieving fully-secure MPC
protocols using a small TP based on computational assumptions. Our main
positive result is captured by the following theorem:

Theorem 3 (Informal). Assuming a single-key succinct Functional Encryp-
tion (FE) scheme, there exists a fully secure efficient MPC protocol that makes
a single call to the small TP.

A single-key succinct Functional Encryption is an FE scheme [SW05, O’N10,
BSW11] where the size of the encryption algorithm does not grow with size of the
function for which a secret key is released. Using known instantiations of these
primitives from various assumptions, we get the following corollary (building
on [GKP+13,GGSW13,Wat15]).

Corollary 1 (Informal). There exists a fully secure efficient MPC protocol
that makes a single call to a TP, assuming:

1. Learning with Errors (with sub-exponential modulus-to-noise ratio) [GKP+13]
if the size of the TP is allowed to only grow with the depth and the output
length of the functionality.

2. Witness Encryption scheme [GGSW13] and FHE if the size of the TP is
allowed to only grow with the output length of the functionality.

3. Indistinguishability Obfuscation (iO) [BGI+01, GGH+13, JLS21] and one-
way functions, where the size of the TP is independent of the depth and the
output length.

We also give evidence that this assumption might be necessary in certain re-
stricted settings. Specifically, consider a restricted model of computation where
the parties do not interact with each other, but make a single-call to the TP
and could compute the output of the functionality based on the reply from
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the TP. This model is reminiscent of the Private Simulataneous Messages set-
ting [FKN94]. It is not too hard to see that this restricted model is equivalent
to an MPC protocol with a succinct online phase. Specifically, the computation
done by the parties before the TP call can be thought of as the pre-processing
phase and this could grow with the circuit-size of the functionality. The messages
sent to the TP and the computation performed by the TP correspond to the on-
line phase of the protocol. Since we restrict the size of the TP to be small, it
follows that the computation and the communication cost of the online phase is
independent of the size of the functionality (i.e., the protocol has succinct online
phase). The post-processing phase could grow with the size of the functionality
to be computed (this is in fact necessary considering our impossibility with a
universal output decoder).

Currently, the only known constructions of an MPC protocol with a suc-
cinct online phase are based on Laconic Functional Evaluation [QWW18] (LFE),
which is known to imply succinct FE. This suggests that such assumptions are
likely to be necessary in the restricted setting outlined above. In fact, an MPC
protocol with a succinct online phase implies a weaker flavor of LFE with the
following property: unlike standard LFE where the size of the encryption algo-
rithm only grows with the input size, the encryption algorithm in this weaker
notion of LFE has two components: (i) a pre-processing algorithm which takes
the input and the size of the functionality and produces a hint that only grows
with the input size, and (ii) a second algorithm that takes the input and the
hint and outputs a ciphertext (the size of the second algorithm only grows with
the input size). Finally, in this restricted model, we give a positive result by
constructing a fully-secure MPC protocol with a single call to a small TP based
on LFE.

(Im)Possibility of Reducing the Trust in TP. Finally, we explore the
possibility of weakening the security requirements from the TP. Interestingly,
our above solutions maintain privacy against the TP, which is an additional
desirable feature. More specifically, our constructions are secure if the adversary
corrupts the TP in a semi-honest manner (but does not corrupt any of the
parties). This led us to explore what happens if we allow the semi-honest TP to
collude with the other malicious parties. We showed that irrespective of the size
of the TP, such a model would not be enough to circumvent Cleve’s impossibility
of fairness. This impossibility holds even if we restrict the malicious parties to
be fail-stop.7

Our results are summarized in Table 1.

1.2 Open Directions

Our work opens up several interesting research directions. We highlight some of
them below.
7 The notion of fail-stop corruption lies between semi-honest and malicious corruption,
where eavesdropping like semi-honest corruption is allowed and the only possible
malicious corruption is stopping the execution of the protocol.
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Security No. of Setup Pre-TP call Universal Output Possible? Reference
calls interaction Decoder

Statistical 1 Plain Yes No No Theorem 7

Computational 1 C.R. Yes Yes No Theorem 6

Computational 1 CRS No No Yes (based on LFE) Theorem 4

Computational 1 Plain Yes No Yes (based on succint FE) Theorem 5

Statistical n C.R Yes Yes Yes [IOS12]

Computational n Plain Yes Yes Yes (based on OT) [IOS12]

Statistical 1 C.R Yes No Open

Table 1: Results on fully-secure MPC in dishonest majority using small TP
under different kinds of setup (plain model i.e. no setup / C.R. i.e. correlated
randomness setup / CRS i.e. common random string), security guarantees (sta-
tistical / computational) and different TP computation models (with / without
the restrictions on pre-TP call interaction and universal output decoder).

– Showing Necessity of Succinct FE. In this work, we argued that any
protocol in the restricted model (where the parties do not communicate with
each other before and after the TP invocation) is equivalent to an MPC
protocol with a succinct online phase. However, we are unable to extend this
to the setting where the parties could potentially communicate with each
other before making the TP call. Can we show that such a weaker model
also implies some weakening of an MPC protocol with a succinct online
phase? This would justify the necessity of a succinct FE assumption.

– Making more than a Single Call to TP. As our goal was to minimize the
requirements from the TP as much as possible, we considered the extreme
setting where a single call is made to the TP. A fascinating direction is
to explore the possibility of constructing fully-secure MPC protocols from
weaker assumptions which could make more than one call but less than n
calls. The key challenge here is to design protocols using a stateless TP. If
we allow the TP to be stateful, we can realize a construction based on FHE
that makes two calls to a stateful TP.

– Characterization of Fair Computation in the Colluding TP model.
As mentioned previously, in this work we show that it is impossible to achieve
fairness in the colluding TP model (where the adversary can corrupt the TP
in a semi-honest manner, in addition to corrupting majority of the parties
maliciously) for general functions. However, it is still possible to achieve fair-
ness for restricted classes of (non-trivial) functions such as coin-tossing (by
using the TP to directly compute the desired function). It is an interesting
open question to give a complete characterization of which function classes
can be fairly computed in the colluding TP model.

1.3 Technical Highlights and Discussion

In this section, we present a high-level technical overview of our results.
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1.3.1 Positive Results. We present two protocols based on LFE [QWW18]
and single-key succinct FE [SW05,BSW11] respectively utilizing a single call to
a stateless “small” TP. We start off with their trade-offs below.

LFE-based Construction. LFE’s 2-round minimal communication pattern
leads to an MPC in a minimal communication setting that is reminiscent of
PSM-style [FKN94] communication. Here, the parties start off with a common
randomness. Based on the respective inputs and this randomness, the parties
communicate a single message to the TP, which performs certain computation
and returns a message to each party. In the end, each party recovers the output
receiving the message from the TP. Further, the encryption algorithm of LFE
enjoys computation that is only dependent on the depth and the output length
(and not size) of the function to be computed. This allows our TP to be “small”.
Here with the best known realizations of LFE, we can achieve a TP of size
poly(n, κ, d,m), where d denotes depth of the circuit and m denotes input and
output size of the circuit, n denotes the number of parties and κ denotes the
security parameter. Removing m from the complexity of the TP seems hard,
intuitively because the parties never communicate with each other and they
communicate only once via the TP. Achieving depth and input-size independence
in this minimal communication setting is left as an interesting open question
which can possibly contribute back to the LFE regime. In particular, a solution
in our setting where TP is of size poly(n, κ,m) will lead to a LFE where the
encryption scheme and size of the ciphertext are completely independent of the
depth of the function under consideration.

FE-based Construction. Unlike the LFE-based construction, our FE-based
construction requires communication amongst the parties before making the
TP call. While it loses on this front, there are two positive features that it
brings to the table: (a) possibly weaker assumption (b) the TP’s computation
can be independent of d,m. Elaborating further, LFE is seemingly a stronger
assumption than FE, since it is known to imply FE, while the other way is not
known [QWW18]. Based on the realization of FE under various assumptions,
we achieve multiple variants of the protocol where the TP’s computation ranges
from being completely independent of input, output and function to linearly
dependent on output size (yet independent of the function) to linearly dependent
on the output size and the depth of the function. To be specific, under iO and
OWFs, our FE based construction leads to a TP of size poly(n, κ), completely
independent of the function to be computed.

Construction Overview. Our constructions follow a three-phase structure as
follows: (a) phase 1: here the parties, on holding a common randomness and
respective inputs, prepare a (message, state) pair, where the message is sent to
the TP and the state is saved; (b) phase 2: the TP, on receiving messages from
the parties, performs some computation and returns a message to every party;
and (c) phase 3: the parties, on receiving the message from the TP, uses its state
to recover the output. Phase 1 involves communication amongst the parties in
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the FE-based construction. We provide an informal overview behind the idea for
each construction below.

Overview of LFE-based Solution. We present here a simplified version of our
LFE-based construction of fully-secure MPC for ease of exposition. The actual
construction, detailed in Section 3.3, is significantly more nuanced and uses sev-
eral techniques to achieve full security against malicious corruptions of parties.
In the simplified treatment presented here, we focus on the case of semi-honest
corruption, with the aim of highlighting how we manage to keep the TP size
small (i.e., independent of the function size). Note that throughout this paper,
we assume that each party communicates with the TP via a separate secure
channel, and hence an adversary (corrupting a subset of the parties) cannot
eavesdrop on the communication between the TP and any honest party.

Given this model, a simplified version of our LFE-based protocol works as
follows. Each party first uses a common randomness to (locally) derive a CRS
for the LFE scheme and a digest corresponding to the function f . Each party
then sends the LFE CRS and the function digest to the TP, along with its own
input. The TP uses the CRS and the digest to compute an LFE ciphertext
encapsulating the inputs of all of the parties, and sends this ciphertext back to
the parties. Finally, each party uses the LFE CRS and its local randomness of
digest generation to recover the function output. Observe that the size of the
messages to the TP and the computation done by the TP are independent of the
size of the function f ; this follows immediately from the succinctness properties
of the underlying LFE scheme. Finally, we can invoke the privacy guarantees of
LFE to argue that the parties learn no more information than the output of the
MPC protocol, as desired.

As mentioned earlier, our actual LFE-based protocol uses additional tech-
niques to guarantee full security in the presence of malicious corruptions. This
includes techniques that enable the TP to “partition” the parties into various sets
depending on their messages to the TP, and to substitute default input values for
(malicious) parties not in the partition when preparing partition-specific LFE
ciphertexts. Further, we augment the construction to achieve privacy against
the TP. We refer to Section 3.3 for the detailed description and analysis of our
construction.

Overview of FE-based Solution. We now present a simplified version of our FE-
based construction of fully-secure MPC. Once again, our actual protocol, detailed
in Section 3.3 uses additional techniques to achieve full security against malicious
corruptions of parties; we avoid detailing all of these in the simplified treatment
for ease of exposition and focus on the setting of semi-honest corruptions. As in
the LFE-base solution, we again assume that each party communicates with the
TP via a separate secure channel, and hence an adversary (corrupting a subset
of the parties) cannot eavesdrop on the communication between the TP and any
honest party.

Given this model, the simplified version of our FE-based protocol works as
follows. The parties initially engage in an MPC protocol (with identifiable abort
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security) to decide on a common set of public parameters and a common master
public key for the FE scheme. The MPC protocol additionally outputs to each
party a functional secret key for the function f to be evaluated. Each party then
simply sends the master public key and its own input to the TP. The TP uses
the master public key to compute an FE ciphertext encapsulating the inputs of
all of the parties, and sends this ciphertext back to the parties. Finally, each
party uses the functional secret key to recover the function output. Observe that
the size of the messages to the TP and the computation done by the TP are
independent of the size of the function f as long as the FE scheme is succinct.
Finally, we can invoke the privacy guarantees of FE to argue that the parties
learn no more information than the output of the MPC protocol, as desired.

Note that in the above simplified exposition, the TP incurs an overhead that
grows with the size of the inputs and output of the function f to be evaluated. In
our actual protocol, we use additional techniques to get rid of this dependence. In
particular, we use a carefully designed indirection mechanism that allows the TP
to simply partition the set of parties (depending on their messages to the TP) and
encapsulate this partition information into the FE ciphertext, while delegating
all computation dependent on the input/function size entirely to the parties.
These techniques serve two purposes: (a) making the TP size independent of
the function input/output size (and thereby asymptotically smaller than the TP
size for our LFE-based solution) and (b) achieving full security against malicious
corruptions of parties. Interestingly, this solution also achieves privacy against
the TP. We refer to Section 3.4 for the detailed description and analysis of our
construction.

1.3.2 Negative Results. We present two impossibility results for fully-secure
MPC that utilizes a small TP. Our two results are as follows: (1) First, we show
that it is impossible to achieve a fully secure TP-aided MPC utilizing a single
call to a small TP, for a class of protocols that have an universal output decoder.
This result holds irrespective of computational assumptions used in the protocol.
The universal output decoder is independent of the function to be computed and
only performs poly(n, κ) computation. (2) Second, we show an impossibility in
the plain model, for any statistically-secure MPC even in the semi-honest setting.
This result does not assume that the protocol uses an universal output decoder.
We present the high-level intuition of both the impossibility arguments.

Impossibility of Fully-Secure MPC protocols with universal output
decoder in the Correlated Randomness Model. We now present a simpli-
fied argument of our impossibility result and refer to Section 4.1 for the details.
Consider an execution of an MPC protocol with full security, where the adversary
behaves honestly until the TP call. During the TP call, he can choose to make
any subset of corrupt parties, say S, abort; where the number of such subsets
is exponential in the number of parties. Since the protocol achieves full security,
it must be the case that the TP is able to enable output computation by the
parties, no matter which subset S the adversary chooses. Further, the output
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must be such that it is computed on the default input of the corrupt parties in
S and the honest inputs of others (i.e. the input used until and including the TP
call). Intuitively, this means that the information given to the TP is such that
it can be used to recover 2n output values (one for each possible subset). Since
the TP is small, this information must be ‘short’ and can therefore be perceived
as a ‘compression’ of the 2n output values. Building on the above intuition, we
show that a fully secure protocol with universal output decoder would imply an
(encoding, decoding) scheme which can produce an encoding that is smaller than
the size of the message domain of the encoding scheme. This breaches the known
incompressibility argument. Precisely, we use a result of De et al. [DTT10], which
formalizes the notion that it is impossible to compress every element in a set X
to a string less than log |X| bits long.

Impossibility of Statistical MPC in the Plain Model. At a high-level,
we show this impossibility by demonstrating that such a protocol would imply
a semi-honest information-theoretic oblivious transfer (OT) extension, which is
known to be impossible [Bea96]. Here, OT extension refers to a protocol that
allows a sender and a receiver to extend a relatively small number of base OTs
(say k) to a larger number of OTs (say k+1) using only symmetric-key primitives.

The main idea of the proof is to construct an OT extension protocol using
the semi-honest statistically-secure protocol, say Π, as follows. We choose the
functionality computed by Π as computing (k + 1) oblivious transfer instances.
Since the TP is small, its size must be strictly less than the circuit computing
(k+1) oblivious transfer instances. Roughly speaking, Π can thus be viewed as
a protocol that enables the parties to generate (k+1) OTs, by having access to
the TP whose functionality can be realized by strictly less than (k+1) OTs (say
k OTs). We build on this idea to construct an information-theoretic semi-honest
OT extension protocol where the parties begin with k base OTs and use Π to
generate (k + 1) OTs.

1.3.3 Impossibility of Fair MPC with Colluding TP. Our results show
that small TP is sufficient for positive results in the computational security
regime. But what happens when the TP is no longer a stand-alone entity, but
behaves as another party that can not only eavesdrop but also collude with
the corrupt parties (while remaining semi-honest by itself)? This is a model
where the adversary controls a majority of the parties maliciously (or even fail-
stop fashion) and simultaneously corrupts the TP semi-honestly. For this model,
we ask the questions: Can such a TP circumvent Cleve’s [Cle86] impossibility
result?

We show a negative result for the above question even for fail-stop adversaries
(i.e., the malicious parties still follow the protocol specification but may choose
to stop arbitrarily). At a high level, we take the following route. Note that
the colluding adversarial model can be viewed more generally, in terms of the
general mixed adversarial model that has been studied in works such as [HMZ08,
FHM99, BFH+08]. We then use the characterization proposed in [HMZ08] for
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fair and fully-secure MPC tolerating mixed adversaries to rule out a fair protocol
in the colluding model even when malicious corruption is replaced with fail-
stop corruption. In particular, we define an adversarial structure complying with
the colluding security model and show that this structure is ruled out by the
characterization provided in [HMZ08].

In light of this generic negative result, we also explore whether a TP can
be used in the colluding model to realize fair MPC protocols for certain specific
classes of non-trivial functions such as randomized functions without inputs (e.g.
coin-tossing). A näıve solution uses the TP to directly compute the desired
function; however, such a TP can no longer be small. We give evidence that a
better solution using a small TP is unlikely to exist.

1.4 Related Work

There are several fascinating works in the MPC literature that attempt to by-
pass fundamental feasibility results using external aid. Impossibility of fair MPC
in dishonest majority [Cle86] is one such classic impossibility result that has re-
ceived noteworthy attention. We focus on three broad categories of related works.
First is the most closely related line of work to ours which studies the ‘minimal
help’ required to compute all functions fairly, where the helper is characterized
as a ‘complete’ primitive. Second, we outline the line of works that circum-
vent the impossibility of [Cle86] by considering non-standard notions of fairness.
Lastly, we outline the works that circumvent yet another classical impossibil-
ity, namely, impossibility of secure computation of general functionalities within
the universal composability (UC) framework in presence of dishonest majority
in the plain model [CF01] by using hardware tokens and physically unclonable
functions (PUFs).

The work of [FGMO01] initiated the study of minimal complete primitives for
secure computation, focusing on the minimal cardinality of complete primitives
for various thresholds. In particular, they showed that cardinality n is necessary
for any complete primitive in dishonest majority and proposed Universal Black
Box (UBB) as one such primitive. Subsequently, the work of [GIM+10] proposed
a simpler complete primitive for fairness in dishonest majority, namely ‘fair
reconstruction’. While [GIM+10] focused on the computational setting, [IOS12]
presented the first unconditional construction of a complete primitive for full
security, whose complexity does not grow with the complexity of the function
being evaluated (in contrast to the UBB solution of [FGMO01]). However, this
unconditional construction of [IOS12] utilizes number of calls that scales with
the circuit size. To improve the number of calls, [IOS12] also proposes another
construction where the number of calls depends only on the number of parties
(n) and the output size of the circuit but settles for computational security in
the plain model. Finally, they also have a variant where the number of calls is
reduced to 1 at the price of increasing the complexity of the computation done
by the complete primitive exponentially in n.

As mentioned earlier, an interesting feature that our constructions satisfy
is to maintain privacy against the TP. We note that the unconditional variant
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of [IOS12] (that utilizes number of calls scaling with circuit size) leaks the inputs
of the parties to the TP. With respect to the computational variants in [IOS12]
that only leak the output of the computation to the TP, we note that it can
be tweaked to maintain privacy of the output by adopting the technique of
[GIM+10].

Other works related to breaking barriers imposed by the impossibility of
[Cle86] include the works of [GK09, GHKL11, ABMO15] that achieve fairness
in dishonest majority for restricted functionalities. Some other works explore
non-standard notions of fairness such as [GK12,BOO15,BLOO20] that consid-
ers partial fairness, [BK14,KB14,ADMM14] that enforce fairness by imposing
penalties, [CGJ+17] that use bulletin boards and [EGL85,GMPY11,PST17] that
explore resource-fairness.

The sequence of works of [Kat07,CKS+14,DMRV13,CGS08,CCOV19,HPV16]
study UC-security with tamper-proof hardware token, both in the stateful and
stateless variants. Another interesting utility of hardware tokens is reflected in
designing Non-Interactive Secure Computation (NISC) protocols using minimal
assumptions. The work of [BJOV18] proposes a UC-secure NISC protocol based
on the minimal assumption of one-way functions using hardware token. Lastly,
the works of [BFSK11,OSVW13,BKOV17] explore UC-secure computation as-
suming access to PUFs.

Paper Outline. We formally define TP-aided MPC protocols in Section 2. Our
positive results appear in Section 3. Our negative results for TP-aided MPC
appear in Section 4. Our negative result for fair MPC in the colluding TP model
is briefly summarized in Section 5. Due to lack of space, we defer certain proof
details and extensions of the above results to the full version of our paper.

2 Security Model

In this section, we present our definitions in the UC-framework [Can01]. We
denote by [p] the set {1, . . . , p}, for a positive integer p.

The Real World. An n-party protocol Π with n parties P = (P1, . . . , Pn) is
an n-tuple of probabilistic polynomial-time (PPT) interactive Turing machines
(ITMs), where each party Pi is initialized with input xi ∈ {0, 1}∗ and random
coins ri ∈ {0, 1}∗. These parties interact in synchronous rounds. In every round
parties can communicate either over a broadcast channel or a fully connected
point-to-point (P2P) network, where we additionally assume all communication
to be private and ideally authenticated. Further, we assume that there exists a
special party P ∗ called a “trusted party” (abbreviated henceforth as TP) such
that each party Pi can interact with P ∗ via private and authenticated point-to-
point channels. The TP P ∗ does not typically hold any inputs, and also does
not obtain any output at the end of the protocol. Further, the TP is stateless in
the sense that it does not keep any state between calls.

We letA denote a special ITM that represents the adversary.A is coordinated
by another special non-uniform ITM environment Z = Zκ. At setup, Z gives
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input (1κ, xi) to each party Pi. At the same time, Z provides to A the tuple
(C, {xi}i∈C , aux), where C ⊂ [n]∪{P ∗} denotes the set of all corrupt parties, and
aux denotes some auxiliary input.

During the execution of the protocol, the maliciously corrupt parties (some-
times referred to as ‘active’) receive arbitrary instructions from the adversary A,
while the honest parties and the semi-honestly corrupt (sometimes referred to as
‘passive’) parties faithfully follow the instructions of the protocol. We consider
the adversary A to be rushing, i.e., during every round the adversary can see
the messages the honest parties sent before producing messages from corrupt
parties.

At the conclusion of the protocol, A gives to the environment Z an output
which is an arbitrary function of A’s view throughout the protocol. Z is addi-
tionally given the outputs of the honest parties. Finally, Z outputs a bit. We let
realπ,A,Z(κ) be a random variable denoting the value of this bit.

Definition 1 (Real-world execution). Let Π be an n-party protocol amongst
(P1, . . . , Pn) computing an n-party function f : ({0, 1}∗)n → ({0, 1}∗)n and let
C ⊆ [n]∪{P ∗} denote the set of indices of the corrupted parties. The execution of
Π under (Z,S, C) in the real world, on input vector x⃗ = (x1, . . . , xn), auxiliary
input aux and security parameter κ, denoted realΠ,C,A(aux)(x⃗, κ), is defined as the
output of Z resulting from the protocol interaction.

The Ideal World. We describe ideal world executions with unanimous abort
(un-abort), identifiable abort (id-abort), fairness (fairness) and full security aka.
guaranteed output delivery (full).

Definition 2 (Ideal Computation). Consider type ∈ {un-abort, id-abort, fairness,
full}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function. Once again, we
have a non-uniform environment Z = Zκ that gives (at setup) input (1κ, xi) to
each party Pi, while also providing to the simulator S the tuple (C, {xi}i∈C , aux),
where C ⊂ [n]∪{P ∗} denotes the set of all corrupt parties, and aux denote some
auxiliary input. Then, the ideal execution of f under (Z,S, C) on input vector
x⃗ = (x1, . . . , xn), auxiliary input aux to S and security parameter κ, denoted
idealtypef,C,S,(aux)(x⃗, κ), is defined as the output bit of Z resulting from the following

ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi

to the trusted party. The simulator S may send to the trusted party arbitrary
inputs for the corrupt parties. Let x′

i be the value actually sent as the input
of party xi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) =
f(x′

1, . . . , x
′
n). If there are no corrupt parties or type = full, proceed to step 4.

(a) If type ∈ {un-abort, id-abort}: The trusted party sends {yi}i∈C to S.
(b) If type = fairness: The trusted party sends ready to S.

3. Simulator S responds to trusted party:
(a) If type ∈ {un-abort, fairness}: The simulator can send abort to the trusted

party.
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(b) If type = id-abort: If it chooses to abort, the simulator S can select a
corrupt party i∗ ∈ C who will be blamed, and send (abort, i∗) to the
trusted party.

4. Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {un-abort, fairness}, we let abortmsg = ⊥.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party then sends abortmsg to every party Pj, j ∈ [n] \ C.
Note that, if type = full, we will never be in this setting, since S was not
allowed to ask for an abort.

(b) Otherwise, it sends yj to every Pj, j ∈ [n].
5. Outputs: Honest parties always output the message received from the trusted

party while the corrupt parties output nothing. At the conclusion of the above
execution, S provides Z with an output which is an arbitrary function of S’s
view throughout the protocol. Z is additionally given the outputs of the honest
parties. Finally, Z outputs a bit. We let idealtypef,S,Z(κ) be a random variable
denoting the value of this bit.

Security Definitions. We now define the security notions used in this paper.

Definition 3 (Colluding and Non-colluding Security). Consider type ∈
{un-abort, id-abort, fairness, full}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function. A protocol Π securely computes the function f in the colluding model
with type security if for any adversary A, there exists a simulator S such that
for any security parameter κ and any circuit family Z = {Zκ} corrupting any
C ⊂ [n] maliciously and the TP P ∗ semi-honestly simultaneously, we have{

realΠ,C,A(aux)(x⃗, κ)
}
x⃗∈({0,1}∗)n,κ∈N≡

{
idealtypef,C,S(aux)(x⃗, κ)

}
x⃗∈({0,1}∗)n,κ∈N

.

When the corruption is non-simultaneous i.e. either any subset of [n] are
maliciously corrupt or the TP P ∗ is semi-honestly corrupt, we denote the security
by non-colluding. Therefore we need the above indistinguishability to hold in two
corruption cases: (a) C ⊂ [n] malicious corruption (b) C = P ∗ semi-honest
corruption.

A protocol achieves computational security, if the above distributions are com-
putationally close in the presence of the parties, A, S, Z that are PPT. A proto-
col achieves statistical (resp. perfect) security if the distributions are statistically
close (resp. identical).

3 Fully-secure MPC with Single Call to Small TP

Here, we present TP-aided MPC protocols that make a single call to a small TP
and achieve full security in the non-colluding setting against malicious corruption
of majority of parties and semi-honest corruption of the TP. We present two
flavors of protocols– one based on laconic function evaluation (LFE) [QWW18]
and the other based on succinct single-key functional encryption (FE) [GKP+13].
We begin by recalling the definitions for these primitives.
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3.1 Laconic Function Evaluation (LFE)

We recall the definition of LFE – a primitive introduced in [QWW18].

Definition 4 (Laconic Function Evaluation). An LFE scheme for a class
of circuits H = {Hm}m∈N (represented as Boolean circuits with m-bit inputs) is
a tuple (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec) defined below.

– LFE.Setup(1κ)→ LFE.crs: On input the security parameter 1κ, the generation
algorithm returns a common random string LFE.crs.

– LFE.Compress(LFE.crs, h)→ (digest, r): On input LFE.crs and a circuit h, the
compression algorithm returns a digest digest and a decoding information r.

– LFE.Enc(LFE.crs, digest, x) → ct: On input LFE.crs, a digest digest, and a
message x, the encryption algorithm returns a ciphertext ct.

– LFE.Dec(LFE.crs, ct, r)→ y: On input LFE.crs, a ciphertext ct, and a decod-
ing string r, the decoding algorithms returns a message y.

In this work, we use LFE schemes that satisfy correctness, simulation-security
and function-hiding security, as defined formally below.

Definition 5 (Correctness). Let LFE = (LFE.Setup, LFE.Compress, LFE.Enc,
LFE.Dec) be an LFE scheme for a class of functions H = {Hm}m∈N. We say
that LFE is a correct LFE scheme if for any m = poly(κ), for all h ∈ Hm, and
for all x ∈ {0, 1}m, letting LFE.crs← LFE.Setup(1κ), and letting

(digest, r)← LFE.Compress(LFE.crs, h), ct← LFE.Enc(LFE.crs, digest, x),

the following holds:

Pr[LFE.Dec(LFE.crs, ct, r) = h(x)] = 1− negl(κ),

where the probability is taken over the random coins of LFE.Setup, LFE.Compress,
and LFE.Enc.

Definition 6 (Simulation-Security). Let LFE = (LFE.Setup, LFE.Compress,
LFE.Enc, LFE.Dec) be an LFE scheme for a class of functions H = {Hm}m∈N.
For every non-uniform PPT adversary A = (A1,A2) and every PPT simulator
S, consider the following two experiments (κ being the security parameter):

Experiment ExptrealLFE,A(1
κ):

LFE.crs← LFE.Setup(1κ)
(x, h, s, stA)← A1(1

κ, LFE.crs)
(digest, r)← LFE.Compress(LFE.crs, h; s)
ct← LFE.Enc(LFE.crs, digest, x)
Output b← A2(stA, ct)

Experiment ExptidealLFE,A,S(1
κ):

LFE.crs← LFE.Setup(1κ)
(x, h, s, stA)← A1(1

κ, LFE.crs)
(digest, r)← LFE.Compress(LFE.crs, h; s)
c̃t← S(LFE.crs, digest, h, h(x))
Output b← A2(stA, c̃t)
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The LFE scheme LFE is said to satisfy (semi-malicious)-simulation-security if
for any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have∣∣∣Pr[ExptrealLFE,A(1

κ) = 1]− Pr[ExptidealLFE,A,S(1
κ) = 1]

∣∣∣ ≤ negl(κ),

where A is admissible if h ∈ Hm for some m = poly(κ), and the probability is
taken over the random coins of LFE.Setup, LFE.Compress, LFE.Enc, A1, and S.

Definition 7 (Function-Hiding Security). Let LFE = (LFE.Setup, LFE.Compress,
LFE.Enc, LFE.Dec) be an LFE scheme for a class of functions H = {Hm}m∈N.
For every non-uniform PPT adversary A = (A1,A2) and every PPT simulator
S, consider the following two experiments (κ being the security parameter):

Experiment Exptreal,FHLFE,A (1κ):

LFE.crs← LFE.Setup(1κ)
(h, stA)← A1(1

κ,mpk)
(digest, r)← LFE.Compress(LFE.crs, h)
Output b← A2(stA, digest)

Experiment Exptideal,FHLFE,A,S(1
κ):

LFE.crs← LFE.Setup(1κ)
(hstA)← A1(1

κ, LFE.crs)

d̃igest← S(LFE.crs,F)
Output b← A2(stA, d̃igest)

The LFE scheme LFE is said to satisfy function-hiding simulation-security if for
any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have∣∣∣Pr[Exptreal,FHLFE,A (1κ) = 1]− Pr[Exptideal,FHLFE,A,S(1

κ) = 1]
∣∣∣ ≤ negl(κ),

where A is admissible if h ∈ Hm for some m = poly(κ), and the probability is
taken over the random coins of LFE.Setup, LFE.Compress, A1, and S.

3.2 Succinct Single-key Functional Encryption

We now recall the definition of succinct single-key functional encryption (FE).

Definition 8 (Functional Encryption). A functional encryption scheme FE
for a class of functions H = {Hm}m∈N (represented as Boolean circuits with
m-bit inputs), is a tuple of four PPT algorithms (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec) such that:

– FE.Setup(1κ) → (mpk,msk): On input the security parameter κ, the setup
algorithm outputs a master public key mpk and a master secret key msk.

– FE.KeyGen(msk, h)→ skh: On input the master secret key msk and a function
h ∈ H, the key generation algorithm outputs a key skh.
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– FE.Enc(mpk, x) → ct: On input the master public key mpk and an input
x ∈ {0, 1}m for some m = poly(κ), the encryption algorithm outputs a
ciphertext ct.

– FE.Dec(skh, ct)→ y: On input a key skh and a ciphertext ct, the decryption
algorithm outputs a value y.

In this work, we use single-key FE schemes that satisfy correctness, single-key
full-simulation-security and succinctness, as defined formally below.

Definition 9 (Correctness). Let FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
be a single-key FE scheme for a class of functions H = {Hm}m∈N. We say that
FE is a correct single-key FE scheme if for any m = poly(κ), for all h ∈ Hm,
and for all x ∈ {0, 1}m, letting

(mpk,msk)← FE.Setup(1κ), skh ← FE.KeyGen(msk, h), ct← FE.Enc(mpk, x),

the following holds:

Pr[FE.Dec(skh, ct) = h(x)] = 1− negl(κ),

where the probability is taken over the random coins of FE.Setup, FE.KeyGen,
and FE.Enc.

Definition 10 (Full-Simulation Security). Let FE = (FE.Setup,FE.KeyGen,
FE.Enc,FE.Dec) be a single-key FE scheme for a class of functions H = {Hm}m∈N.
For every non-uniform PPT adversary A = (A1,A2) and every PPT simulator
S, consider the following two experiments (κ being the security parameter):

Experiment ExptrealFE,A(1
κ):

(mpk,msk)← FE.Setup(1κ)
(h, stA)← A1(1

κ,mpk)
skh ← FE.KeyGen(msk, h)
(x, st′A)← A2(stA, skh)
ct← FE.Enc(mpk, x)
Output (st′A, ct)

Experiment ExptidealFE,A,S(1
κ):

(mpk,msk)← FE.Setup(1κ)
(h, stA)← A1(1

κ,mpk)
skh ← FE.KeyGen(msk, h).
(x, st′A)← A2(stA, skh)
c̃t← S(mpk, skh, h(x), 1

|x|)
Output (st′A, c̃t)

The FE scheme FE is said to satisfy (single-key) full-simulation-security if for
any security parameter κ ∈ N, there exists a PPT simulator S such that for
every non-uniform PPT adversary A = (A1,A2), the outcomes of the real and
ideal experiments are computationally indistinguishable, i.e., we have

ExptrealFE,A(1
κ) ≈c Expt

ideal
FE,A,S(1

κ).

Definition 11 (Succinctness). Let FE = (FE.Setup,FE.KeyGen,FE.Enc,FE.Dec)
be a single-key FE scheme for a class of functions H = {Hm}m∈N. We say that
FE is succinct if for any m = poly(κ), for all h ∈ Hm, and for all x ∈ {0, 1}m,
letting

(mpk,msk)← FE.Setup(1κ), ct← FE.Enc(mpk, x),

the size of the ciphertext ct (i.e., |ct|) does not grow with the size of the circuit
for h, but only with its depth.
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3.3 Fully-secure MPC from Laconic Cryptography

In this subsection, we present our construction of TP-aided MPC from LFE.

Construction Overview. The high-level description of the construct, following
the three-phase structure (as discussed in Section 1.3), is presented in two steps.
In the first step, we assume an honest TP and allow the parties to hand out
the inputs to the TP in the clear. In the second step, input privacy against the
TP is put in place via function-hiding LFE. Throughout, we assume an LFE
with a common random string (CRS), as is the case for the construction of LFE
in [QWW18].

In the first phase, every party uses the common randomness to derive a
CRS for the LFE and subsequently computes a digest of f (the function to be
computed) using the CRS. It sends the CRS, the digest and its input to the TP.
The TP needs to compute an encryption of the collective inputs under the correct
digest and CRS. However, a malicious party may send a incorrect digest, say for
a function that leaks an honest party’s input. The TP can verify the correctness
of the digest, since the compress function of the LFE scheme is deterministic. But
this amounts to a computation that is dependent on the circuit size, breaking
the promise of small TP. To tackle this issue without recomputing the function
digest, the TP partitions the set of parties based on the CRS and digest. For
every set that sends the same copy of both, gets an encryption under the digest,
of the message that consists of the real inputs received from that set and default
inputs for those outside that set. This trick ensures that a corrupt party does
not get encryption of the inputs of the honest parties under its ill-formed digest.
Lastly, on receiving the encryption from the TP, a party simply uses the CRS
to learn the function output.

To additionally ensure input privacy against the TP, the function f for LFE
is replaced with a related function g that hard-codes n random masks and takes
as input n masked inputs of the parties. It first unmasks the masked inputs
and then performs the f -computation. The masks are derived from common
randomness and thus are known to all. We can use one-time pad for masking.
This implies every party has the knowledge of g and can generate a digest that
is supposed to be the same. Now, every party uses its respective mask to mask
its input before sending to the TP. The TP performs the same computation as
before, but now on the received masked inputs, digest for g and CRS. To hide
the random masks that are hard-coded inside g from the TP who will learn the
digest, we switch to function-hiding LFE. This makes sure the TP learns neither
about the inputs, not about the output. The LFE security ensures the parties
learn nothing but the output of g. The detailed construction is as described
below.

Inputs: Each party Pi has input xi. All parties share a common randomness of the
form r∥r′.
Output: f(x1, . . . xn)

Protocol ΠLFE
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Primitive: The following building blocks are used
– An LFE scheme LFE = (LFE.Setup, LFE.Compress, LFE.Enc, LFE.Dec).
Phase 1 (Pre-TP Call): Each party Pi does the following:
– Set LFE.crs := r , where r is obtained from the common randomness r∥r′.
– Derive n random pads {rj}j∈[n], where |rj | = |xj |, using r′ obtained from the

common randomness r∥r′.
– Compute (digestg, rg) ← LFE.Compress

(
g, LFE.crs

)
, where function g is as fol-

lows and send (LFE.crs, digestg, zi = xi ⊕ ri) to the TP.
• g hard-codes the n pads {rj}j∈[n]

• it takes n inputs z1, . . . , zn
• it computes f on input {zj ⊕ rj}j∈[n].
We note that (LFE.crs, digestg, rg) is supposed to be the same for all parties, since
they use the common randomness r and f .

Phase 2(TP Call): The TP carries out the following computation:

– Initialize the set Z = ∅. Add Pj to Z if nothing (or syntactically incorrect
message) is received from Pj .

– Partition the set P \ Z into subsets S1, S2 . . . Sℓ according to the values of (
LFE.crs, digestg) received from the parties i.e. all parties in a subset have sent the
same (LFE.crs, digestg).

– For each Sα for α ∈ {1, . . . , ℓ}
• Let LFE.crsα, digest

g
α denote the common values submitted by parties in Sα.

• For each j ∈ {1, . . . , n}, set z̄j = zj if j ∈ Sα, and z̄j = z′j otherwise, where zj
is received from Pj and {z′j}j∈{1,...,n} are the default (masked) inputs sampled
randomly by the TP.

• Send ctα, Sα to every party in Sα, where ctα ← LFE.Enc
(
digestgα,

(
z̄1, . . . , z̄n

))
.

Phase 3 (Post-TP Call): A party Pi, on receiving ct, computes output y as

y ← LFE.Dec
(
LFE.crs, ct, rg

)
,

using LFE.crs, rg from Phase 1.

Fig. 1: Fully-secure MPC with single TP call based on LFE

Our result can be summarized via the following theorem.

Theorem 4 (TP-Aided MPC from LFE). Assuming the existence of a la-
conic function evaluation (LFE) scheme that satisfies correctness, simulation-
security and function-hiding security, there exists a TP-aided MPC protocol ΠLFE

for any functionality f that:

– utilizes a single call to a stateless TP of size poly(n, κ,m, α, β) (where n
is the number of parties, κ is the security parameter, m is the size of each
party’s input to f , and α and β denote the sizes of a single digest and a
single ciphertext, respectively, in the LFE scheme), and

– achieves full security against malicious corruption of up to (n − 1) parties
and semi-honest corruption of the TP in the non-colluding model (see Defi-
nition 3).
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We defer the formal proof of this theorem to the full version of our paper.

3.4 Fully-secure MPC from Single-Key Succinct FE

In this subsection, we show how to construct TP-aided MPC from single-key
succinct FE.

Construction Overview. The high-level description of the construct, following
the three-phase structure (as discussed in Section 1.3), is presented in two steps.
In the first step, we assume an honest TP and allow the parties to hand out the
inputs to the TP. In the second step, input privacy is put in place via a SKE.

For our construction, in the first phase, the parties execute an MPC protocol
with identifiable abort8 amongst the n parties that establishes the setup of the
FE and gives the parties skf (corresponding to the function f desired to be
computed) to aid in output computation. Since this execution may result in
abort (where only corrupt parties may get the output), we cannot allow the
MPC to output the FE ciphertext corresponding to the parties’ inputs directly.
Instead, the ciphertext is computed by the TP to whom the parties submit their
inputs when Phase 1 is successful (which may need repeated run of the MPC with
identifiable abort). To enable the TP to do so, the parties additionally submit
mpk (obtained in Phase 1) to the TP. In order to ensure that privacy of honest
parties’ inputs is maintained against a corrupt party who sends mpk distinct
from the one obtained in Phase 1, the TP does the following: partition the set
of parties based on the value of mpk they submitted. For each partition, the
TP returns ciphertext based on actual inputs of parties within the partition and
default otherwise. This ensures that a corrupt party who submits an incorrect
mpk (say mpk′ which is distinct from the one obtained from Phase 1) never
get access to a ciphertext computed using mpk′ that involves an honest party’s
input. Lastly, the parties use the ciphertext obtained from the TP and skf to
obtain the output.

Note that the above protocol is not secure in the non-colluding model as it
does not achieve input privacy against a semi-honest TP. Further, the compu-
tation done by the TP grows with the size of the parties’ inputs. In order to
achieve security against a semi-honest TP and make the computation of the TP
independent of the size of the parties’ inputs, we make the following modifica-
tions. First, the input of each party is hidden in a ciphertext of a SKE. The MPC
with identifiable abort now takes as input the inputs of the parties, computes
distinct ciphertexts for the inputs, each under a distinct secret key, and delivers
only the ith secret key to Pi. Instead of the inputs, these keys are sent to the
TP, who performs similar computation as before, but with respect to these keys.
To make the both ends meet, the function to be computed by FE is changed to
a related function g (instead of the function to be computed f) that hard-codes
the ciphertexts of the inputs and takes the n keys as inputs. The function g

8 Some of the protocols in the literature realizing this functionality for general func-
tions are [GS18].
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first decrypts the ciphertexts and then compute f on the decrypted messages.
The MPC with identifiable abort now prepares and gives out the secret key of
FE corresponding to g. To prevent the parties from tampering the secret keys
for SKE while sending to the TP, we use a signature scheme. The MPC sam-
ples a (public, secret) key pair for a digital signature scheme and delivers signed
messages meant for TP (SKE key and mpk in this case) and the public key for
verification to a party. The parties forward this to the TP, who now discards the
parties whose verification fails, partitions the parties based on the verification
key and proceeds as before. The detailed construction is as described below.

Inputs: Each Pi participates with input xi.
Output: f(x1, . . . xn)
Primitive: The following building blocks are used
– An MPC protocol Πidua that achieves security with identifiable abort.
– A succinct single-key simulation-secure FE scheme FE = (FE.Setup,FE.KeyGen,

FE.Enc,FE.Dec).
– An IND-CPA secure symmetric-key encryption scheme SKE = (SKE.Gen, SKE.Enc,

SKE.Dec).
– A digital signature scheme (Sign,Vrfy).

Phase 1 (Pre-TP Call): Each Pi invokes an instance of Πidua with input xi to
compute a function that does the following:

– Generate a default input x′
i for every Pi.

– Generate a secret key ki ← SKE.Gen(1κ) for every party Pi.
– Generate (msk,mpk)← FE.Setup(1κ).
– Generate ei ← SKE.Enc(ki, xi) for every Pi.
– Generate skg = FE.KeyGen(msk, g), where g is a function defined as follows:
• g embeds the ciphertexts {ej}j∈[n] and default inputs {x′

j}j∈[n].
• g takes as input a set of keys {kj}j∈[n] and an n-length bit vector {bj}j∈[n].
• g outputs f(x̄1, . . . , x̄n) where for each j ∈ [n], x̄j = SKE.Dec(ki, ej) if bi = 1

and x̄j = x′
j otherwise.

– Generate (sk, vk) for the digital signature scheme.
– For each i ∈ [n], output (vk,mpk, ki, σi, skg) to Pi where σi = Sign(sk, (i,mpk, ki)).

If Πidua outputs (⊥, C), re-run Phase 1 among the set of parties P \C (the inputs of
parties in C are substituted using default inputs). Else, continue to the next phase.
Each Pi invokes the TP with ini = (vk,mpk, ki, σi).

Phase 2 (TP Call): The TP carries out the following computation:

– Initialize Z = ∅. Add Pj to Z if nothing is received or Vrfy(vk, (j,mpk, kj , σj) = 0,
for a tuple (vk,mpk, kj , σj) received from Pj .

– Partition the set P \ Z into subsets S1, S2 . . . Sℓ according to the values of vk
received from the parties i.e. all parties in a subset have sent the same vk.

– For each Sα for α ∈ {1, . . . , ℓ}
• Let mpkα denote the common mpk submitted by parties in Sα.
• For each j ∈ [n], set kα,j = kj and bα,j = 1 if j ∈ Sα, and kα,j = ⊥ and

bα,j = 0 otherwise.

Protocol ΠFE
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• Compute and return ctα to every party in Sα, where

ctα ← FE.Enc
(
mpkα,

(
{kα,j}j∈[n], {bα,j}j∈[n]

))
.

Phase 3 (Post-TP Call): A party computes output y = FE.Dec
(
skg, ctα

)
using

skg obtained from Phase 1 and ctα obtained from Phase 2.

Fig. 2: Fully-secure MPC with single TP call based on Succinct Single-Key FE

Our result can be summarized via the following theorem:

Theorem 5 (TP-Aided MPC from Single-Key Succinct FE). Assuming
the existence of an FE scheme that satisfies correctness, (single-key) simulation-
security and succinctness, there exists a TP-aided MPC protocol ΠFE for any
functionality f that:

– utilizes a single call to a stateless TP of size poly(n, κ, β) (where n is the
number of parties, κ is the security parameter, and β denotes the size of a
single ciphertext in the FE scheme), and

– achieves full security against malicious corruption of up to (n − 1) parties
and semi-honest corruption of the TP in the non-colluding model (see Defi-
nition 3).

We defer the formal proof of this theorem to the full version of our paper.

4 Impossibilities in the Non-colluding Model

In this section, we present our negative results for small-TP aided MPC.

4.1 Impossibility in the Correlated Randomness Model for
protocols with universal output decoder

Here, we make following assumptions– (a) small TP: the TP performs poly(n, κ)
computation, (b) small output decoder: the parties, on receiving the message
from the TP, perform poly(n, κ) computation to compute the output. We show
that in this model, it is impossible to design a fully secure MPC, even if parties
have access to correlated randomness and irrespective of computational assump-
tions used in the protocol. This holds even if the parties are corrupted in fail-stop
fashion in the non-colluding model. Before we begin, we formalize the class of
protocols for which the impossibility holds.

Notation. A fully-secure n-party protocol Π in the correlated randomness
model that utilizes a single call to a small stateless TP comprises of the fol-
lowing phases.

– Correlated Randomness Setup. The setup computes correlated random-
ness (cr1, cr2, . . . , crn) and outputs cri to Pi (i ∈ [n).
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– Pre-TP Computation. In this phase, the parties may interact with each
other (before the TP call), where each Pi participates with input xi and
randomness ri. Let sti denotes the state of Pi at the end of this phase,
where sti comprises of its input xi, randomness ri, correlated randomness cri
(received as part of the setup) and in addition, the messages sent / received
during this phase, if this phase was interactive. Lastly, each Pi computes
algorithm (ini, st

′
i)← preTPi(sti) and invokes TP with ini.

– TP Computation. For each i ∈ [n], the TP computes its response as
outi ← TPi(in1, . . . , inn; rTP), where rTP denotes the internal randomness
of the TP and TPi denotes the algorithm used by the TP to compute its
response to Pi.

– Post-TP Computation. Each Pi (i ∈ [n]) computes its output as y ←
postTPi(st

′
i, outi), where postTPi denotes the algorithm used by Pi to com-

pute its output. We refer to this algorithm as output decoder occasionally.9

In our model, (a) each TPi for i ∈ [n] is poly(n, κ)-time (b) each postTPi for
i ∈ [n] is poly(n, κ)-time.

To show the impossibility, we show that a fully secure protocol would imply a
statistically-correct (encoding, decoding) scheme which can produce an encoding
that is smaller than the size of the message domain of the encoding scheme. This
breaches the known incompressibility argument. Precisely, we use the following
proposition of De et al. [DTT10], which formalizes the notion that it is impossible
to compress every element in a set X to a string less than log |X| bits long.

Proposition 1. [Incompressibility Argument [DTT10]] Let E : X × {0, 1}ρ →
{0, 1}m and D : {0, 1}m × {0, 1}ρ → X be randomized encoding and decoding
procedures such that, for every x ∈ X, Prr∈{0,1}ρ [D(E(x, r), r) = x] ≥ δ. Then
m ≥ log(|X|)− log(1/δ).

Theorem 6. A general fully secure MPC protocol is impossible in the non-
colluding model (see Definition 3), where the parties have access to arbitrary
correlated randomness, a single call to a TP of size poly(n, κ), and are allowed
to use an output decoder of size poly(n, κ), even when malicious corruption of
parties in P is restricted to fail-stop corruption.

Proof. Towards a contradiction, assume such a protocol Π computing an arbi-
trary function f exists (f is defined later) that achieves full security in the corre-
lated randomness model, satisfying correctness with overwhelming probability.
Without loss of generality, Π comprises of the phases (Correlated randomness
setup, pre-TP computation, TP computation, post-TP computation) described
previously.

9 We believe that a non-interactive post-TP computation phase is essentially without
loss of generality. In other words, any fully secure MPC protocol (having access to one
TP call) with interaction amongst the parties can be transformed to one where the
parties do not communicate at all amongst themselves after receiving TP’s response.
We give a proof in the full version of our paper.
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Below, we show that Π leads to a statistically-correct randomized (encoding,
decoding) scheme (E,D) (as defined in Proposition 1).

E : {0, 1}2
n−1

× {0, 1}ρ → {0, 1}m: This algorithm takes as input 2n−1 bits, say
(b1, b2, . . . , b2n−1), an randomness r ∈ {0, 1}ρ and computes its encoding as follows:
1. For each i ∈ [n], choose a pair of inputs (xi, x

∗
i ) using r.

2. Consider a set S containing tuples of the form (x1, x
′
2, . . . , x

′
n) where x

′
i ∈ {xi, x

∗
i }

for i ∈ {2, . . . , n}. Note that x1 is fixed in all the tuples and |S| = 2n−1.
3. Consider a lexicographic ordering of the elements in S generated as follows. For

each i ∈ [n], map xi to bit 0 and x∗
i to bit 1. Now each tuple in S can be viewed as

an n bit string and the elements in S can be lexicographically ordered. Let us de-
note the jth element as Sj . LetM be a mapping between S and (b1, b2, . . . , b2n−1),
where Sj is mapped to bj for j ∈ [2n−1].

4. Construct an n-input function f(X1, . . . , Xn) that outputs M
(
X1, . . . , Xn

)
, when

(X1, . . . , Xn) ∈ S and ⊥ otherwise.
5. Suppose Π computes f on input Xi from Pi. Consider an execution of Π where

parties {P1, . . . , Pn} participate using inputs {xi}i∈[n], randomness {ri}i∈[n] and
correlated randomness {cri}i∈[n] (the latter two picked using r). Further, Π uses
x∗
i as the default input of Pi (i ∈ [n]). Emulate the steps of this execution until

the pre-TP computation to obtain {st′i, ini}i∈[n]. Let s̄t
′
1 denote the subset of st′1

used in postTP1; with size restricted to poly(n, κ), as dictated by Π (recall that
postTP function is allowed to do only poly(n, κ) computation).

6. The encoding of input (b1, b2, . . . , b2n−1) is defined as { ¯st′1, in1, . . . , inn}, TP1 (the
algorithm used by the TP to compute its response to P1) and postTP1 (the output
computation algorithm of P1).

D : {0, 1}m × {0, 1}ρ → {0, 1}2
n−1

: It takes as input the encoding { ¯st′1, in1, . . . , inn}
and the r ∈ {0, 1}ρ used by E. For each subset S′ ⊆ {2, . . . , n} in lexicographic
order (starting from S′ = ∅ to S′ = {2, . . . , n}), do the following (below we abuse
the notation and use S′ to denote the decimal value corresponding to the binary
representation):

1. Compute out
(S′)
1 ← TP1(in

′
1, in

′
2, . . . , in

′
n; rTP), where in′i = ini for i /∈ S′ a and

in′i = ⊥ for i ∈ S′. Here, rTP is derived from r as per the distribution corresponding
to the internal randomness of the TP in Π.

2. Compute b(S′) ← postTP1(
¯st′1, out

(S′)
1 ).

Output (b1, b2, . . . , b2n−1).

a Note in′1 = in1 is always satisfied as S′ is defined as subsets of {2, . . . , n}.

Algorithm (E,D)

Fig. 3: A Randomized Encoding and Decoding Scheme

Lemma 1. (E,D) is a statistically-correct encoding and decoding scheme.

Proof. We now claim that the above pair (E,D) is statistically correct. That is

the following holds good: for every (b1, . . . , b2n−1) ∈ {0, 1}2n−1

, Prr∈{0,1}ρ [D(E((b1,
. . . , b2n−1), r), r) = (b1, . . . , b2n−1)] ≥ δ. This is because Π computes f that, for
every input in S, as defined in E, maps to one distinct bit in the sequence (b1,
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. . . , b2n−1) (recall that the jth element of S, Sj is mapped to bj). Further, Π
computes f and achieves full security (guaranteed output delivery) and satisfies
correctness with overwhelming probability. Specifically, if a subset of parties Pi

such that i ∈ S′ do not invoke the TP during Π, then the TP receives {ini} only
from the other parties Pi where i /∈ S′ and sets ini = ⊥ for parties in S′. The
output computed by the TP is on the default input x∗

i for each party Pi with
i ∈ S′ and xi for each party Pi with i /∈ S′.

Since S′ is defined as subsets of {2, . . . , n} and never includes the index 1,
the above captures executions of Π where P1 is honest, participated honestly
with input x1 and invoked the TP with in′1 = in1. This allows us to rely on the
correctness of the output computed by postTP1. We can thus infer that the 2n−1

bits computed during decoding indeed correspond to the set of outputs of f for
each subset S′, namely (b1, b2, . . . , b2n−1).

Notice that the above argument holds good even if Π satisfies full security
tolerating fail-stop corruption where the parties do not send their message to
the TP. Furthermore, Π satisfying fairness is not enough to claim that (E,D)
is (statistically) correct, because D may fail to recover (b1, . . . , b2n−1) always.

By the incompressibility argument of [DTT10] (which is formally stated above),
it must hold that | ¯st′1| + |in1| + . . . |inn| + |out1| + |postTP1| ≥ 2n−1. We can

thus infer that at least one of the terms ≥ 2n−1

n+3 . Recall that by our assumption

on small output decoder, the terms | ¯st′1| and |postTP1| are bounded by size
poly(n, κ). Therefore, it must be the case that one of the terms in1, . . . , inn, out1
must be of size ≥ 2n−1

n+3 . However, this contradicts our assumption that the TP
has size poly(n, κ) as in1, . . . , inn comprises of the input to the TP and out1
is the algorithm run by the TP to compute its response to P1. We have thus
arrived at a contradiction; completing the proof.

4.2 Impossibility in the Plain Model

In this section, we show that in the plain model (without correlated random-
ness), it is impossible to design statistically secure MPC with the non-colluding
security, even when the parties are only semi-honestly corrupt. That is, we prove
that a protocol is impossible when the adversary in the non-colluding TP model
can either (a) corrupt majority of the parties {P1, . . . , Pn} semi-honestly or (b)
control the TP semi-honestly). We state the formal theorem below.

Theorem 7. A general statistically-secure MPC protocol is impossible in the
plain and the non-colluding TP model (see Definition 3), where the parties have
access to a single call to a small TP of size poly(n, κ), even when malicious
corruption of parties in P is restricted to semi-honest corruption.

Proof. Towards a contradiction, assume that there exists a statistically-secure
2-party protocol Π securely computing f against a semi-honest adversary in the
non-colluding TP model. Let f be defined as the functionality computing (k+1)
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oblivious transfer (OT) instances i.e.

f
(
x1 = (m0

i ,m
1
i )i∈[k+1], x2 = (b1, . . . , bk, bk+1)

)
= (mb1

1 ,mb2
2 . . . ,m

bk+1

k+1 )

Here, the input of P1 (who acts as the sender) consists of (k + 1) pairs of bits
and the input of P2 (who acts as the receiver) consists of (k + 1) bits.

Suppose CTP denotes the circuit describing the function {TP}i∈[n] computed
by the TP duringΠ. Based on our assumption that the TP is ‘small’, it must hold
that |CTP| ≤ poly(n, κ) which is independent of the function f being computed.
Specifically, this means that the computation done by the TP must be strictly
less than computing (k + 1) OTs.

We claim that Π computing f can be used to build a semi-honest OT ex-
tension protocol Π ′. Assume a semi-honest setting where the parties are given
k OT correlations generated as the base OTs of the OT extension protocol Π ′.
Π ′ proceeds as follows:

1. The parties execute the steps of Π in the pre-TP computation phase.
2. Next, the parties emulate the TP computation phase of Π by executing the

perfectly-secure semi-honest GMW protocol [GMW87] to compute the func-
tion described by CTP. For this, the parties use the k OT correlations (given
as base OTs). Note that these OT correlations must suffice as computing CTP

must involve computing fewer than (k+1) OTs (based on our assumption).
3. Finally, the parties use the output of the execution of the GMW protocol

(which computes the TP response of Π) to carry out the steps of output
computation as per Π. This will result in the parties obtaining the output
of f .

We note that Π ′ does not involve any calls to the stateless TP. Since Π ′

computes (k+ 1) OTs starting with k base OTs and involves execution of steps
inΠ and the GMW protocol, which are both information-theoretically secure; we
can conclude thatΠ ′ is indeed a semi-honest information-theoretic OT extension
protocol. However, this is a contradiction as information-theoretically secure OT
extension does not exist in the plain model [Bea96]. This completes the proof.

5 Impossibility of Fair MPC in the Colluding Model

In this section, we briefly summarize our negative results for fair MPC in the
colluding security model (see Definition 3). Recall that, in this model, we as-
sume that the adversary controls a majority of the parties among {P1, . . . , Pn}
maliciously and simultaneously corrupt the TP semi-honestly. Our impossibility
holds good even when malicious corruption is weakened to fail-stop corruption
and the requirement of full security is relaxed to fairness. Our result is summa-
rized by the following theorem.

Theorem 8. There exists a function f such that it is impossible to design a
fair MPC protocol securely computing f in the computational colluding model
(see Definition 3) even when malicious corruption of parties in P is restricted
to fail-stop corruption.

26



We defer the detailed proof of this theorem to the full version of our paper. At
a high level, we follow the following route. We note that the colluding adversarial
model can be viewed more generally, in terms of the general mixed adversarial
model that has been studied in works such as [HMZ08,FHM99,BFH+08]. Recall
that a general mixed adversary is characterized by an adversary structure Z =
{(A1, E1, F1), . . . , (Am, Em, Fm)} (for somem), which is a monotone set of triples
of party sets. At the beginning of the protocol, the adversary chooses one of these
triples Z∗ = (A∗, E∗, F ∗) ∈ Z and actively corrupts parties in A∗, semi-honestly
corrupts the parties in E∗ and fail-corrupts the parties in F ∗.

Viewing the TP as an additional party Pn+1 (who can be semi-honestly
corrupted) and the party set P = {P1, . . . , Pn, Pn+1}, the adversarial structure
for the colluding TP model can be expressed as: Z =

{
Z1, . . . ,Zn

}
, where for

each i ∈ [n], we have

Zi =

(
Ai = P \ {Pi, Pn+1}, Ei = P \ {Pi}, Fi = P \ {Pi, Pn+1}

)
.

Specifically, the above denotes the maximal class of the adversarial structure
of the colluding TP model, since these subsume all other possible corruption
scenarios indicated by subsets of the triples in each Zi , i.e. the adversary can
choose to corrupt (A∗, E∗, F ∗), such that there exists (Ā, Ē, F̄ ) ∈ Z : A∗ ⊆
Ā, E∗ ⊆ Ē, F ∗ ⊆ F̄ . Now restricting the malicious adversaries to behave in a fail-
stop manner, we refine the maximal adversarial structure as Z′ =

{
Z′
1, . . . ,Z′

n

}
,

where for each i ∈ [n],

Z′
i =

(
Ai = ∅, Ei = P \ {Pi}, Fi = P \ {Pi, Pn+1}

)
.

Given this adversarial structure, we show that our desired impossibility result
is implied by the impossibility of fair (non-reactive) MPC shown in [HMZ08].
The proof requires a careful mapping between the maximal adversarial struc-
tures between our model of TP-aided MPC and the general mixed adversarial
model considered in [HMZ08] (see the full version of our paper for details). Note
that in above analysis, we consider the TP to be just another party that can
communicate freely with the other parties while maintaining states across the
communication. This implies that our impossibility holds even for stateful TPs.
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