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Abstract. The homogeneous continuous LWE (hCLWE) problem is to
distinguish samples of a specific high-dimensional Gaussian mixture from
standard normal samples. It was shown to be at least as hard as Learning
with Errors, but no reduction in the other direction is currently known.

We present four new public-key encryption schemes based on the hard-
ness of hCLWE, with varying tradeoffs between decryption and secu-
rity errors, and different discretization techniques. Our schemes yield a
polynomial-time algorithm for solving hCLWE using a Statistical Zero-
Knowledge oracle.
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1 Introduction

Existing public-key encryption schemes are based on relatively few hard com-
putational problems, all from the domains of number theory [RSA78, Rab79,
EG85], coding theory [McE78], lattices [AD97, Reg05], and noisy linear alge-
bra [Ale03, ABW10]. Each of these domains yields to different tradeoffs between
functionality, security, and efficiency.

In this work we explore public-key encryption based on a new type of as-
sumption: computational hardness in statistical inference. The input of a statis-
tical inference problem is a sequence of independent samples coming from some
distribution with unknown parameters. The search (or estimation) task is to
identify the parameters; the easier distinguishing (or hypothesis testing) task is
to distinguish the samples from ones coming from a fixed null distribution.

Our statistical inference problem of interest is one that has attracted much
algorithmic attention: learning Gaussian mixtures in high dimension. A mix-
ture is a convex combination of k Gaussians with different means and possibly
different covariance matrices. When k is constant polynomial-time learning algo-
rithms are known [HP15, BS15] assuming sufficiently many samples are available.
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Diakonikolas et al. [DKS17] showed that in general the learning problem is in-
tractable for statistical query algorithms. Bruna et al. [BRST21] proved that
even the task of distinguishing mixtures of Gaussians from standard normal
samples is intractable assuming the hardness of short vectors and short bases in
lattices (the GapSVP and GapSIVP problems). Gupte et al. [GVV22] recently
showed the stronger claim that the hardness can be based on the Learning with
Errors (LWE) problem.

The hard Gaussian mixture of [BRST21, GVV22], called the homogeneous
Continuous Learning with Errors (hCLWE) distribution, consists of samples in
Rn that have a standard normal distribution in every direction perpendicular
to a secret direction w ∈ Rn. The distribution in direction w is a noisy dis-
crete Gaussian, i.e. a mixture of ”Gaussian pancakes” of standard deviation
β/
√
β2 + γ2 ≈ β/γ and spacing γ/(β2 + γ2) ≈ 1/γ (Figure 1.a). The (decision)

hCLWE problem is to distinguish hCLWE samples from purely normal ones.
The full version of this paper [BNHR22] contains all the missing proofs.

1.1 Our contributions

In this work we construct public-key encryption that is at least as hard to break
as hCLWE. The hCLWE problem not only inherits advantages of LWE (such
as reduction to worst-case hardness and resistance to known quantum attacks),
but is potentially more secure: hCLWE is certainly no easier than LWE and can
be potentially harder.

Our constructions imply limits on the hardness of hCLWE: just as LWE,
hCLWE is tractable in Statistical Zero-Knowledge. It follows that hCLWE is
unlikely to be helpful for constructing encryption as secure as NP (unless NP is
contained in coAM).

Four Public-Key Encryption Schemes: We present four public-key encryp-
tion schemes that offer varying tradeoffs between decryption and security errors,
and use different techniques when discretizing continuous values.

The third cryptosystem of Ajtai and Dwork [AD97] already contains essen-
tially all the ingredients needed to obtain hCLWE-based public-key encryption.
Our most efficient scheme—discretized encryption—is largely based on it. We
believe that our other schemes are simpler to describe, more intuitive to analyze,
and offer the potential of wider applicability to other Gaussian mixtures.

Some of our schemes are based on a variant of hCLWE called (0, 1/2)-
hCLWE. In the 1/2-hCLWE distribution, the mode in the hidden direction
w is shifted by a relative phase of 1/2 (Figure 1.b). The hidden direction in
(0, 1/2)-hCLWE is a labeled mixture of hCLWE and 1/2-hCLWE (Figure 1.c).
Technically, (0, 1/2)-hCLWE is at least as hard as LWE and no harder than
hCLWE.

Our first scheme (“pancake”) is based on hCLWE. It has inverse polyno-
mial decryption and constant security errors. These parameters, along with the
specifics of the scheme, already suffice to prove that hCLWE can be solved in
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Fig. 1. Probability density function of the hidden direction in the (a) hCLWE, (b) 1/2-
hCLWE, and (c) (0, 1/2)-hCLWE distributions with parameters β = 0.05 and γ = 2

Statistical Zero-Knowledge (SZK), and therefore is in coAM.1 The discretization
step in the scheme can be performed during encryption, and so the public key is
continuous. Arguing security then necessitates proving an analog of the leftover
hash lemma for Gaussian matrices, which may be of independent interest.

One could in principle rely on standard techniques to reduce decryption and
security errors in the first scheme [HR05] , albeit at the price of a significant
loss in efficiency. Instead, we present three different ideas to reduce the errors
directly.

In the second scheme (“bimodal”), we achieve perfect decryption error by
publishing (0, 1/2)-hCLWE samples as the public key. To encrypt a 0, Bob uses
samples with z = 0 and to encrypt a 1, he uses samples with z = 1/2. This
eliminates the probability that a random normal ciphertext of 1 is of the form
of an hCLWE sample and thus makes decryption perfect.

The third scheme (“discretized”) achieves negligible security error by map-
ping the samples into a parallelpiped spanned by hCLWE samples; a technique
due to Ajtai and Dwork [AD97]. Here the discretization step takes place already
in public-key generation, allowing for the use of the standard leftover hash lemma
and yielding favorable security error in comparison with the other schemes.

In the fourth scheme (“baguette”) we achieve negligible decryption error
assuming only hCLWE. Instead of publishing samples that have a “pancake”
distribution in one direction, we sample vectors that have a pancake distribution
in ` hidden directions. In [BRST21] the authors give a reduction from hCLWE
to this hCLWE(`) distribution.

The parallelepiped technique can also be applied to the fourth scheme, yield-
ing an hCLWE-based scheme with negligible decryption and security error. We
omit a formal analysis of this step as it is similar to the discretized scheme.

1 A distinguishing problem is in class C if there is an algorithm in C that accepts at
least 2/3 of the yes instances and rejects at least 2/3 of the no instances.
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Scheme Assumption Decryption error Security error PK size SK size

Pancake hCLWE O(1/n) 1/4 Õ(n3) n

Bimodal (0, 1/2)-hCLWE 0 1/2 Õ(n3) n

Discretized (0, 1/2)-hCLWE 0 2−n+2 Õ(n2) n

Baguette hCLWE(`) O(1/n`) 1/4 Õ(n3) n`

Table 1. Comparison of our encryption schemes. If the assumption holds against time
t(n) + nO(1) and advantage Ω(ε(n)) adversaries then the corresponding scheme is re-
silient against time t(n) and advantage (security error + ε(n)) adversaries.
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Fig. 2. Reductions between problems and encryption schemes (new results are in bold).

1.2 Related work

Bruna et al. [BRST21] show a worst-case to average-case reduction from Dis-
crete Gaussian Sampling (DGS) to hCLWE. Their reduction factors through an
intermediate problem called Continuous LWE (CLWE).

A sample from the CLWE distribution [BRST21] is of the form (a, z), where
a ∈ Rn is a vector with individual entries sampled independently from the
standard normal distribution N (0, 1), and z := γ〈a,w〉+e mod 1. Here e is the
noise drawn from a Gaussian distribution with mean 0 and variance β2 for some
β > 0, γ > 0 is a fixed parameter and w ∈ Rn is a secret unit vector. CLWE is
the problem of distinguishing multiple CLWE samples from an equal number of
samples of the form (a, u), where u is uniform over [0, 1) and independent of a.

An hCLWE sample is a CLWE sample conditioned on z = 0; Bruna et
al.’s reduction from CLWE to hCLWE is based on this property. We obtain an
analogous reduction from CLWE to (0, 1/2)-hCLWE by modifying the condition
on z. It is not known if there is a reduction in the opposite direction.
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The CLWE problem can be viewed as a continuous analog of Regev’s LWE
problem [Reg05] and is at least as (quantumly) hard as the same worst-case lat-
tice problems underlying LWE [BRST21]. Gupte et al. [GVV22] recently showed
a reduction from LWE to CLWE. They in fact showed that LWE is equivalent
in hardness to a variant of CLWE with a different distribution over the secrets
that is supported on a discrete subset of the unit sphere. CLWE is at least as
hard as this variant.

1.3 CLWE, SZK, and Statistical-Computational Gaps

Several works [BR13, HWX15, BB20] uncover that hypothesis testing tasks in
statistical inference tend to exhibit statistical-computational gaps: There is a
range of sample complexities m ∈ [mstat,mcomp] for which hypothesis testing is
possible, but no efficient (in terms of the length of a single sample) algorithm is
known.

A striking feature of the hCLWE problem is that it is potentially intractable
even when the sample complexity is unbounded, i.e., mcomp is infinite. Our

Theorem 9.2 shows that when m ≥ Õ(n2) samples are available hCLWE becomes
solvable in SZK. Thus, in a world in which SZK = BPP, the computational
threshold mcomp for hCLWE is at most Õ(n2).

In contrast, the statistical threshold for CLWE is mstat = O(n). It is an
intriguing open question whether a statistical-computational gap for hCLWE
exists assuming SZK = BPP. One approach for ruling out this possibility is to
design a more efficient hCLWE-based PKE scheme.

Applying the reduction from CLWE to hCLWE of Bruna et al., our result
also implies that CLWE is in SZK. As their reduction does not preserve sample
complexity, the resulting SZK algorithm for CLWE requires a larger number of
samples.

2 Technical Overview

The messages in our encryption schemes are single bits. The distributions of
encryptions of zero and one, respectively, are efficiently distinguishable with
the secret key but not without it. The public keys are independent samples of
the hCLWE or (0, 1/2)-hCLWE distributions and the secret key is the hidden
direction w of the corresponding yes instances.

As can be seen in Figure 1, the hCLWE samples used to generate the public-
key have a periodic discrete structure along the secret direction w. Encryption
is designed to retain this discrete structure in the ciphertext even though the
sender is oblivious to it. Decryption calculates the correlation between the secret
key w and the ciphertext. This correlation is close to an integer multiple of the
period for encryptions of zero and (typically) far from it for encryptions of one.
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2.1 “Pancake” Encryption

The first scheme (Section 4) is based on the hCLWE problem. The secret key is
a random unit vector w and the public key is an n×m matrix A that consists
of m hCLWE samples conditioned on the secret direction w. To encrypt a 0,
sample a uniform vector t ← {1/

√
m,−1/

√
m}m and compute At. To encrypt

a 1, sample a standard normal vector. The ciphertext c is a discretization of
the resulting vector using a rounding function that divides the real line into
intervals (“buckets”) of equal Gaussian measure.2 To decrypt a ciphertext c,
compute γ

√
m〈w, c〉 and output 0 if the result is close to an integer. Otherwise

output 1.
The scheme has inverse polynomial decryption error since the probability of

γ
√
m〈w, c〉 being close to an integer is inverse polynomial for a random choice

of c. The main technical contribution in this scheme is the security proof, in
particular Proposition 4.3. This result is an analog of the leftover hash lemma
for the multiplication of Gaussian matrices with vectors with uniform vectors
t← {1/

√
m,−1/

√
m}m which shows that the security error is 1/2 for our choice

of parameters.

2.2 “Bimodal” Encryption

In the second scheme (Section 6) we introduce the following changes: We base
the scheme on the (0, 1/2)-hCLWE problem and publish two matrices (A0,A1)
as the public key. The matrix A0 consists of hCLWE samples conditioned on
w and A1 consists of 1/2-hCLWE samples conditioned on w. To encrypt a 0,
do the same as in the pancake scheme with the matrix A0. To encrypt a 1, do
exactly the same with A1. To decrypt, check if γ

√
m〈w, c〉 mod 1 is closer to 0

or to 1/2. Replacing one hCLWE matrix by two (0, 1/2)-hCLWE matrices yields
perfect decryption error for all but negligibly many choices of the public key.
The security error however remains constant.

2.3 “Discretized” Encryption

The third scheme (Section 7) has perfect decryption for all but an inverse poly-
nomial fraction of public keys and negligible security error. To achieve this we
make use of the parallelepiped technique due to Ataj and Dwork [AD97] to
obtain uniform matrices from (0, 1/2)-hCLWE samples.

We change the secret key to BTw, where B is a square matrix whose columns
are hCLWE samples. The public key (A0,A1) again consists of 2 matrices: A
matrix A0 that is obtained by mapping hCLWE samples into the parallelepiped
P(B) spanned by the columns of B, and a matrix A1 that is obtained in the
same way but with 1/2-hCLWE samples mapped to P(B). This mapping into the
parallelepiped transforms Gaussian vectors in R into uniform vectors in P(B),

2 In the body of the paper we use the notation 1/γ′ = γ/(β2 + γ2) for the period of
the hCLWE hidden direction. As the difference between 1/γ′ and 1/γ is small we
make no distinction between the two in this overview.
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while preserving the pancakes in the secret direction. An additional rounding
step discretizes the matrices A0,A1.

To encrypt a bit b, sample a vector t with uniform entries in {−1, 1} and set
c := Abt mod q. To decrypt, check if γ〈BTw, c/q〉 mod 1 is closer to 0 or to
1/2. For all but an inverse polynomial fraction of choices of the matrix B this
scheme has perfect correctness. Security follows from the classical leftover hash
lemma [IZ89] since the matrices A0 and A1 are uniform and discrete.

2.4 “Baguette” Encryption

The fourth scheme (Section 8) is based on the hCLWE(`) problem, which is
potentially harder than (0, 1/2)-hCLWE. We achieve negligible decryption error
by modifying our first scheme as follows: Instead of publishing samples that have
a pancake distribution in only one hidden direction, we publish a matrix A of
samples that have a pancake distribution in log n many hidden directions, i.e. we
replace the Gaussian pancakes with “Gaussian Baguettes”. To encrypt 0, sample
a uniform t← {1/

√
m,−1/

√
m}m and compute At, and to encrypt 1, sample a

standard normal vector. Discretization is identical to the first scheme.
To decrypt, multiply the ciphertext with a matrix that consists of all hidden

directions. If all of the entries in the resulting vectors are close to an integer,
output 0, otherwise output 1. While the probability that the inner product of
the ciphertext of 1 with one secret direction is close to an integer is polynomial,
the probability that this happens for all of the log n directions is negligible. The
security error of this scheme remains constant but could be amplified either by
a standard approach or by the above parallelepiped method.

2.5 SZK membership

Our SZK membership proof of hCLWE is established by reduction to the com-
plete problem statistical distance: hCLWE samples are mapped to a distribution
that is far from uniform over some discrete set, while standard normal samples
are mapped to a distribution that is close to uniform. The two distributions are
obtained by pancake encrypting a zero under an actual public key and a random
placebo. Completeness and soundness then follow from the functionality and
security of pancake encryption.3

We find it instructive to directly describe the distributions resulting from
this reduction. Our Proposition 4.3 can be interpreted as saying that random
±1/
√
m linear combinations of m = Θ̃(n2) standard Gaussian samples fill up

space evenly: For every set of sufficiently large Gaussian measure, the fraction of
linear combinations that lands in the set is approximately equal to its measure.
Thus if Rn is partitioned into suitably many regions of equal Gaussian measure,
the induced distribution on the regions is close to uniform. In contrast, if there

3 By relying on discretized encryption instead we can prove the stronger claim of
coNISZK membership [GSV99] and improve the sample complexity. Details will be
spelled out in the final version.
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are periodic gaps in some (unknown) direction like in the hCLWE distribution,
the linear combinations of samples are concentrated on few regions and the
induced distribution is far from uniform.

An intriguing question left open by our work is if SZK membership also holds
for aperiodic mixtures of Gaussians such as the ones underlying the statistical
query lower bound of Diakonikolas et al. [DKS17].

3 The (homogeneous) CLWE distribution

Definition 3.1 (CLWE Distribution). Given a dimension n and parameters
β, γ > 0, and a unit vector w ∈ Rn, samples (y, z) ∈ Rn× [0, 1) from the CLWE
distribution Aw,β,γ,n are generated as follows:

1. Sample y← Nn(0, 1).
2. Sample e← N (0, β2).
3. Output (y, γ〈w,y〉+ e mod 1).

Definition 3.2 (CLWE Distinguishing Problem). For real numbers β, γ >
0 and n ∈ N, the (average-case) distinguishing problem CLWEβ,γ,n asks to dis-
tinguish between Aw,β,γ,n for a uniform vector w ∈ Rn and Nn(0, 1)×U , where
U is the uniform distribution on [0, 1).

Definition 3.3 (hCLWE Distribution). Given a dimension n, parameters
β, γ > 0, and a unit vector w ∈ Rn, samples y ∈ Rn from the hCLWE dis-
tribution Hw,β,γ,n are generated as follows:

1. The pancake: Sample k ∈ Z with probability proportional to exp(−k2/(2γ2 +
2β2)).

2. The noise: Sample e from N (0, β′2), where β′2 = β2/(γ2 + β2).
3. The rest: Sample w⊥ as Nn−1(0, 1) on the subspace orthogonal to w.
4. Output w⊥ + (k/γ′ + e)w, where 1/γ′ = γ/(γ2 + β2).

Definition 3.4 (hCLWE Distinguishing Problem). For real numbers β, γ >
0 and n ∈ N, the (average-case) distinguishing problem hCLWEβ,γ,n asks to dis-
tinguish between Hw,β,γ,n for a uniform vector w ∈ Rn and Nn(0, 1).

The (s, ε) homogeneous CLWE (hCLWE(s, ε)) assumption [BRST21] postu-
lates that for a random w, a hCLWE oracle cannot be distinguished in size s
from an oracle that outputs N (0, 1) samples on Rn with advantage ε. As evi-
dence Bruna, Regev, Song, and Tang show a polynomial-time quantum reduction
from the problem of sampling a discrete gaussian of width O(

√
n/β) times the

smoothing parameter assuming γ ≥ 2
√
n. Specifically, if γ and β are polynomial

in n then it is plausible that hCLWE holds with s and 1/ε exponential in n.
Note that they define the standard normal distribution as N (0, 1/(2π)) instead
of N (0, 1).

It can be shown that all hCLWE versions with different variances are equiva-
lent by rescaling the samples and the problem parameters γ and β. In particular
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hCLWE with normal distribution N (0, 1/(2π)) and problem parameters γ and
β is equivalent to hCLWE with normal distribution N (0, 1) and problem param-
eters γ/

√
2π and β/

√
2π. We will always work with the N (0, 1) distribution for

which γ ≥
√
n is sufficient.

4 Scheme 1: Pancake Encryption

The first encryption scheme relies on the hCLWE assumption and has polyno-
mial decryption- and constant security error. It is the basis for all of the following
encryption schemes that achieve better error bounds but either rely on an as-
sumption that is potentially easier to break and/or incur a blow-up in the key
size. Furthermore, this scheme enables us to prove that hCLWE is in the com-
plexity class SZK. Before presenting the scheme, we define a rounding function
that we will need to discretize the ciphertexts of the scheme.

4.1 Rounding into buckets of equal measure

We use of the following Gaussian rounding function roundr : R → {1, . . . , r}
given by

roundr(x) = dr · µ((−∞, x))e,

where µ is the standard Gaussian measure on the line. In words, partition R
into r intervals (“buckets”) J1, J2, . . . , Jr of equal Gaussian measure, and set
roundr(x) to be the unique i such that x ∈ Ji. We extend the definition over Rn
coordinate-wise, i.e. roundr(x1, . . . , xn) = (roundr(x1), . . . , roundr(xn)).

Some of the buckets are very wide (at least two of them are infinite!) so the
rounding will cause encryption errors with some probability. We will argue that
this is an unlikely event using the following regularity property of roundr. The
width of an interval J = (a, b) is b− a.

Proposition 4.1. For every 0 < α < 1 and all r such that r1−α ≥ 19, the
number of i for which the width of Ji = round−1r (i) exceeds r−α is at most

2rα/
√

ln r1−α + 2.

The k widest intervals capture a k/r fraction of the probability mass µ at the
tails of the normal distribution. If t is chosen so that µ((−∞, t) ∪ (t,∞)) = k/r
then the next widest interval is of the form (t′, t) and t′ is uniquely determined
by the constraint µ((t′, t)) = 1/r. Using suitable analytic approximations for the
normal CDF the maximum width t−t′ of all remaining intervals can be bounded
by r−α when k = b2rα/

√
ln r1−α + 2c.

4.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; r > 0 and n,m ∈ Z.

– The secret key is a uniformly random unit vector w ∈ Rn.
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– The public key is a matrix A ∈ Rn×m whose columns are independent
hCLWE samples from Hw,β,γ,n.

– To encrypt a 0, sample a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at ran-

dom and output c := roundr(At).
– To encrypt a 1, sample c← {1, 2, . . . , r}n at random and output c.
– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute
γ′
√
m〈w, z〉 mod 1 and check if it is in the interval (−1/2n, 1/2n). If yes,

output 0, else output 1.

Theorem 4.2. Let γ =
√
n,β = (40000n3/2 log(n))−1,r = (40000n3 log(n))5/3

and m = 108 log(n)2n2. Assuming hCLWE(s, ε), the scheme has decryption error
O(1/n) + ε and security error at most 1/4 + 2ε.

We prove correctness and security of the scheme separately. We will assume
that w and A have infinite precision. In Section 4.5 we argue that O(log n) bits
of precision are sufficient.

4.3 Correctness

There are two sources of error in this encryption scheme: key generation error
and encryption error. While the key generation error is negligible, the encryption
error may be noticeable.

We will call a public key A good if in all its column samples the noise e has
magnitude at most

√
nβ. By hCLWE(s, ε) and a union bound, a public key is

good except with probability m/en + ε.
The following two claims show that the scheme is correct.

Claim. Assuming hCLWE(s, ε) where s is the complexity of rounding, the prob-
ability that Dec(w,Enc(A, 0)) 6= 0 is at most 1/2n + ε for all but a fraction of
m/en + ε choices of A.

Claim. The probability that Dec(w,Enc(A, 1)) 6= 1 is at most 3/2n.

4.4 Security

We show that the above scheme has constant security error by the following
argument:

1. Under the hCLWE(s, ε) assumption, (A,Enc(A, b)) is ε-indistinguishable
from (N,Enc(N, b)) for both b = 0 and b = 1, where N is a n ×m matrix
with i.i.d. entries sampled from N (0, 1).

2. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-statistically
close.

3. It follows that the distributions (A,Enc(A, 0)) and (A,Enc(A, 1)) are at
most (1/4 + 2ε)-indistinguishable.
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The first claim follows directly from the hCLWE assumption using the fact
that the encryption is an efficiently computable function of the public-key. To
prove the second claim (Proposition 4.5) we will argue that for each possible set
(bucket) S that is the of the form round−1r (c), the random variable Pr[Nt ∈ S|N]
is unlikely to deviate from its mean E [Pr[Nt ∈ S|N]] = Pr[g ∈ S] by much,
where g is a standard normal vector. Then by a union bound over all the buckets
we can say that with high probability over the choice of N the statistical distance
between the two distributions is small (given N). Recall that µ(S) = Pr[g ∈ S]
is the standard Gaussian measure over Rn.

Proposition 4.3. Let N be an n × m matrix of independent N (0, 1) random
variables, t a random m-dimensional {−1/

√
m,+1/

√
m} vector, and S be any

event in Rn. Assuming µ(S) ≥ exp(−
√
m/4e), we have

Var [Pr[Nt ∈ S|N]] ≤ 4eµ(S)2 ln(1/µ(S))/
√
m.

Proof. Using the definition Var[Z] = E[Z2] − E[Z]2 for any random variable Z
we get:

Var
[
Pr[Nt ∈ S|N]

]
= Pr[Nt ∈ S and Nt′ ∈ S]− Pr[Nt ∈ S] Pr[Nt′ ∈ S], (1)

where t, t′ are two independent copies of a random±1/
√
m-valuedm-dimensional

vector. Let X = (X1, . . . , Xn) = Nt and X = (X ′1, . . . , X
′
n) = Nt′. Conditioned

on t and t′, each pair (Xi, X
′
i) is a correlated Gaussian pair (independent of

the others) with covariance matrix E[X2
i ] = E[X ′

2
i ] = 1, E[XiX

′
i] = ρ, where

ρ = 〈t, t′〉 is the inner product of the vectors t and t′. By contractivity we get

Pr[Nt ∈ S and Nt′ ∈ S] ≤ Pr[Nt ∈ S]1/(1+|ρ|) Pr[Nt′ ∈ S]1/(1+|ρ|)

for fixed choices of t and t′. The quantities Pr[Nt ∈ S] and Pr[Nt′ ∈ S] are
simply the Gaussian measure µ(S) of the bucket S, so (1) gives

Var
[
Pr[Nt ∈ S|N]

]
≤ E[µ(S)2/(1+|ρ|) − µ(S)2] = E

[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
µ(S)2.

(2)
The expectation here is taken over the choice of ρ = 〈t, t′〉 = (Z1 + · · ·+Zm)/m,
where Zi are i.i.d. ±1. If we further use µ(S) ≤ 1 and |ρ| ≥ 0, we get that

E
[
µ(S)−2|ρ|/(1+|ρ|) − 1

]
≤ E[µ(S)−2|ρ|]− 1.

We further bound this expression by using the following claim:

Claim. E[µ−2|ρ|] ≤
∑∞
k=0(es)k, where s = (2 ln 1/µ)/

√
m.

By our assumption µ(S) ≥ exp(−
√
m/4e), we have 0 ≤ es ≤ 1/2 so we get∑

k(es)k = 1/(1− es) ≤ 1 + 2es. Plugging into (2) we get the proposition.

Using Proposition 4.3 we can now bound the statistical distance between
(N, roundr(Nt)) and (N, roundr(g)) which are basically encryptions of 0 and 1
with a standard normal matrix instead of a public key. Security of the scheme
then follows from the fact that under the hCLWE assumption N is indistinguish-
able from a public key.
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Corollary 4.4. Let round be any discrete-valued function on Rn such that the
value µ(round−1(c)) ≥ α for all c in the range of round. Then the statistical dis-

tance between (N, round(Nt)) and (N, round(g)) is at most
√

4e ln(1/α)/
√
m.

Proof. We will assume α ≥ exp(−
√
m/4e) for otherwise

√
4e ln(1/α)/

√
m ≥ 1

and the claim is true. Fix c and let S = round−1(c). Applying the Cauchy-
Schwarz inequality to Proposition 4.3 we have

E
∣∣Pr[Nt ∈ S|N]− µ(S)

∣∣ ≤√4e ln(1/µ(S))√
m

· µ(S).

In particular, if µ(round−1(c)) ≥ α ≥ exp(−
√
m/4e) for every c, then

∆((N, round(Nt)); (N, round(g)))

=
1

2
E

[∑
c

∣∣Pr[round(Nt) = c|N]− Pr[round(g) = c|N]
∣∣]

≤ 1

2

∑
c

√
4e ln(1/µ(round−1(c)))√

m
· µ(round−1(c))

≤

√
e ln(1/α)√

m

∑
c

µ(round−1(c)),

which is at most the desired expression as the summation equals µ(Rn) = 1.

Proposition 4.5. The distributions (N,Enc(N, 0)) and (N,Enc(N, 1)) are 1/4-
statistically close for a matrix N of independent standard Gaussians.

Proof. By construction, µ(round−1r (b)) = r−n for all b. By Corollary 4.4 the

statistical distance between encryptions is then at most
√

4e ln rn/
√
m which is

at most 1/4 by our choice of parameters.

Corollary 4.6. Assuming hCLWE(s, ε), (A,Enc(A, 0)) and (A,Enc(A, 1)) are
(s− poly(n), 1/4 + 2ε)-indistinguishable where A is the public key matrix.

Proof. Let N be a random normal matrix. By hCLWE(s, ε), (A,Enc(A, b))
and (N,Enc(N, b)) are (s − poly(n), ε)-indistinguishable for both b = 0 and
b = 1. By Proposition 4.5, (N,Enc(N, 0)) and (N,Enc(N, 1)) are (∞, 1/4)-
indistinguishable. The corollary follows from the triangle inequality.

4.5 Precision

As we are working with real numbers it is also necessary to discuss how precision
can affect the scheme. We denote by ρ the positive integer that determines the
precision and for ρ = ω(log n) the distance between the real value and the one
obtained as a result of the approximation errors is negligible. This guarantees
that decryption is not affected (up to a negligible fraction).
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5 The s-hCLWE and (0, 1/2)-hCLWE Distributions

In this section we introduce two distributions that are indistinguishable from
Nn(0, 1) (i.e. n-dimensional vectors with i.i.d. entries fromN (0, 1)) by the CLWE
assumption: the s-hCLWE and the (0, 1/2)-hCLWE distributions. Samples from
the s-hCLWE distribution are CLWE samples (yi, zi) with zi = s. Note that
by definition the 0-hCLWE distribution is just the hCLWE distribution. Sam-
ples from the (0, 1/2)-hCLWE distribution are CLWE samples (yi, zi) with
zi ∈ {0, 1/2}. We obtain them by flipping a coin and, depending on the out-
come, generating either an hCLWE sample or a 1/2-hCLWE sample. In the next
two encryption schemes (“bimodal” in Section 6 and “discretized” in Section 7)
we use samples from the (0, 1/2)-hCLWE distribution to construct the public
key.

To argue that these two distributions are indistinguishable from Nn(0, 1),
we give a reduction from CLWE to both distributions. We also give a reduction
from 1/2-hCLWE to hCLWE for completeness even though it is not needed in
the rest of the paper.

5.1 The s-hCLWE Distribution

We begin by formally defining the distribution and then we show that there
exists a reduction from CLWE.

Definition 5.1 (s-hCLWE Distribution). For a unit vector w ∈ Rn, real
numbers β, γ > 0, n ∈ N and s ∈ [0, 1], samples y ∈ Rn for the s-hCLWE
distribution Hsw,β,γ,n are generated as follows:

1. Sample k ∈ Z + s with probability proportional to exp(−k2/(2γ2 + 2β2)).
2. Sample e← N (0, β′2), where β′2 := β2/(γ2 + β2).
3. Sample v as Nn−1(0, 1) from the subspace orthogonal to w.
4. Output y := v + (k/γ′ + e)w, where γ′ := (γ2 + β2)/γ.

It follows from the definition that hCLWE corresponds to the case s = 0.
When s = 0, we writeHw,β,γ,n instead ofH0

w,β,γ,n. The s-hCLWE distinguishing
problem is to distinguish between s-hCLWE samples and standard normal ones.

Definition 5.2 (s-hCLWE Distinguishing Problem). For real numbers β, γ >
0, n ∈ N and s ∈ [0, 1], the (average-case) distinguishing problem s-hCLWEβ,γ,n
asks to distinguish between Hsw,β,γ,n for a uniform unit vector w ∈ Rn and
Nn(0, 1).

We do not consider the worst-case formulation of this problem as it is equiv-
alent to the average-case one. The proof is analogous to [BRST21, Claim 2.22]
for hCLWE and CLWE.

We now proceed to compare s-hCLWE to hCLWE and CLWE. First of all,
using rejection sampling it is possible to obtain s-hCLWE samples from CLWE
samples. This result follows from [BRST21, Lemma 4.1], which shows this for
the case s = 0. Let Aw,β,γ,n denote the distribution of CLWE samples.
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Lemma 5.3. For a unit vector w ∈ Rn, real numbers β, γ > 0, n ∈ N and
s ∈ [0, 1], there exists a probabilistic algorithm that runs in time poly(n, 1/δ)
and that on input δ ∈ (0, 1) and samples from Aw,β,γ,n, outputs samples from
Hs

w,
√
β2+δ2,γ,n

.

Proof. The same proof as the one of Lemma 4.1 in [BRST21] with g0(z) :=∑
k∈Z ρδ(z + s+ k).

If we take δ = β/
√

2, we obtain as a corollary the following reduction:

Proposition 5.4. For s ∈ [0, 1], n ∈ N and real numbers β = β(n), γ = γ(n) >
0 such that β is the inverse of a polynomial in n, there exists a polynomial-time
reduction from CLWEβ/

√
2,γ,n to s-hCLWEβ,γ,n.

Now that we have given a reduction from CLWE to s-hCLWE it is a natural
question to ask whether there is a reduction from s-hCLWE to CLWE. However,
we do not know if this is possible for any value of s.

5.2 The (0, 1/2)-hCLWE Distribution

We now define the (0, 1/2)-hCLWE distribution, which is the distribution on
which the following two encryptions schemes are based. Afterwards we show
that there is a reduction from CLWE to (0, 1/2)-hCLWE.

Definition 5.5 ((0, 1/2)-hCLWE Distribution). For a unit vector w ∈ Rn
and real numbers β, γ > 0, n ∈ N , samples (y, z) ∈ Rn × {0, 1/2} for the

(0, 1/2)-hCLWE distribution H(0,1/2)
w,β,γ,n are generated as follows:

1. Sample z ← {0, 1/2}.
2. Sample y← Hzw,β,γ,n.
3. Output (y, z).

Definition 5.6 ((0, 1/2)-hCLWE Distinguishing Problem). For real num-
bers β, γ > 0 and n ∈ N , the (average-case) problem (0, 1/2)-hCLWEβ,γ,n

asks to distinguish between H(0,1/2)
w,β,γ,n for a uniform unit vector w ∈ Rn and

Nn(0, 1)× U({0, 1/2}).

Lemma 5.7. For a unit vector w ∈ Rn, n ∈ N and real numbers β, γ > 0 , there
exists a probabilistic algorithm that runs in time poly(n, 1/δ) and that on input

δ ∈ (0, 1) and samples from Aw,β,γ,n, outputs samples from H(0,1/2)

w,
√
β2+δ2,γ,n

.

Proof. We first sample z ← {0, 1/2} uniformly at random. By Lemma 5.3 we
can obtain a sample y from Hz

w,
√
β2+δ2,γ,n

using samples from Aw,β,γ,n in time

poly(n, 1/δ) and (y, z) is a sample from H(0,1/2)

w,
√
β2+δ2,γ,n

.

If we take δ = β/
√

2, we obtain as a corollary the following result:

Proposition 5.8. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0 such
that β is the inverse of a polynomial in n, there exists a polynomial-time reduc-
tion from CLWEβ/

√
2,γ,n to (0, 1/2)-hCLWEβ,γ,n.
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5.3 A reduction from 1/2-hCLWE to hCLWE

Finally, we show that there exists a reduction from 1/2-hCLWE to hCLWE (with
slightly different parameters) to get a finer understanding of the relative hardness
of these phased hCLWE problems. We obtain the reduction by constructing

samples from Hw,
√
2β,
√
2γ,n using samples from H1/2

w,β,γ,n.

Lemma 5.9. For a unit vector w ∈ Rn, n ∈ N, real numbers β, γ > 0 such that

γ >
√
n, and independent random variables Y1, Y2 with distribution H1/2

w,β,γ,n,

the distribution of (Y1 − Y2)/
√

2 is e1−n-statistically close to Hw,
√
2β,
√
2γ,n.

This gives the following result:

Proposition 5.10. For n ∈ N and real numbers β = β(n), γ = γ(n) > 0, there
exists a polynomial-time reduction from 1/2-hCLWEβ/

√
2,γ/
√
2,n to hCLWEβ,γ,n.

6 Scheme 2: Bimodal Encryption

In this section we modify the “pancake” scheme from Section 4 to achieve per-
fect correctness. Note that the decryption error in this scheme can be at least
polynomial since the pancakes have polynomial width in the secret direction.
This is due to the fact that the hCLWE assumption can be broken whenever
the error distribution has exponentially small width as was shown in [BRST21].
A random normal vector therefore “hits” a pancake with probability 1/poly(n).
If we encrypt a 1 with such a vector, decryption fails. A standard approach to
amplify the decryption error is sending multiple independent ciphertexts of the
same message [DNR04]. This amplification increases the size of the ciphertext
and the security error since a potential adversary only needs to be successful in
decrypting one of the ciphertexts. Instead, we modify the encryption process of
the bit 1. We introduce the following two changes:

– The public key consists of two matrices. A matrix A0 whose columns are
independent hCLWE samples and a matrix A1 whose columns are indepen-
dent 1/2-hCLWE samples. The samples from both matrices are obtained
from the same secret direction w.

– To encrypt a 0, take the matrix A0 and perform the same encryption as in
the first scheme. To encrypt a 1, do exactly the same but with the matrix
A1.

In Section 4 we have already seen that the decryption of Enc(0) is 1/poly(n)-
close to 0 mod 1. We show that in our modified scheme the decryption of Enc(1)
is 1/poly(n) to 1/2 so the scheme has perfect correctness. Security of the scheme
follows by Proposition 4.5 and the triangle inequality.
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6.1 The encryption scheme

The scheme is parametrized by γ > 0, β > 0, n ∈ Z,r > 0 and m ∈ Z \ 2Z an
odd integer.

– The secret key is a uniformly random unit vector w ∈ Rn.
– The public key is a pair of matrices (A0,A1) ∈ Rn×m×Rn×m. The columns

of A0 are independent hCLWE samples and the columns of A1 are indepen-
dent 1/2-hCLWE samples.

– To encrypt a bit b ∈ {0, 1}, compute c := roundr(Abt), where t← {−1/
√
m, 1/

√
m}m

is sampled uniformly at random. Check if all of the entries of c correspond
to a bucket of width less than 1/(5

√
nmγ′). If yes, output c. If no, output b.

– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute
γ′
√
m · 〈w, z〉 mod 1 and check if it is closer to 0 or closer to 1/2. In the

former case output 0 in the latter case output 1.

The continuous quantities w,A0,A1 are represented with O(log n) bits of
precision. As the precision analysis is analogous to the one for pancake encryption
we omit it.

Theorem 6.1. Let γ =
√
n, β = (40000n5/2 log(n)2)−1 , r = (40000n3 log(n))5/3

and m = 108n2 log(n)2. Assuming (0, 1/2)-hCLWE(s, ε) we have that for all but
a fraction of 2−Ω(n) choices of the public key the scheme has perfect correctness
and security error at most 1/2 + 1/n2 + 3ε.

We prove correctness and security of the scheme separately.

6.2 Correctness

We call a public key good if the norm of the noise vector is less than mβ′ in both
matrices. This holds except with probability 2−Ω(n). During the construction of
the public key it can be efficiently tested if a public key is good by checking if
the absolute value of the generated noise value is small enough.

Claim. If the public key is good, the scheme has perfect correctness.

6.3 Security

There are two sources of security error in this scheme:

1. If at least one of the entries of the ciphertext corresponds to a bucket of width
larger than 1/(5

√
nmγ′), the encryption algorithm outputs the plaintext in

the clear.
2. If the above event does not happen, the ciphertexts of 0 and of 1 are 1/2+2ε-

indistinguishable.
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Claim. Let Ab ∈ Rn×m be a matrix whose columns consist either of independent
hCLWE-samples or of independent 1/2-hCLWE samples. Let t← {−1/

√
m, 1/

√
m}m

be sampled uniformly at random. Assuming hCLWE(s, ε) and 1/2-hCLWE(s, ε),
where s is the complexity of rounding, the probability that any entry of the vec-
tor c := roundr(Abt) corresponds to a bucket of width larger than 1/(5

√
mγ′)

is at most 1/n2 + ε.

Proof. First consider a matrix A with i.i.d. entries from N (0, 1). Since ‖t‖ = 1
we get that At is a vector with i.i.d. entries in N (0, 1). By Proposition 4.1 we
know that the number of intervals of length larger than 1/(5

√
nmγ′) is at most

10
√
nmγ′/

√
ln(r/(5

√
nmγ′))+2, so the probability that any entry lands in such

a bucket is at most

10n
√
nmγ′

r
√

ln(r/(5
√
nmγ′))

+
2n

r
≤ γ′n

√
nm+ 2n

r
≤ 1

n2
.

The claim follows from the fact that the matrices A0 and A1 are ε-indistinguishable
from A and the rounding function being efficiently computable.

Remark 6.2. Note that we can avoid the above event by rejection sampling the
public key. Since t is a unit vector, the absolute value of the inner product of any
vector a with t is bounded by the norm of a. This means that we can avoid the
event that an entry of the ciphertext c corresponds to a wide bucket by rejection
sampling the matrices A0,A1: As long as the rows of these matrices have small
enough norm, the entries of the vector Abt will not land in a wide bucket for
both b ∈ {0, 1}. We omit a formal analysis of this optimization because the main
security issue is not the rounding error but the probability of distinguishing
ciphertexts of 0 and 1 as is shown by the next claim.

Claim. The distributions (N0,N1,Enc(N0, 0)) and (N0,N1,Enc(N1, 1)) are 1/2-
statistically close for matrices N0,N1 of independent standard Gaussians.

Proof. By Proposition 4.5 we have

∆((N0,N1,Enc(Nb, b)), (N0,N1,g)) ≤ 1/4,

where g is a vector with i.i.d. entries sampled uniformly from {1, 2, . . . , r} and
b ∈ {0, 1}. By the triangle inequality we follow that

∆((N0,N1,Enc(N0, 0)), (N0,N1,Enc(N1, 1))) ≤ 1/2.

Corollary 6.3. Assuming (0, 1/2)-hCLWE(s, ε), the distributions (A0,A1,Enc(A0, 0))
and (A0,A1,Enc(A1, 1)) are (s−poly(n), 1/2+2ε)-indistinguishable where A0,A1

are the public key matrices.

Proof. Let N0,N1 be standard normal matrices. By (0, 1/2)-hCLWE(s, ε), the
distributions (A0,A1Enc(Ab, b)) and (N0,N1,Enc(Nb, b)) are (s − poly(n), ε)-
indistinguishable for both b = 0 and b = 1. By Claim 6.3, (N0,N1,Enc(N0, 0))
and (N0,N1,Enc(N1, 1)) are (∞, 1/2)-indistinguishable. The corollary follows
from the triangle inequality.
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7 Scheme 3: Discretized Encryption

In this section we describe an encryption scheme based on CLWE that has neg-
ligible soundness error and perfect correctness for all but a fraction of 1/poly(n)
many public keys. The scheme is inspired by the encryption scheme in [AD97]
which also achieves negligible soundness error but only polynomial decryption
error. We reduce this decryption error by applying their techniques to the bi-
modal encryption scheme from Section 6 which is based on (0, 1/2)-hCLWE.
Alternatively, it could be applied to the baguette encryption scheme presented
in Section 8 which would yield a scheme based on hCLWE. An important con-
cept from [AD97] is the parallelepiped technique which enables us to transform
continuous Gaussian samples into uniform ones. We first describe the technique
before we present the encryption scheme and prove its correctness and security.

7.1 The parallelepiped technique and Zq

We will make use of the parallelepiped technique introduced by Ataj and Dwork
in [AD97]. Let B = (b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. We
denote by P(B) the n-dimensional parallelepiped that is defined by the columns
of B, i.e.

P(B) :=

∑
i∈[n]

λibi : 0 ≤ λi < 1 for all i ∈ [n]

 .

We denote by Pq(B) the set we obtain by partitioning P(B) into qn smaller
parallelpipeds of equal volume, labelling them by vectors with entries from 0 to
q − 1 and then identifying each vector with the corresponding label, i.e.

Pq(B) :=
{
bqB−1cc : c ∈ P(B)

}
.

We will later need the following fact:

Fact 7.1. Let B = (b1, . . . ,bn) ∈ Rn×n be an arbitrary matrix of rank n. Then
(Pq(B),+) is a group isomorphic to Znq .

This can be seen by the following argument: We obtain Pq(B) by partitioning
each vector bi into q equal parts. Labelling the parts by {0, 1, 2, . . . , q − 1} in
the natural way gives an isomorphism between the q parts of bi and Zq for any
i ∈ [n]. Fact 7.1 follows by taking the direct product of the labellings of the bi.

In the construction of our public key we essentially map continuous Gaussian
vectors into P(B). We will need the next lemma to show that this mapping trans-
forms them into uniformly random vectors. We denote by ηε(B) the smoothing
parameter of the lattice with basis B.

Lemma 7.1 ([MR07, Lemma 4.1]). Let B ∈ Rn×n be a square matrix of rank
n. For any ε > 0 and any s > ηε(B) the statistical distance between Nn(0, s2)
mod B and the uniform distribution over P(B) is at most ε/2.

The following lemma is a special case of [MR07, Lemma 3.2].

Lemma 7.2. For any n-dimensional lattice L with basis B = {b1, b2, . . . , bn}
we have η2−n(B) ≤

√
nmaxi‖bi‖.
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7.2 The encryption scheme

The scheme is parametrized by γ > 0; β > 0; n,m, q ∈ Z \ 2Z odd integers. We
set n to be an odd integer only to clarify the description and the analysis, m
and q however are always required to be odd.

– The secret key is a vector BTw, where w ∈ Rn is a uniformly random unit
vector and B is a matrix whose columns consist of hCLWE samples, such
that the smallest singular value of B is larger than 1/m.

– The public key is a pair of matrices (A0,A1) ∈ Zn×mq ×Zn×mq . The columns
of A0 and A1 are of the form

B-round(nai mod B),

whereB-round = B-roundq : Rn → Znq is defined asB-roundq(a) = bqB−1ac.
In the case of A0 the vectors ai are samples from the hCLWE distribution

Hw.β,γ,n and in the case of A1 they are 1/2-hCLWE samples from H1/2
w,β,γ,n.

– To encrypt a bit b ∈ {0, 1}, compute

c := Abt mod q,

where t← {−1, 1}m is sampled uniformly at random.
– To decrypt a ciphertext c, compute

γ′〈BTw, c/q〉 mod 1

and check if it is closer to 0 or closer to 1/2. In the former case output 0 in
the latter case output 1.

Remark 7.3. In the next section we will see that we require n to be an odd
integer only because we need that the inner product of w with 1/2-hCLWE
samples scaled by a factor n is approximately 1/2 mod 1 and not 0. One can
slightly change the scheme for even values of n: Scale the samples by a factor
n+1 instead of n. In the rest of the section we will assume that n is odd without
loss of generality.

Theorem 7.4. Set the parameters of the scheme to γ =
√
n,m = 8n log(n), β =

1/n10, q = n7. Assuming (0, 1/2)-hCLWE(s, ε) we get that for all but a fraction
of 1/(8n1/2 log(n)) + O(ε) choices of the public key the scheme has perfect cor-
rectness and negligible soundness error.

We prove correctness and soundness of the scheme separately in the next two
subsections.

7.3 Correctness

We show that for all but a fraction of at most 1/(8n1/2 log(n)) + ε choices
of the key pair decryption is always correct. We denote by {b1, . . . ,bn} the
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columns of B, by {a0
1, . . . ,a

0
m} the hCLWE samples used to construct A0 and

by {a1
1, . . . ,a

1
m} the 1/2-hCLWE samples used to construct A1. We define e :=

γ′wTB mod 1 which is the noise vector of the hCLWE samples bi. For b ∈ {0, 1}
we define

eTb := γ′wT
(
nab1, nab2, . . . , nabm

)
− b · (1/2, 1/2, . . . , 1/2) mod 1.

If b = 0 this is the vector where each entry is the noise value corresponding to
the hCLWE sample scaled by n during the construction of A0. If b = 1 this
is the noise vector we get during the construction of A1. We call a key pair
(BTw, (A0,A1)) good if the following holds:

1. ‖e0‖, ‖e1‖ ≤ mnβ′;
2. ‖e‖ ≤ nβ′;
3. For all i ∈ [m] the entries of a0

i ,a
1
i lie in the interval

[
−n3/2, n3/2

]
;

4. For all i ∈ [n] the entries of bi lie in the interval [−n, n];
5. the smallest singular value of B is larger than 1/m.

Note that all of these conditions can be efficiently tested during the key
generation.

Claim. If the (0, 1/2)-hCLWE(s, ε) assumption holds, a key pair (BTw, (A0,A1))
is good except with probability 1/(8n1/2 log(n)) +O(ε).

For a proof of this result see the full version.

Claim. If the key-pair (BTw, (A0,A1)) is good, decryption is correct with prob-
ability 1.

For a proof of this result see the full version.

7.4 Security

We show that encryptions of 0 and 1 are indistinguishable under the (0, 1/2)-
hCLWE assumption by showing that the following distributions are indistin-
guishable for b ∈ {0, 1}:

1. Realb: (A0,A1,Abt mod q) is a public key of the encryption scheme to-
gether with an encryption of b.

2. Hybridb: (A0,A1,Abt mod q) is a tuple where the columns of A0 and A1

are uniformly random vectors in Zn×mq .
3. Ideal: (A0,A1, r) is the same as above but with r a uniformly random vector

in Znq .

Realb and Hybridb are computationally indistinguishable under the (0, 1/2)-
hCLWE assumption. Hybridb and Ideal are statistically indistinguishable by the
leftover hash lemma. In the rest of the section we formally prove the above
statements. We start by showing the first claim.
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Claim. Under the (0, 1/2)-hCLWE(s, ε) assumption the distributions Realb and
Hybridb are (s− poly(n), 2−n+1 + ε)-indistinguishable.

Proof. Assume that there is a distinguisher D that decides if (A0,A1,Abt
mod q) is from Realb or from Hybridb with probability δ. We construct an al-
gorithm D′ that distinguishes between (0, 1/2)-hCLWE samples and random
samples with probability δ − 2−n+1 as follows:

1. Given poly(n) many (0, 1/2)-hCLWE samples {(yi, zi)}i∈[poly(n)], define a
matrix B by choosing n samples with zi = 0 such that the corresponding
vectors yi are linearly independent. These vectors are the columns of B.

2. Choose m samples of the form {(ŷi, 0)}i∈[m] and compute

y0
i = B-round (nŷi mod B)

and choose m samples of the form {(ỹi, 1/2)}i∈[m] and compute

y1
i = B-round (nỹi mod B) ,

whereB-round = B-roundq : Rn → Znq is defined as -roundq(a) = BbqB−1ac.
3. Let A0 be the matrix with columns y0

i and A1 be the matrix with columns
y1
i . Give (A0,A1,Abt mod q) to the distinguisher D.

Note that in the case where the samples {(yi, zi)}i∈[poly(n)] are (0, 1/2)-
hCLWE samples, (A0,A1) is a public key of our scheme. It remains to prove
that given samples {(yi, zi)}i∈[poly(n)], where the yi are normal random vectors
and the zi are uniform in {0, 1/2}, the resulting matrices A0,A1 are statistically
close to uniform matrices in Zn×mq . Lemma 7.1 says that if we sample a vector
from a Gaussian distribution with standard deviation larger than η2−n(B) and
map it into Pq(B), the resulting vector is statistically close to uniform in Pq(B)
and hence in Znq .

Now we only need an upper bound on the smoothing parameter in order
to prove that the columns of A0 and A1 are sampled from a Gaussian with
sufficiently large variance. The length of a vector with entries independently
sampled from N (0, 1) is at most n except with probability

√
ne−n. Hence, the

smoothing parameter of B is at most n3/2 by Lemma 7.2 except with probability√
ne−n. The entries of A0 and A1 are sampled fromN (0, n2). Since n2 > n3/2 we

follow from Lemma 7.1 that A0 and A1 are 2−n+1-statistically close to uniformly
random matrices in Zn×mq .

Next we show that Hybridb is statistically close to Ideal, which completes
the proof of soundness. This can be done using the classical leftover hash lemma
[IZ89]. To this end we need to show that multiplication of a {−1, 1}m vector by
a uniform matrix H ∈ Zm×nq is a universal family of hash functions, i.e.:

Claim. For q odd, x,y ∈ {−1, 1}m such that x 6= y we have

Pr
H←Zm×nq

[Hx = Hy mod q] = q−n.
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See the full version for a proof. The following is a special case of the leftover
hash lemma [IZ89, Reg05]:

Lemma 7.5. Let q be an odd integer. Let H ∈ Zn×mq be with columns chosen
uniformly at random from Znq and t ← {−1, 1}m a uniformly random vector.
Then the statistical distance of the uniform distribution on Znq and the distribu-

tion given by multiplying H with t is at most (qn/2m)1/4 w.p. 1− (qn/2m)1/4.

By our choice of parameters we have m = 8n log(n) and q = n7. We follow

that the statistical distance of Hybrid0 and Hybrid1 to Ideal is (n7n/2n
2

)1/4 ≤
2−n for large enough values of n. Hence, Hybrid0 is at least 2−n+1-close to
Hybrid1. Together with Claim 7.4 this yields that an encryption of 0 is 2−n+2 +
2ε-indistinguishable from an encryption of 1.

7.5 Precision

A precision value of ρ = O(log n) guarantees that decryption is unaffected as a
result of the approximations. The matrix entries of the public key are integer
values.

Correctness of decryption remains unaffected and the proof is analogous to
the one given for the pancake scheme in Section 4.5.

8 Scheme 4: Baguette Encryption

We now present a second approach that reduces the decryption error of the
pancake scheme. The security error remains constant but could be reduced by
the parallelepiped technique presented in Section 7. Instead of publishing samples
that have a pancake distribution in only one secret direction, we publish samples
that have a pancake distribution in multiple secret directions, i.e. samples from
the hCLWE(`) distribution. This is a distribution defined in [BRST21] to which
the authors give a reduction from hCLWE. To decrypt we take the inner products
of the ciphertext with all secret directions. If the ciphertext is an encryption of
0 all of the results are polynomially close to an integer. If the ciphertext is
an encryption of 1, at least one of the results is not close to an integer with
high probability since taken modulo 1 they are uniformly random values in
[0, 1). Before presenting the encryption scheme we formally define the hCLWE(`)
distribution.

8.1 The hCLWE(`) distribution

Both the hCLWE(`), distribution and the corresponding decision problem were
introduced in [BRST21]. This problem is the extension of hCLWE to the case
of ` hidden orthogonal directions.

Definition 8.1 (hCLWE(`) Distribution). For a matrix W = (w1| . . . |w`) ∈
Rn×` such that WTW = I`, real numbers β, γ > 0, n ∈ N and ` ∈ N with
0 ≤ ` ≤ n, samples y ∈ Rn for the hCLWE(`) distribution HW,β,γ,n,` are
generated as follows:
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1. Sample k1, . . . , k` ∈ Z independently with distribution DZ,γ2+β2 .
2. Sample e1, . . . , e` ← N (0, β′2) independently where β′2 := β2/(γ2 + β2).
3. Sample v as Nn−`(0, 1) from the subspace orthogonal to W.

4. Output y := v +
∑`
i=1(ki/γ

′ + ei)wi where γ′ := (γ2 + β2)/γ.

For ` = 0 we get the normal distribution with covariance matrix In and for
` = 1 we recover the hCLWE distribution. We refer to the columns of W as the
hidden directions. Note that they are orthonormal vectors.

Definition 8.2 (hCLWE(`) Distinguishing Problem). For real numbers β, γ >
0, n ∈ N and ` ∈ N with 0 ≤ ` ≤ n, the (average-case) distinguishing prob-
lem hCLWEβ,γ,n(`) asks to distinguish between HW,β,γ,n,` for a uniform matrix
W ∈ Rn×` such that WTW = I`, and Nn(0, 1).

The hCLWE(`)(s, ε) assumption postulates that the hCLWE(`) distinguish-
ing problem cannot be solved in size s with advantage ε. As shown in [BRST21]
(Lemma 9.3.), if n − ` = Ω(nk) for some constant k > 0, there is an efficient
reduction from hCLWEβ,γ,n−`+1 to hCLWEβ,γ,n(`).

8.2 Encryption scheme

We now give an encryption scheme that builds on the pancake scheme from
Section 4. It achieves negligible decryption error using more hidden directions
instead of the (0, 1/2)-hCLWE distribution.

The scheme is parametrized by γ > 0; β > 0; r > 0, n, `,m ∈ N and a
parameter a > 0 for which we will only consider two possible values, namely,
a = n and a = 100.

– The secret key is a uniformly random matrix W ∈ Rn×` such that WTW =
I`.

– The public key is a matrix A ∈ Rn×m whose columns are independently
sampled from HW,β,γ,n,`.

– To encrypt 0, choose a vector t ∈ {−1/
√
m,+1/

√
m}m uniformly at random

and output
c := roundr(At).

Check if all entries of c correspond to buckets of width less than 1/(4a
√
n
√
mγ′).

If yes, output c. Otherwise, output 0.
– To encrypt 1, choose a vector c← {1, 2, . . . , r}n uniformly at random. Check

if all entries of c correspond to buckets of width less than 1/(4a
√
n
√
mγ′).

If yes, output c. Otherwise, output 1.
– To decrypt a ciphertext c, take any z such that roundr(z) = c, compute

γ′
√
mWT z mod 1

and check if all ` entries are in (−1/2a, 1/2a). If yes, output 0, else output
1.
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The real matrices and vectors W,A, t are represented with O(log n) bits of
precision. The precision analysis is analogous to the one done in 4.5 for pancake
encryption, so we omit it.

Theorem 8.3. Set the parameters of the scheme to γ =
√
n, β = (16·104n3 log(n))−1,

` = log n, m = 108n2 log(n)2, r = (40001n3 log(n))5/3 and a = n. Assuming
hCLWE(s, ε), the scheme has negligible decryption error and security error at
most 1/4 + 4ε.

We prove correctness and security of the scheme separately in the next two
subsections.

We are also interested in using this scheme to prove that hCLWE and hCLWE(`)
are in SZK (statistical zero knowledge), what is shown in Section 9 for the fol-
lowing choice of parameters:

a = 100

β′γ′ ln γ′ < 1/(4 · 104Kn log n)

γ′ > 1

m = (Kn log n ln γ′)2

r = m10(γ′)5/3

(3)

where K = 4 · 9 · 10 · e · 2 · 5.

8.3 Correctness

The following two claims assert that the scheme is correct.

Claim. The probability that Dec(W,Enc(A, 0)) = 0 over the joint choice of the
public key and encryption randomness is at least

1− `
√

2β′2γ′2m

π

e
− (1/4a)2

2β′2γ′2m

1/4a
.

In particular,

– for the choice of parameters made in Theorem 8.3, it is at least 1− e−n, i.e.,
the error is a negligible function.

– for the choice of parameters suggested in Equation 3, the probability is at
least 1− e−5000.

Claim. If n ≥ 4, the probability that Dec(w,Enc(A, 1)) = 1 is at least 1 −
(3/2a)` − exp(−γ′2m). In particular,

– for the choice of parameters made in Theorem 8.3, the probability is at least
1− (3/2n)logn − exp(−n3), i.e., the error is negligible.

– for the choice of parameters suggested in Equation 3, the probability is at
least 1− (3/200)` − exp(−n2).
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8.4 Security

In order to analyze the security of the scheme we have to take into account
the possibility that at least one of the entries of the ciphertext corresponds to a
bucket of width larger than 1/(4a

√
n
√
mγ′) as the encryption algorithm outputs

the plaintext in the clear in that case.

Claim. Let r be such that the following inequalities are satisfied

r−3/5 ≤ 1

4a
√
n
√
mγ′

(4)

2nr−2/5√
ln r2/5

+
2n

r
≤ δ(n). (5)

Let A ∈ Rn×m be a matrix whose columns consist of independent hCLWE(`)
samples and assume hCLWE(`)(s, ε) where s is the complexity of rounding and ε
is a function of n. Let t← {−1/

√
m, 1/

√
m}m be sampled uniformly at random.

The probability that any entry of the vector c := roundr(At) corresponds to a
bucket of width larger than 1/(4a

√
n
√
mγ′) is at most δ(n)+ε. For the choice of

parameters made in Theorem 8.3 and in Equation 3 both conditions are satisfied
for δ(n) = 1

24 .

The next claim follows directly from Proposition 4.5.

Claim. If the ciphertexts are not the messages, the distributions (N,Enc(N, 0))

and (N,Enc(N, 1)) are
√

4e ln rn/
√
m-statistically close for a matrix N of inde-

pendent standard Gaussians. In particular,

– for the choice of parameters made in Theorem 8.3, the distance is at most
1/
√

50 < 1/4.
– for the choice of parameters suggested in Equation 3, the distance is at most

1/3.

Corollary 8.4. If hCLWE(`)(s, ε) holds, then the distributions (A,Enc(A, 0))

and (A,Enc(A, 1)) are (s−poly(n),
√

4e ln rn/
√
m+4ε)-indistinguishable where

A is the public key matrix. In particular,

– for the choice of parameters made in Theorem 8.3, and ε = 1/24, we get
1/4 + 4/24 < 1/2.

– for the choice of parameters suggested in Equation 3 and ε = 1/24, we get
1/3 + 4/24 = 1/2.

9 hCLWE and hCLWE(`) are in SZK

In this section we prove that hCLWE and hCLWE(`) are in SZK, which is
the class of decision problems that admit a statistical zero-knowledge proof
[GMR89]. Zero-knowledge is defined with respect to honest verifiers.
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We say that a sampling problem is in SZK if there is a polynomial-time
honest-verifier statistical zero-knowledge protocol that accepts at least 2/3 of
the YES instances and rejects at least 2/3 of the NO instances. The choice of
threshold 2/3 is operational.

Our proof consists in a reduction from hCLWE to the statistical difference
problem (SD). Sahai and Vadhan proved in [SV03] that SD is complete for SZK.

Definition 9.1 (SD Problem). The YES instances of the Statistical Difference
(SD) problem are pairs of circuits (C0, C1) such that ∆(C0, C1) > 2/3 and the
NO instances are pairs of circuits (C0, C1) such that ∆(C0, C1) < 1/3.

Here ∆ is the statistical (total variation) distance between the output dis-
tributions sampled by the circuits when instantiated with a uniformly random
seed. That is, if the output space of C0 and C1 is some finite set Ω,

∆(C0, C1) = sup
A⊆Ω

|Pr[C0 ∈ A]− Pr[C1 ∈ A]| = 1

2

∑
ω∈Ω
|Pr[C0 = ω]− Pr[C1 = ω]|

Since SD is a complete problem for the SZK class and SZK is a class closed
under reductions (see [SV03]), we can study the SZK class by considering re-
ductions to SD instead of interactive proof systems. This approach also removes
any reference to zero-knowledge.

In order to show that hCLWE is in SZK, it suffices to define two circuits that
satisfy the conditions of Definition 9.1.

Theorem 9.2. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ <
1/(K ′n log n) and γ′ is polynomially bounded, the hCLWEβ,γ,n problem with
m = (Kn log n ln γ′)2 samples is in SZK.

Proof. Take K and r as in Equation 3, that is, K = 4 · 9 · 10 · e · 2 · 5 and
r = m10(γ′)5/3. Let K ′ = 4 ·104K. Let X be either a valid public key A ∈ Rn×m
or a matrix N ∈ Rn×m with i.i.d. entries sampled from N (0, 1). We define two
circuits C0, C1 that take as input the pair (t,u) where t ∈ {−1/

√
m, 1/

√
m}m

and u ∈ {1, 2, . . . , r}n. C0 outputs roundr(Xt), i.e., an encryption of 0 using
randomness t, while C1 outputs u, i.e., an encryption of 1 with randomness u.

If X = A, by Claim 8.3 and Claim 8.3 and Claim 8.4 for ε(n) = 1/24 = δ(n),
the decryption error is at most e−5000 + 3/200 + exp(−n2) + 1/24 + 1/24. It
follows that ∆(C0, C1) > 2/3.

If X = N, then the statistical distance between C0 and C1 is at most 1/3 by
Proposition 4.5.

We also have an analogous statement for hCLWE(`).

Theorem 9.3. Let K,K ′ be sufficiently large constants. If γ′ > 1, β′γ′ ln γ′ <
1/(K ′n log n), γ′ is polynomially bounded and 1 ≤ ` ≤ n, hCLWEβ,γ,n(`) with
m = (Kn log n ln γ′)2 samples is in SZK.
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