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Abstract. Interactive oracle proofs (IOPs) are a proof system model
that combines features of interactive proofs (IPs) and probabilistically
checkable proofs (PCPs). IOPs have prominent applications in complex-
ity theory and cryptography, most notably to constructing succinct ar-
guments.
In this work, we study the limitations of IOPs, as well as their relation to
those of PCPs. We present a versatile toolbox of IOP-to-IOP transforma-
tions containing tools for: (i) length and round reduction; (ii) improving
completeness; and (iii) derandomization.
We use this toolbox to establish several barriers for IOPs:

– Low-error IOPs can be transformed into low-error PCPs. In other
words, interaction can be used to construct low-error PCPs; alterna-
tively, low-error IOPs are as hard to construct as low-error PCPs. This
relates IOPs to PCPs in the regime of the sliding scale conjecture for
inverse-polynomial soundness error.

– Limitations of quasilinear-size IOPs for 3SAT with small soundness
error.

– Limitations of IOPs where query complexity is much smaller than
round complexity.

– Limitations of binary-alphabet constant-query IOPs.

We believe that our toolbox will prove useful to establish additional
barriers beyond our work.
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1 Introduction

Probabilistic proof systems have enabled breakthroughs in complexity theory
and cryptography in areas such as zero-knowledge, delegation of computation,
hardness of approximation, and more.

A probabilistically checkable proof (PCP) [6, 24] is a proof system in which
a polynomial-time probabilistic verifier has query access to a proof string. The
power of PCPs is often exemplified by the celebrated PCP theorem [5, 4]: every
language in NP can be decided, with constant soundness error, by probabilisti-
cally examining a constant number of bits in a polynomial-size proof. Decades
of PCP research have achieved many other goals and applications.

Yet challenging open problems about PCPs remain. For example, the shortest
PCPs known to date have quasi-linear length [13, 20], and efforts to achieve linear
length have not succeeded. As another example, it remains open to construct a
PCP for NP with soundness error 1/n, alphabet size poly(n), query complexity
O(1), and randomness complexity O(log n). The existence of such “low-error”
PCPs is known as the “sliding-scale conjecture”.

Interactive oracle proofs. Due to the lack of progress on these and other open
problems, researchers introduced an interactive variant of PCPs called interactive
oracle proofs (IOP) [12, 34]. A k-round IOP is a k-round IP where the verifier
has PCP-like access to each prover message (the verifier may read a few symbols
from any prover message).

A rich line of work constructs IOPs that provide significant efficiency im-
provements over known PCPs [11, 8, 10, 9, 14, 38, 15, 16, 35, 31, 28, 17, 36]. In par-
ticular, known IOPs achieve desirable properties such as linear proof length,
fast provers, added properties such as zero-knowledge, and even good concrete
efficiency. In turn, these IOPs have led to breakthroughs in the construction of
highly-efficient cryptographic proofs, which have been widely deployed in real-
world applications.

Another line of work shows that IOPs can also be used to prove hardness of
approximation results for certain stochastic problems [19, 22, 3, 2].

What is the power of IOPs?. Since IOPs were invented to bypass open problems
of PCPs, it is crucial to understand the limitations of IOPs, and the relation to
the limitations of PCPs.

What are the limitations of IOPs, and how do they compare to PCPs?

For example: What trade-offs are there between round complexity, query com-
plexity, and soundness error in IOPs? How small can the soundness error of an
IOP be if we require constant query complexity but allow increasing the alphabet
size (as in a sliding-scale PCP)?

In this paper, we explore these and other questions.
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1.1 Our results

We show several results for IOPs in different regimes: (1) low-error IOPs im-
ply low-error PCPs; (2) limitations of short IOPs; (3) limitations of high-round
low-query IOPs; and (4) limitations of binary-alphabet constant-query IOPs. All
these results follow from combining various tools from a new toolbox of trans-
formations for IOPs. We discuss this toolbox in more detail in Section 2. We
believe that our toolbox will prove useful to establish additional barriers beyond
our work.

(1) Low-error IOPs imply low-error PCPs. The “sliding scale” conjecture [7]
states that for every β with 1/poly(n) ≤ β < 1 there is a PCP system for NP
that has perfect completeness, soundness error β, polynomial proof length over a
poly(1/β)-size alphabet, constant query complexity, and logarithmic randomness
complexity. A major open problem is constructing such PCPs when β is an
inverse polynomial.

We show that (under a complexity assumption or using non-uniformity), a
polylog-round IOP with inverse-polynomial soundness error and constant query
complexity can be transformed into a sliding-scale PCP with inverse-polynomial
soundness error.

Theorem 1 (informal). Let R be a relation with a public-coin IOP with per-
fect completeness, soundness error 1/n, round complexity polylog(n), alphabet
size poly(n), proof length poly(n), and query complexity O(1). Then under a de-
randomization assumption5 (or alternatively by using a non-uniform verifier) R
has a PCP with perfect completeness, soundness error 1/n, alphabet size poly(n),
proof length poly(n), and query complexity O(1).

Our full theorem, described in the full version of this paper, allows for trade-
offs between the parameters of the IOP and PCP.

Theorem 1 can be interpreted as a positive result or a negative result. The
positive viewpoint is that efforts towards constructing sliding-scale PCPs can rely
on interaction as an additional tool. The negative viewpoint is that constructing
polylog(n)-round IOPs with sliding-scale parameters is as hard as constructing
sliding-scale PCPs.

Our theorem does leave open the question of constructing poly(n)-round
IOPs with constant query complexity and small soundness error.

(2) Limitations of short IOPs. While the shortest PCPs known have quasi-linear
proof length, constructing linear-size PCPs remains a major open problem. In
contrast, interaction has enabled IOPs to achieve linear proof length (e.g., [10]).
Yet, we do not have a good understanding of the relation between proof length
and soundness error for IOPs. We show that, under the randomized exponential-
time hypothesis (RETH),6 short IOPs for 3SAT have high soundness error.
5 There exists a function in E with circuit complexity 2Ω(n) for circuits with PSPACE

gates.
6 RETH states that there exists a constant c > 0 such that 3SAT /∈ BPTIME[2c·n].
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Theorem 2 (informal). Assume RETH and suppose that there exists a public-coin
IOP for n-variate 3SAT with the following parameters: perfect completeness,
soundness error β, round complexity polylog(n), alphabet size λ, (total) proof
length l, and query complexity q.

If
(

l·log λ
n

)q

≤ npolylog(n), then β > Ω
(

n
l·log λ

)q

.

The theorem provides a barrier to improving some state-of-the-art PCPs.
Dinur, Harsha, and Kindler [21] come close to a sliding-scale PCP in the inverse-
polynomial regime: they construct a PCP for NP with perfect completeness,
soundness error 1/poly(n), alphabet size n1/polyloglog(n), proof length poly(n),
and query complexity polyloglog(n). While IOPs have been useful in improv-
ing proof length over PCPs, Theorem 2 implies that IOPs are unlikely to help
achieving nearly-linear proof length in the parameter regime of [21] (even when
significantly increasing alphabet size).

Corollary 1. Assuming RETH, there is no public-coin IOP for n-variate 3SAT
with perfect completeness, soundness error 1/n, round complexity polylog(n), al-
phabet size npolylog(n), proof length n·polylog(n), and query complexity polyloglog(n).

We leave open the question of whether IOPs in this parameter regime can
be made to have linear proof length by using O(n) rounds of interaction.

(3) Limitations of high-round low-query IOPs. Goldreich, Vadhan, and Wigder-
son [27] show that IP[k] ̸= IP[o(k)] for every k, under reasonable complexity
assumptions. In other words, IPs with k rounds cannot be “compressed” to have
o(k) rounds. In contrast, Arnon, Chiesa, and Yogev [2] show that k-round IPs
can be modified so that the verifier reads o(k) rounds. We show that reading
o(k) rounds comes at the price of a large soundness error.

Theorem 3. Let L ∈ AM[k]\AM[k′] be a language for k′ < k and suppose that
L has a public-coin IOP with perfect completeness, soundness error β, round
complexity k, alphabet size 2poly(n), proof length poly(n), and query complexity
q ≤ k′. Then β ≥ Ω

(
k′

k

)q

− n−c for every constant c > 0.

This provides a barrier to improving the parameters of IOPs in [2]. They show
that any language in IP[log(n)] has an IOP with perfect completeness, sound-
ness error 1/polylog(n), round complexity polylog(n), alphabet size 2poly(n), and
query complexity O(1). By Theorem 3 the soundness error 1/polylog(n) is tight
unless IP[log(n)] = IP[O(1)]. Moreover, since the soundness error of IOPs is
closely related to the approximation factor for the value of stochastic constraint
satisfaction problems (SCSP) (see [2]), our theorem additionally provides barri-
ers to proving hardness of approximation results for SCSPs using IOPs.

(4) Limitations of binary-alphabet constant-query IOPs. PCPs with a binary
alphabet and small query complexity cannot have good soundness. In more de-
tail, assuming the randomized exponential-time hypothesis, any binary-alphabet
PCP with perfect completeness, soundness error β, and query complexity q sat-
isfies the following.
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– If q = 2 then β = 1 (i.e., no such PCPs exist). This follows from the fact that
we have linear time algorithms to check satisfiability of every binary-alphabet
2-ary constraint satisfaction problem.

– If q = 3 then β > 5/8. Zwick [39] gives a polynomial-time algorithm that,
on input a satisfiable CSP with binary alphabet and arity 3, distinguishes
whether the CSP is satisfiable or whether every assignment satisfies at most a
5/8 fraction of the constraints. This implies that, unless P = NP, every PCP
for NP with binary alphabet, polynomial size, and query complexity 3 must
have soundness error greater than 5/8.7 Håstad [30] shows that this lower
bound on soundness error is essentially optimal: for every ε > 0, he constructs
a PCP for NP with perfect completeness, soundness error 5/8 + ε, binary
alphabet, polynomial proof length, and query complexity 3.

We ask whether interaction can help in further reducing the soundness error
in the constant-query regime. Our next result shows that this is unlikely if the
number of rounds is not large.

Theorem 4. Assume RETH and suppose that there exists a non-adaptive public-
coin IOP for n-variate 3SAT with the following parameters: perfect completeness,
soundness error β, round complexity k, alphabet size 2, proof length 2o(n), query
complexity q, verifier randomness r, and verifier running time 2o(n).
– If q = 2 then β > 1− ε for every ε satisfying k · log(r · n/ε) = o(n).
– If q = 3 then β > 5/8− ε for every ε satisfying k · log(r · n/ε) = o(n).

For example, assuming RETH, there is no public-coin IOP with perfect com-
pleteness, soundness error β = 1 − 2−o(n), round complexity k = polylog(n),
alphabet size 2, proof length 2o(n), query complexity 2, and verifier randomness
r = 2o(n).

The bound on the query complexity of PCPs can be extended to q queries
for any q = O(1) for which there is a polynomial-time algorithm that decides
q-ary CSPs. Theorem 4 generalizes similarly to match the soundness error for
PCPs. However, for q > 3, we do not know the exact optimal soundness error
for PCPs with perfect completeness [29].

Constructing an IOP for 3SAT with polynomial round complexity, binary
alphabet, constant query complexity, and small soundness error remains an open
problem.

1.2 Related work

Barriers on probabilistic proofs. We describe known limitations about PCPs,
IPs, and IOPs.

– PCPs. If P ̸= NP then, for every q = o(log n) and r = o(log n), NP has no
non-adaptive PCP with alphabet size λ = O(1), query complexity q, and ran-
domness complexity r. Indeed, the PCP-to-CLIQUE reduction in [23], given

7 Assuming ETH, the proof length of the PCP can be 2o(n).
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an instance x for the language L of the PCP, produces, in polynomial time, a
graph of size λq · 2r ≪ n whose maximum clique size is either large (if x ∈ L)
or small (if x /∈ L), where the gap between these sizes depends on the PCP’s
completeness and soundness errors. By iteratively applying that reduction a
polynomial number of times, one can (in polynomial time) reduce x to a graph
G of size O(log n), while preserving the large-or-small property of the max-
imum clique. Since the size of G is logarithmic, one can then determine in
polynomial time whether the largest clique in G is large or small, and thereby
decide membership for the original instance x.
Moreover, if P ̸= NP then NP does not have non-adaptive PCPs with alpha-
bet size λ = O(1), query complexity q = O(1), and randomness complexity
r = O(log n) with soundness error β < log λ

λq−1 . Indeed, such a non-adaptive
PCP can be converted into a CSP of size poly(n), and any efficient algorithm
for approximating the CSP’s number of satisfied constraints imposes a limi-
tation on the soundness error β. For example, the bound log λ

λq−1 follows from
the approximation algorithm in [32]. Assuming ETH, these limitations can be
extended to PCPs with super-polynomial proof length and super-constant
alphabet size and query complexity. See the full version of this paper for a
quantitative proof of how to combine PCPs with small soundness error for
3SAT and polynomial-time approximation algorithms for CSPs in order to
decide 3SAT faster than is possible under ETH.
Notice that an adaptive PCP with alphabet size λ and query complexity q
can be converted into a non-adaptive PCP with query complexity λq, which
is constant when λ = O(1) and q = O(1). Hence the above discussion applies
to adaptive PCPs in this regime as well.

– IPs. [26] show that public-coin IPs with bounded prover communication com-
plexity can be decided in non-trivial (probabilistic) time. [27] strengthen these
results for the case of private-coin IPs, showing that similar bounds on com-
munication imply that the complement of the language can be decided in
non-trivial non-deterministic time. Such results are limitations on IPs for lan-
guages believed to be hard, such as SAT.

– IOPs. In order to derive barriers for succinct arguments, [18] extend to IOPs
the limitations of [26], showing barriers for IOPs with small soundness error
relative to query complexity.
[33] show limitations for succinct IOPs for circuit SAT (CSAT), where the
proof length is polynomial in the number n of circuit inputs. The results
cover different parameters, depending on the “plausibility” of the complexity
assumption used. For example (on the most probable end), suppose that the
satisfiability of a circuit C cannot be decided by a poly(n)-space algorithm fol-
lowing poly(|C|)-time preprocessing. Then there is no succinct IOP for CSAT
with constant round complexity and logarithmic query complexity.

IOP-to-IOP transformations. Our toolbox (outlined in Section 2) contains IOP-
to-IOP transformations that include round reduction, achieving perfect com-
pleteness, and derandomization.
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– [3, 2] provide IOP-to-IOP transformations for round reduction and achieving
perfect completeness, but we cannot use them because those transformations
do not preserve query complexity of the IOP (a key property for us).

– [33] show that any public-coin IOP can be transformed into one with less in-
teraction randomness at the cost of introducing a “common reference string”
(CRS) and satisfying only non-adaptive soundness. Their main goal is to
achieve randomness complexity that depends (logarithmically) only on the
prover-to-verifier communication complexity (but not the instance length) and
on an error parameter over the choice of the CRS. They also show that the
CRS can be replaced with non-uniform advice for the verifier at the cost
of increasing the randomness complexity to also depend (logarithmically) on
the instance length. Our derandomization lemma focuses on IOPs with a non-
uniform verifier and allows choosing the target randomness complexity, rather
than optimizing with regards to the prover-to-verifier communication com-
plexity.

– [1] show how to derandomize private-coin IPs via non-uniform advice or
PRGs. Our derandomization lemma applies to public-coin IOPs.

2 Techniques

We describe our tools for IOPs and sketch their proofs, and then show how they
can be applied to achieve our main results. Further details on how these tools are
constructed can be found in the full version of this paper. The tools are divided
into three groups.

1. Tools for length and round reduction: Section 2.1 outlines transforma-
tions that decrease the length and round complexity of IOPs with low query
complexity.

2. Tools for improving completeness: Section 2.2 outlines transformations
that improve the completeness errors of IOPs.

3. Tools for derandomization: Section 2.3 outlines transformations that de-
crease the number of random bits used by the IOP verifier.

Following the presentation of our toolbox, in Section 2.4 we explain how we
use the tools (in conjunction with additional arguments) to derive the theorems
described in Section 1.1.

2.1 Tools for length and round reduction

We describe how to decrease the length and round complexity of IOPs.

Lemma 1 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.
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1. Length reduction: Let ℓ be a parameter with q ≤ ℓ ≤ k · l. Then R has a
public-coin IOP with completeness error 1− (1−α) · (ℓ/(e · k · l))q, soundness
error β, round complexity k, alphabet size λ, total proof length ℓ, query
complexity q, per-round verifier randomness r+ℓ·log(k·l), and verifier running
time poly(vt, ℓ).

2. Round reduction: Let k′ be a parameter with q ≤ k′ ≤ k. Then R has a
public-coin IOP with completeness error 1− (1− α) · (k′/(e · k))q, soundness
error β, round complexity k′+1, alphabet size λ, per-round proof length l,
query complexity q, per-round verifier randomness k · (r+ log k), and verifier
running time poly(vt).

3. Unrolling to PCP: R has a PCP with completeness error α, soundness
error β, alphabet size λ, proof length l·2O(k·r), query complexity q, randomness
k · r, and verifier running time poly(vt).

Below we sketch the proofs of Items 1 and 2. Item 3 is folklore and follows
by setting the PCP to equal the interaction tree of the IOP.

Length reduction. The length of low-query IOPs can be reduced while incurring
an increase in the completeness error. The intuition is that if the IOP has query
complexity q ≪ k · l, then each symbol in the proof is read by the verifier
with small probability. Hence, if the prover omits a random subset of the proof
symbols, the verifier is unlikely to require these missing symbols.

Construction 1 (informal). The new prover P′ receives as input an instance
x and a witness w, while the verifier V′ receives as input the instance x. They
interact as follows.
1. V′ guesses the locations that V will query. V′ samples and sends a random

set I ⊆ [k · l] of ℓ indices from among all the prover message symbols.
2. The original IOP is simulated with prover messages omitted according to I.

For every j ∈ [k]:
(a) V′ sends ρj ← {0, 1}r.
(b) P′ computes πj := P(x,w, ρ1, . . . , ρj) and sends π′

j equal to πj with
symbols outside of I omitted.

3. V′ simulates V, and rejects if any queries are made outside of I. V′ simulates
the decision stage of V given input x. Whenever an index i ∈ I is queried,
return the appropriate symbol from the prover messages. If an index i /∈ I is
queried, then immediately reject. Output the same answer as V.

The total proof length is ℓ since the prover P′ sends only those symbols
whose index is in I (which has size ℓ). The per-round verifier randomness at
most r + ℓ · log(k · l) because in the first round the verifier sends I (which can
be described with ℓ · log(k · l) random bits) and then it sends its first message of
r bits. The rest of the complexity parameters follow straightforwardly from the
construction.

Soundness follows from the fact that the changes made to the IOP can only
increase the chance that the verifier rejects. We sketch the proof of completeness.
Fix some x ∈ L. The locations read by V are independent of the set I. Therefore,
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the probability that V queries outside the set I is
(
k·l−q
ℓ−q

)
/
(
k·l
ℓ

)
≥ (ℓ/(e · k · l))q.

Conditioned on V querying only inside I, V accepts with probability at least
1−α. Hence the probability that the new verifier V′ accepts is at least (1−α) ·
(ℓ/(e · k · l))q.

Round reduction. We sketch how the round-complexity of low-query IOPs can be
reduced. The intuition behind this lemma is similar to that described for length
reduction: if q ≪ k, then the verifier is unlikely to need most of the rounds, so
removing a random subset of the rounds does not harm completeness by much.
Below we describe the transformation for IOP round reduction.

Construction 2 (informal). The new prover P′ receives as input an instance
x and a witness w, while the verifier V′ receives as input the instance x. They
interact as follows.
1. V′ guesses the rounds that V will query. V′ samples and sends a random set
I ⊆ [k] of k′ indices. Denote I := (i1, . . . , ik′) with ij < ij+1 and let i0 := 1.

2. The original IOP is simulated with rounds omitted according to I. For every
j ∈ [k′]:
(a) V′ sends ρi(j−1)+1, . . . , ρij ← {0, 1}r.
(b) P′ computes and sends πj := P(x,w, ρ1, . . . , ρij ).

3. V′ simulates V, and rejects if any queries are made outside of I. V′ samples
ρik′+1, . . . , ρk ← {0, 1}r simulates the decision stage of V given input x and
verifier messages ρ1, . . . , ρk. Whenever an index in round i ∈ I is queried,
return the appropriate symbol in the prover messages. If a round i /∈ I is
queried, then immediately reject. Output the same answer as V.

A technical remark: as written above, the protocol is not public-coin because
the verifier’s first message I dictates the length of subsequent verifier messages.
Nevertheless, the protocol can be made public-coin by padding verifier messages
to k·r bits. The prover and verifier act as in the protocol description, ignoring the
padding bits. The verifier additionally sends k′ · log k bits as the choice of the set
I. Thus, the per-round randomness of the verifier is k · r+k′ · log k ≤ k ·(r+log k).

2.2 Tools for improving completeness

A transformation for achieving perfect completeness for IPs is shown in [25].
Directly applying that transformation to IOPs increases the query complexity of
the protocol significantly. We show a variant of the transformation in [25] that
preserves query complexity up to a small additive constant.

Lemma 2 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.

Then R has a public-coin IOP with perfect completeness, soundness error
O
(

β·k·r
log(1/α)

)
, round complexity k+1, alphabet size max{λ, 2k·r}, per-round proof
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length O
(

l·k·r
log(1/α)

)
, query complexity q+2, per-round verifier randomness r, and

verifier running time poly(vt).

Remark 1. If only small completeness error is desired (rather than completeness
error 0), then this can be achieved with similar query complexity but smaller
overhead to the alphabet size. See the full version of this paper for more details.

Review: perfect completeness for IPs. Consider the set S of verifier random coins
ρ⃗ = (ρ1, . . . , ρk) (over the entire protocol) where the honest prover has a strategy
to make the verifier accept if it is sent these strings while interacting with the
verifier. Given the matching prover messages, the verifier can efficiently check
whether ρ⃗ ∈ S. [25] shows that for large enough t there exist “shifts” z⃗1, . . . , z⃗t
such that for every choice of verifier randomness ρ⃗ there exists j such that
(z⃗j⊕ρ⃗) ∈ S. It follows that the honest prover needs only to send these shifts, and
then run the protocol with the verifier, giving answers matching each shift. At
the end of the protocol, the verifier accepts if and only if ∨tj=1

(
(z⃗j⊕ ρ⃗)

?

∈ S
)
= 1.

The soundness error degrades by a multiplicative factor of t since a malicious
prover only needs to convince the verifier in one execution.

Perfect completeness for IOPs. The aforementioned verifier computes the “OR”
of t expressions. We observe that, in order to prove the claim ∨tj=1

(
(z⃗j ⊕ ρ⃗)

?

∈
S
)
= 1, it suffices for the prover to send the verifier a single index j where

(z⃗j ⊕ ρ⃗) ∈ S, which is then checked by the verifier. The verifier only needs to
check a single execution of the IOP, rather than t, and so the query complexity
of the protocol is preserved up to reading the index j and shift z⃗j .

Construction 3. Let t := 2 ·
(

r·k
log(1/α)

)
. The new prover P′ receives as input an

instance x and a witness w, while the verifier V′ receives as input the instance
x. They interact as follows.
1. P′ sends t “shifts” for the verifier randomness. P′ sends

z⃗1, . . . , z⃗t = (z1,1, . . . , z1,k), . . . , (zt,1, . . . zt,k) ∈ {0, 1}r·k ,

to the verifier such that for every ρ⃗ there exists j where (z⃗j ⊕ ρ⃗) ∈ S (i.e., the
original prover P has an accepting strategy for verifier randomness (z⃗j ⊕ ρ⃗)).

2. Original IOP is simulated, where for every verifier message, prover replies
with a message for each shifted randomness. For i = 1, . . . , k:
– V′: Choose ρi ← {0, 1}r uniformly and send to the prover.
– P′: Send {πj,i}j∈[t] where πj,i := P(x,w, ρ1 ⊕ zj,1, . . . , ρi ⊕ zj,i).

3. Prover sends index j of shift where its messages succeed in convincing the
verifier. P′: If there exists an index j ∈ [t], such that Vπj,1,...,πj,k(x, ρ1 ⊕
zj,1, . . . , ρk⊕ zj,k) = 1, then send j to the verifier V′ as a non-oracle message.
Otherwise, send ⊥.

4. V′ checks that V accepts the “shifted” j-th execution. V′: Receive j as a non-
oracle message.
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(a) If j = ⊥, then reject.
(b) Otherwise, query z⃗j = (zj,1, . . . , zj,k) and check that

Vπj,1,...,πj,k(x, ρ1 ⊕ zj,1, . . . , ρk ⊕ zj,k) = 1 ,

querying the appropriate proofs as required by V.

2.3 Tools for derandomization

We show how to derandomize public-coin IOPs based on non-uniform advice or
based on pseudorandom generators (PRGs), while preserving the use of public-
coins. Both transformations achieve logarithmic randomness complexity but
slightly increase completeness and soundness error. Round complexity, proof
length, and query complexity are preserved.

Lemma 3 (informal). Let R be a relation with a public-coin IOP (P,V) with
completeness error α, soundness error β, round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier randomness r,
and verifier running time vt.

1. Derandomization using PRGs: Suppose that there exists a PRG against
polynomial-size PSPACE circuits with seed length ℓ, error ε and evaluation
time tPRG. Then R has a public-coin IOP with completeness error 1−O((1−
α)−ε ·k2), soundness error O(β+ε ·k3), round complexity k, alphabet size λ,
per-round proof length l, query complexity q, per-round verifier random-
ness ℓ, and verifier running time poly(vt, tPRG).
(Such a PRG with seed length ℓ = O(log |x|), error ε = 1/poly(|x|) and
computation time tPRG = poly(|x|) exists if there exists a function in E with
circuit complexity 2Ω(n) for circuits with PSPACE gates.)

2. Derandomization using non-uniformity: Let ε ∈ (0, 1) be a parame-
ter. Then R has a public-coin IOP with completeness error α + k · ε, sound-
ness error β + k · ε, round complexity k, alphabet size λ, per-round proof
length l, query complexity q, per-round verifier randomness Θ(log ((r ·
k+ |x|)/ε)), and verifier running time poly(vt, k, l, r, 1/ε), where the verifier
receives poly(|x|, k, r, 1/ε) bits of non-uniform advice. Moreover, a random
string constitutes good advice with probability 1− 2−|x|.

We focus the overview below on Item 1. Item 2 can be shown in a similar
manner.

Derandomization using PRGs. We show that IOPs can be derandomized using a
pseudo-random generator. In this transformation, the verifier samples seeds for
the PRG rather than uniform random messages. Thus the verifier randomness
per-round is as small as a seed of the PRG.

Construction 4 (informal). On instance x and witness w, the protocol (P′,V′)
proceeds as follows:
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1. Simulate original IOP where verifier messages are chosen using the PRG. For
j = 1, . . . , k:
(a) V′: Sample and send a random ρj ← {0, 1}ℓ.
(b) P′: Compute and send the prover message πj that maximizes the proba-

bility that V accepts where all of the verifier messages are chosen using
the PRG G.

2. V′: Accept if and only if Vπ1,...,πk(x,G(ρ1), . . . ,G(ρk)) = 1.

The verifier sends ℓPRG bits of randomness in each round, since it sends a seed
for the PRG. The rest of the complexity parameters follow straightforwardly
from the construction.

Interaction trees. The interaction tree of a protocol on input x, denoted Tx is
the full tree of all possible transcripts corresponding to each choice of prover and
verifier messages. The leaves are labelled as accepting or rejecting corresponding
to whether the verifier accepts or rejects the full transcript represented by the
leaf.

The value of an interaction tree T
x
, denoted by val(T

x
), is the probability

of reaching an accepting leaf from the root of the tree in a walk on the tree
where verifier messages are chosen uniformly at random and prover messages
are chosen so as to maximize the probability of reaching an accepting node. The
notion of value extends to sub-trees as well, where the value is the probability
of reaching an accepting leaf when beginning on the root of the sub-tree. Notice
that val(T

x
) = maxP̃{Pr[⟨P̃,V⟩(x) = 1]}. Moreover, val(T

x
) can be computed

in space that is polynomial in |x|, the round complexity, the proof length, and
the verifier randomness of the IOP.

Completeness and soundness. Completeness and soundness follow straightfor-
wardly from Section 2.3, which says that the value of the interaction tree of
the IOP does not change by much when the verifier messages are sampled via a
PRG.

Claim. Let G be a PRG against circuits of size poly(|x|) with PSPACE gates.
Then for every instance x:

O(val(T )− ϵPRG · k2) ≤ val(TG) ≤ O(val(T ) + ϵPRG · k3) ,

where T is the interaction tree of the IOP and TG is the interaction tree of
(P′,V′), which is identical to T except verifier randomness is always sampled
using the PRG G.

We give a simplified sketch of the proof of the claim. Let T (0) := TG and for
i = 1, . . . , k let T (i) be the tree of an intermediate protocol where the messages
ρ1, . . . , ρi are chosen uniformly at random and ρi+1, . . . , ρk are chosen from the
PRG. Notice that T (k) = T .

We show that, under a simplifying assumption to be described later, there ex-
ist circuit families C(1), . . . , C(k) each comprised of circuits of size poly(|x|, k, l, r)
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that have PSPACE gates, such that if G fools C(i) then

|val(T (i−1))− val(T (i))| ≤ ϵPRG · k .

Letting C := ∪iCi, we have that if G fools C (i.e., fools circuits of size maxC∈C |C| =
poly(|x|, k, l, r)), then

|val(Tx)− val(Tx,G)| ≤ ϵPRG · k2 .

Fix some i. We show a family C(i) such that if G fools C(i) then |val(T (i−1))−
val(T (i))| ≤ ϵPRG ·k. Consider a fixed node in T (i) corresponding to the transcript
prefix tr = (ρ1,m1, . . . , ρi−1,mi−1) (which is empty if i = 1). For ρi let T (i,tr)(ρi)
be the sub-tree of T (i) whose root corresponds to the transcript (tr||ρi).

Define

S :=

{(
1 +

1

3k

)−1

, . . . ,

(
1 +

1

3k

)−O(k)

, 0

}
.

We make the simplifying assumption that val(T (i,tr)(ρi)) ∈ S and val(T (i−1,tr)(ρi)) ∈
S for every ρi. In the full proof of the claim we achieve this by discretizing the
functions val(T (i,tr)(·)) and val(T (i−1,tr)(·)), which incurs additional errors. For
simplicity, we ignore these errors in this overview.

For every transcript tr, let C(i,tr) := {C(i,tr)
p }p∈S where each circuit C(i,tr)

p ,
on input ρi, outputs 1 if and only if val(T (i,tr)(ρi)) = p. We observe that a
careful implementation of C(i,tr)

p (computing the value of a tree can be done
space proportional to its depth) has size at most poly(|x|, k, l, r) using PSPACE
gates. Thus, if G fools every circuit in the family C(i,tr) we get that

val(T (i−1,tr)) =
∑
p∈S

p · Pr
s
[C(i,tr)

p (G(s)) = 1]

≤
∑
p∈S

p ·
(
Pr
ρi

[C(i,tr)
p (ρi) = 1] + ϵPRG

)
= val(T (i,tr)) +

∑
p∈S

p · ϵPRG

≤ val(T (i,tr)) +O(ϵPRG · k) ,

where T (i−1,tr) is the sub-tree of T (i−1) whose root corresponds to the transcript
tr. The final inequality follows by the fact that

∑
p∈S p =

∑O(k)
i=1 (1 + 1/3k)−i is

a geometric series bounded by O(k).
We can similarly show that val(T (i−1,tr)) ≥ val(T (i,tr)) − O(ϵPRG · k). Notice

that val(T (i)) = Etr[val(T
(i,tr))] and val(T (i−1)) = Etr[val(T

(i−1,tr))] (where the
expectation is over the verifier’s random coins). Therefore, if the G fools the
entire circuit family C(i) := ∪trC(i,tr) then we have

|val(T (i−1))− val(T (i))| = |Etr[val(T
(i−1,tr))]− Etr[val(T

(i,tr))]|

≤
∣∣∣Etr

[
val(T (i,tr)) +O(ϵPRG · k)

]
− Etr

[
val(T (i,tr))

]∣∣∣
= O(ϵPRG · k) .
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2.4 Deriving our results using the tools

We use the toolbox developed in the previous sections to derive the theorems
in Section 1.1. Each theorem is proved by applying a carefully chosen sequence
of tools (along with other arguments). Figure 1 summarizes which tools are used
to derive each theorem and the order of their use.

Round 
reduction

IOP Derandomizing
Perfect 

completeness
Unrolling 

to PCP
Theorem 1

IOP Theorem 2
Length 

reduction
IP/IOP to 
Algorithm

IOP Theorem 3
Round 

reduction

IOP Theorem 4
Algorithm 

for CSP
Unrolling 

to PCP
Derandomizing

Fig. 1. Summary of how our tools are used to derive each theorem. The “IP/IOP to
algorithm” and “Algorithm for CSP” boxes are due to prior work.

Low-error IOPs to low-error PCPs We sketch the proof of Theorem 1,
which shows that low-error IOPs can be transformed into low-error PCPs. The
proof is a sequence of transformations from our toolbox, whose goal is to trans-
form the IOP into one that is efficient enough to be unrolled into a PCP via
Item 3 of Lemma 1. This unrolling has an exponential dependency on the round
complexity and on the verifier randomness complexity of the IOP, so we seek to
decrease these without increasing the soundness error.

Decreasing the round complexity is done using the round-reduction transfor-
mation of Lemma 1, and decreasing the verifier randomness is done using either
one of our derandomization lemmas (Lemma 3). Since both transformations de-
grade completeness, prior to applying the unrolling lemma (Item 3 of Lemma 1),
we restore the IOP back to having perfect completeness using Lemma 2. Since
the transformation for perfect completeness increases the soundness error, we
counterbalance it by beginning the sequence of transformations with a small
number of parallel repetitions.

In somewhat more detail, the sequence of transformations is as follows.

1. Initial IOP. We begin with an IOP with the following parameters: perfect
completeness, soundness error 1/|x|, round complexity polylog(|x|), alphabet
size poly(|x|), proof length poly(|x|), query complexity O(1), and per-round
randomness poly(|x|).
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2. Parallel repetition. Repeat the protocol twice in parallel, and have the
verifier accept if and only if both executions are accepted. This yields a public-
coin IOP for R with: perfect completeness, soundness error 1/|x|2, round
complexity k = polylog(|x|), alphabet size poly(|x|), query complexity q =
O(1), and per-round randomness poly(|x|).

3. Round reduction. Reduce the number of rounds of the IOP via Item 2
of Lemma 1 with ℓ := q where q = O(1) is the query complexity of the
IOP verifier. This transformation results in a public-coin IOP for R with:
completeness error 1−(q/(e·k))q = 1−1/polylog(|x|), soundness error 1/|x|2,
round complexity O(1), alphabet size poly(|x|), query complexity O(1),
and per-round randomness poly(|x|).

4. Derandomization. Derandomize the IOP verifier using either item of Lemma 3.
This results in a public-coin IOP forR with: completeness error 1−1/polylog(|x|),
soundness error O(1/|x|2), round complexity O(1), alphabet size poly(|x|),
query complexity O(1), and per-round randomness O(log |x|).

5. Perfect completeness. Improve the IOP to have perfect completeness us-
ing Lemma 2. The resulting IOP has the following parameters: perfect com-
pleteness, soundness error

O(1/|x|2) ·
(

q ·O(log |x|)
− log(1− 1/polylog(|x|))

)
≤ 1/|x| ,

round complexity O(1), alphabet size poly(|x|), query complexity O(1), and
randomness O(log |x|).

6. Unrolling to PCP. Unroll the IOP with perfect completeness into a PCP
via Item 3 of Lemma 1. This gives us our final PCP with parameters: per-
fect completeness, soundness error 1/|x|, alphabet size poly(|x|), proof length
poly(|x|), query complexity O(1), and randomness complexity O(log |x|).

Limitations of short IOPs We sketch the proof of Theorem 2, which shows
that short IOPs with small soundness contradict RETH, the hypothesis that
3SAT /∈ BPTIME[2c·n] for a constant c > 0. First, we convert the IOP into
a short IP, and then apply a transformation from [18] that converts short IPs
into fast probabilistic algorithms. This leads to a fast algorithm for 3SAT, con-
tradicting RETH.

Consider a public-coin IOP for n-variate 3SAT with parameters as in Theo-
rem 2: perfect completeness, soundness error β, round complexity polylog(n), al-
phabet size λ, (total) proof length l, query complexity q, and verifier randomness
poly(n). Suppose towards contradiction that l ≥ n and

(
l·log λ

n

)q

≤ npolylog(n)

and that β = 1
2 ·

(
2·e·l·log λ

c·n

)−q

≥ n−polylog(n).8

We apply the following transformations.

8 It is sufficient to assume that β = 1
2
·
(
2·e·l·log λ

c·n

)−q
to find contradiction in β ≤

1
2
·
(
2·e·l·log λ

c·n

)−q
since we can always increase the soundness error without loss of

generality.
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1. Length reduction. Apply Item 1 of Lemma 1 with parameter ℓ := e ·
l · (2β)1/q. This results in an IOP with: completeness error α′ := 1 − 2β,
soundness error β, round complexity k′ := polylog(n), alphabet size λ′ := λ,
and proof length l′ := e · l · (2β)1/q.

2. IOP to algorithm. Convert the IOP into an algorithm using a lemma
from [18] that says that if a relation R has a public-coin IP with complete-
ness error α′, soundness error β′, round complexity k′, and prover-to-verifier
communication length l′ of symbols of size λ′, then there is a probabilistic
algorithm for deciding R in time 2O(d)+o(n) for d := l′ · log λ′+k′ · log k′

1−α′−β′ .
Notice that while the result from [18] applies to IPs rather than IOPs, one
can straightforwardly convert an IOP into an IP by having the verifier read
the prover’s messages in their entirety.

Substituting the relevant parameters, we have that:

d = l′ · log λ′ + k′ · log k′

1− α′ − β′

= e · l · (2β)1/q · log λ+ k · log(k/β)
= c · n/2 + polylog(n) .

Thus, 3SAT is decidable in probabilistic time 2c·n/2+o(n) < 2c·n in contradiction
to RETH.

Limitations of high-round low-query IOPs We sketch the proof of The-
orem 3, showing that relations not decidable in few rounds do not have small-
query IOPs with good soundness error. As in the theorem statement, let R ∈
AM[k]\AM[k′] be a relation for k′ < k and suppose that R has a k-round public-
coin IOP (P,V) with perfect completeness, soundness error β, alphabet size
2poly(|x|), proof length poly(|x|), and query complexity q ≤ k′.

By applying the round-reduction lemma (Item 2 of Lemma 1) to the k-round
IOP (P,V) with parameter k′, we get a k′-round IOP (P′,V′) with completeness
error α′ := 1−(k′/(e ·k))q and soundness error β. Suppose towards contradiction
that β < (k′/(e · k))q − |x|−c for some c ∈ N. Then the (additive) gap between
completeness and soundness error of (P′,V′) is 1− α′ − β > |x|−c.

Since the gap between completeness and soundness error of (P′,V′) is inverse
polynomial, it can be transformed into a k′-round public-coin IP (P′′

IP,V
′′
IP) for

R with completeness error 1/3 and soundness error 1/3. This is done by using
the standard technique of taking poly(|x|) parallel repetitions, computing the
fraction of accepting transcripts, and accepting if the number of accepting tran-
scripts is beyond some threshold that depends on α′ and |x|−c. The IP (P′′

IP,V
′′
IP),

then, contradicts the assumption that R /∈ AM[k′].

Limitations of binary-alphabet constant-query IOPs We sketch the proof
of Theorem 4, showing that assuming RETH there are no binary-alphabet IOPs
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with 2 or 3 queries and small soundness error for 3SAT. We first discuss the fol-
lowing lemma which says that, assuming RETH, algorithms for solving constraint
satisfaction problems (CSPs) cannot coexist with IOPs with a binary alphabet,
constant query complexity, and small soundness error.

Lemma 4 (informal). Assume RETH and suppose that both of the following exist.
– An IOP with perfect completeness, soundness error β, round complexity k,

alphabet size 2, proof length 2o(n), query complexity q, verifier randomness r,
and verifier running time 2o(n).

– A polynomial-time algorithm A for deciding whether a binary-alphabet CSP
with arity q has value 1 or value at most γ.

Then β > γ − ε for every ε satisfying k · log(r · n/ε) = o(n).

The proof of the theorem is concluded by relying on known algorithms for
solving CSPs with appropriate arities q and decision bounds γ.

– For q = 2, we rely on Schaefer’s dichotomy theorem [37], which says that
the satisfiability of a binary-alphabet CSP with arity 2 can be decided in
polynomial time. In this case γ = 1.

– For q = 3, we rely on Zwick’s algorithm [39], which decides in polynomial
time whether a binary-alphabet CSP with arity 3 has value 1 or value smaller
than 5/8. In this case γ = 5/8.

Proof sketch of Lemma 4. Suppose towards contradiction that β ≤ γ − ε where
ε satisfies k · log(r · n/ε) = o(n). The proof has two steps: (1) transform the IOP
into a PCP for 3SAT that is “efficient-enough”; and (2) use the “efficient-enough”
PCP and the algorithm A to decide 3SAT.

IOP to “efficient-enough” PCP. We apply these transformations from our tool-
box.

1. Derandomization using non-uniform advice. Reduce the verifier ran-
domness of the IOP using the non-uniform derandomization theorem (Lemma 3,
Item 2) with error ε/k to get per-round randomness complexity of O(log(r ·
n/ε)) bits. The new IOP uses poly(n, r, 1/ε) bits of non-uniform advice, where
a random string is good advice with overwhelming probability. The resulting
IOP has perfect completeness, soundness error β+ε ≤ γ, round complexity
k, alphabet size 2, proof length 2o(n), query complexity q, verifier random-
ness O(log (r·n/ε)), and verifier running time 2o(n)+poly(n, r, 1/ε) = 2o(n).

2. Unrolling to PCP. Unroll the IOP into a PCP for 3SAT using Lemma 1, Item 3.
This transformation preserves the number of advice bits, and also the fact that
a random string is good advice with overwhelming probability. The result-
ing PCP has perfect completeness, soundness error γ, alphabet size 2, proof
length 2O(k·log(k·n/ε))+o(n) = 2o(n), query complexity q, randomness complex-
ity O(log(k · n/ε)) = o(n), and verifier running time 2o(n).
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Solving 3SAT using the PCP and CSP solvers. We use the PCP and the al-
gorithm A to design a probabilistic algorithm A′ that decides whether a 3SAT
formula ϕ over n variables is satisfiable in time 2o(n). The algorithm A′, on input
the 3SAT formula ϕ, works as follows.

1. Sample random advice. Sample a random advice string z for the PCP
resulting from the previous transformation.

2. Transform formula to CSP. Transform the 3SAT formula ϕ into a binary-
alphabet CSP ψ with arity q. This is done using the standard method of
translating a PCP into a CSP; each constraint in the CSP is indexed by a
choice of verifier randomness ρ and described by the verifier circuit with the
input formula ϕ, randomness ρ, and advice z hard-coded. The CSP ψ has
size poly(2r

′
, vt′) = 2o(n) where r′ = o(n) and vt′ = 2o(n) are the randomness

complexity and verifier running time of the PCP. Additionally, assuming that
z is good advice, we have that if ϕ ∈ 3SAT then the value of ψ is 1, and if
ϕ /∈ 3SAT, then the value of ϕ is at most γ.

3. Solve CSP. Run A(ψ) and say that ϕ is satisfiable if and only if A says that
ψ’s value is 1.

The algorithm A′ decides 3SAT with high probability: with overwhelming
probability the choice of advice z is good, and deciding whether the value of
the CSP instance ψ is 1 or γ, as A does, is equivalent to deciding whether ϕ is
satisfiable.

Moreover, the algorithm A′ runs in probabilistic time 2o(n): the advice sam-
pled in the first step is polynomial; the second step can be done in time poly(2r

′
, vt′) =

2o(n) where r′ = o(n) and vt′ = 2o(n) are the randomness complexity and verifier
running time of the PCP; the final step takes poly(|ψ|) = 2o(n), since A runs in
polynomial time.

We obtained an algorithm for deciding 3SAT in probabilistic time 2o(n),
contradicting RETH.
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