
A Tight Computational Indistinguishability
Bound of Product Distributions⋆

Nathan Geier[0000−0002−1687−6950]

Tel Aviv University, Tel Aviv, Israel
nathangeier@mail.tau.ac.il

Abstract. Assume that distributions X0, X1 (respectively Y0, Y1) are
dX (respectively dY ) indistinguishable for circuits of a given size. It is
well known that the product distributions X0Y0, X1Y1 are dX+dY indis-
tinguishable for slightly smaller circuits. However, in probability theory
where unbounded adversaries are considered through statistical distance,
it is folklore knowledge that in fact X0Y0 and X1Y1 are dX +dY −dX ·dY
indistinguishable, and also that this bound is tight.
We formulate and prove the computational analog of this tight bound.
Our proof is entirely different from the proof in the statistical case, which
is non-constructive. As a corollary, we show that if X and Y are d indis-
tinguishable, then k independent copies of X and k independent copies
of Y are almost 1 − (1 − d)k indistinguishable for smaller circuits, as
against d · k using the looser bound.
Our bounds are useful in settings where only weak (i.e. non-negligible)
indistinguishability is guaranteed. We demonstrate this in the context of
cryptography, showing that our bounds, coupled with the XOR Lemma,
yield straightforward computational generalization to the analysis for
information-theoretic amplification of weak oblivious transfer protocols.
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1 Introduction

Computational indistinguishability is a fundamental concept in computational
complexity and cryptography. One of the most basic bounds in this context,
which is easy to see using a simple hybrid argument, is that for distributions
X0, X1 of distance dX , and Y0, Y1 of distance dY , with dXY denoting the distance
between X0Y0, X1Y1, we have that

dXY ≤ dX + dY ,

which holds both statistically and in the computational setting holds for slightly
smaller circuits. However, in probability theory where statistical distance, or
equivalently, indistinguishability against unbounded attackers is considered, it is
folklore knowledge [9, Lemma 2.2] that a better, tight bound holds:

dXY ≤ dX + dY − dX · dY .

It is tight in the sense that for every choice of dX , dY , there exist distributions
X0, X1 with distance dX and distributions Y0, Y1 with distance dY , such that
dXY = dX + dY − dX · dY . The proof of this bound uses coupling [7], and is thus
inherently non-constructive and not easy to generalize to the computational
setting. See Subsection 1.1 for more information on dealing with coupling in the
computational setting.

It is worth noting here that another very important and foundational bound
that is easy to show statistically but was not easily generalized to the compu-
tational setting is the famous XOR Lemma, see [5] for a survey. Our bounds
are related in spirit and some of the techniques and statement formulations pre-
sented in this paper were inspired by Levin’s proof of the XOR Lemma [10], and
its presentation in [5]. Further, in Section 5 we show how both bounds are needed
and complement each other in order to achieve the computational generalization
to the information-theoretic weak OT amplification.

We provide a direct constructive proof of the tight bound which also works
in the computational setting, both uniform and non-uniform, with an additive
loss of ε which can be made as small as we want, by paying in increasing the
running time or circuit size with relation to 1/ε. To be more specific, for the
non-uniform case, we roughly show that

Theorem 1 (Informal). Let X0, X1 be dX indistinguishable for size sX cir-
cuits. (Respectively Y0, Y1, dY , sY .) Then, for every k ∈ N, we have that (X0, Y0)
and (X1, Y1) are (dX + dY − dX · dY + εk) indistinguishable for size sk circuits,
where

εk ≤ (dY )
k, sk ≈ min {sY , sX/k} .

Corollary 1 (Informal). Let D,Q be distributions that are d indistinguishable
for size s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are
(1− (1− d)

m
+ ε) indistinguishable for size sm,ε circuits, where

sm,ε ≈ s(1− d)m/ log(1/ε).
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And we also show similar results in the uniform setting, although with worse
dependency on 1/ε. The corollary essentially states that if the computational
distance between X and Y is at most d, then the computational distance between
the k-product of X and the k-product of Y is upper bounded by almost 1−(1−d)k
for smaller circuits, as against d · k resulted by the looser well known bound,
which in particular may be larger than 1. The proof of the corollary follows by
(carefully) applying the bound of the isolated case again and again. It should be
noted that the difference between the bounds is especially interesting when k is
not very small compared to 1/d. For example, if d = 0.5, k = 3, the tight bound
is 0.875 while the looser bound of 1.5 ≥ 1 is trivial.

We also demonstrate how these bounds may be used in the computational
setting for amplification of weak oblivious transfer protocols [2, 13], providing
an alternative straightforward analysis to the fact that the information-theoretic
amplification process also works computationally. In general, when considering
cryptographic primitives with multiple security properties, it is common that
amplifying one property may degrade another, inducing a trade-off. We expect
these bounds may be used in order to achieve a larger range of parameters when
amplifying a weakened version of such primitives.

Finally, an interesting observation regarding the above corollary is how the
circuit size grows only logarithmically with respect to 1/ε. We discuss it further
in the context of the amplification beyond negligible problem.

1.1 Related Work

While the aforementioned coupling technique itself is non-constructive, Maurer
and Tessaro [11] show how to derive a computational analog for it using Holen-
stein’s tight version of the hardcore lemma [6]. This approach could also be used
to derive the tight bound in a general way. However, we believe our direct and
specific approach still holds some advantages:

– Better parameters in the non-uniform setting: In our direct approach, when
building a distinguisher for D,Q from a distinguisher between D⊗m, Q⊗m,
the circuit size is multiplied by roughly log(1/ε)/(1−d)m. In contrast, using
the hardcore approach the circuit size is multiplied by roughly

(1/ε)
2
m2 (log |D|+ log |Q|) .

Note that the latter must always be worse as ε < (1− d)m for the bound to
be meaningful.

– Simplicity and explicitness: The distinguisher given by the hardcore lemma is
somewhat more involved. In contrast, here the distinguisher is rather simple
and easy to understand.

It should also be mentioned that the problem of tight direct product bounds
has also been studied further in the statistical setting, when additional assump-
tions are made about the distributions. For example, see [12, 4].
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1.2 Organization

We start by introducing basic definitions and notation in Section 2. We then
continue to proving the non-uniform variants and their tightness in Section 3.
We show how to generalize the non-uniform variants to the uniform setting in
Section 4. We then demonstrate an application of these bounds in Section 5.
Finally, in Section 6, we propose a conjecture aimed to capture the XOR analog
to the observation made above regarding circuit size growth with relation to the
slackness.

2 Definitions

For a distribution D, denote by D⊗k the distribution of k independent copies of
D. For distributions X0, X1 over Ω, a distinguisher is a boolean A : Ω → {0, 1},
and we let adv+A(X0, X1) := E [A(X1)−A(X0)]. (The expectation is also over A
if it is not deterministic.) We say that distributions X0, X1 are d indistinguishable
for size s circuits if for any such circuit C, we have that adv+C(X0, X1) ≤ d.
For distributions X,Y we will denote by (X,Y ) the product distribution, given
by two independent samples from X and Y . We denote by B(p) the Bernoulli
distribution with parameter p, and more generally by Bℓ(p) the distribution that
is equal to 1ℓ with probability p and otherwise 0ℓ. For a string s, we denote by
s[i] the i’th bit of s. We will denote by [m] the set {1, . . . ,m}. We denote by
X1/2 the distribution given by b← {0, 1} , x← Xb. An ensemble of distributions
X = {Xn} is efficiently samplable if there exists a uniform PPT sampler that
given 1n outputs a sample from Xn.

2.1 Notation

When the same distribution is used multiple times in a single expression, e.g.
(f(D), g(D)) for D, it should be interpreted that a single value d← D is sampled
and given to both f and g, rather than two independent samples.

3 The Non-Uniform Bounds and Tightness

Let us start with the non-uniform version as it is more simple and clean. The
uniform version is a generalization of the ideas presented below. Roughly speak-
ing, we show that given a distinguisher C for (X0, Y0), (X1, Y1), if C(x, ·) is not
a good enough distinguisher between Y0, Y1 for all values of x, then we can build
an amplifier for X0, X1 distinguishers. We then use this amplifier to turn the
trivial distinguisher that always outputs 1 into a good enough distinguisher.
Theorem 2. Let X0, X1 be distributions over ℓX bits that are dX indistinguish-
able for size sX circuits. (Respectively Y0, Y1, ℓY , dY , sY .) Then, for every k ∈ N,
we have that (X0, Y0) and (X1, Y1) are (dX + dY − dX · dY + εk) indistinguish-
able for size sk circuits, where

εk :=
(dY )

k · dX (1− dY )

1− (dY )k
≤ (dY )

k, sk := min

{
sY − ℓX ,

sX − 1

k
− 5ℓY − 1

}
.
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Remark 1. We note that our starting point, k = 1, matches the simple hybrid
argument bound of dX +dY since ε1 = dX ·dY , and as k grows larger our bound
gets closer and closer to the tight bound of dX + dY − dX · dY , while the circuits
bound grows smaller. Also note that the bound is asymmetric with respect to
the circuit size bounds. This asymmetry is important for preserving a similar
circuit size when applying the isolated case over and over again. See a similar
argument in [5, Section 3].

Proof. Assume toward contradiction that for some circuit C of size sk, we have
that

adv+C ((X0, Y0) , (X1, Y1)) > (dX + dY − dX · dY + εk) .

For every fixed x, it must be that C(x, ·) is able to distinguish between Y0 and
Y1 by at most dY , otherwise we get a contradiction as the size of this circuit is
sk + ℓX ≤ sY . Then, for every candidate distinguisher A between X0 and X1,
we have that

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0]

adv+C
(
(X0, Y0) ,

(
X0, YA(X0)

))
≤ dY · Pr [A(X0) = 1]

where x, y ← X1, YA(X1) is resulted by x ← X1, b ← A(x), y ← Yb. This holds
because

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1)− C(X1, YA(X1))

]
=

= E [C(X1, Y1)− C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0]+

+ E [C(X1, Y1)− C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1] =

= Ex←X1|A(X1)=0 [C(x, Y1)− C(x, Y0)] · Pr [A(X1) = 0] =

= Ex←X1|A(X1)=0

[
adv+C(x,·) (Y0, Y1)

]
· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0]

and using a symmetric argument for the second inequality. Using that (in gen-
eral)

∑
i∈[n]

adv+C(Di, Di+1) = adv+C(D1, Dn+1)

we conclude that

adv+C ((X0, Y0) , (X1, Y1)) = adv+C
(
(X0, Y0) ,

(
X0, YA(X0)

))
+

+ adv+C
((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+C

((
X1, YA(X1)

)
, (X1, Y1)

)
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and thus

adv+C
((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+C ((X0, Y0) , (X1, Y1))−

− adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
− adv+C

(
(X0, Y0) ,

(
X0, YA(X0)

))
>

> (dX + dY − dX · dY + εk)− (dY · Pr [A(X1) = 0])− (dY · Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (1− Pr [A(X1) = 0]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (E [A(X1)]− E [A(X0)]) =

= (dX − dX · dY + εk) + dY · adv+A (X0, X1) .

In other words, we can build a new distinguisher A′ for X0, X1 by applying A
to our input x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+A′ (X0, X1) > (dX − dX · dY + εk) + dY · adv+A (X0, X1) .

If we start from A0 being the trivial distinguisher that always outputs 1 and
keep repeating this process for k steps, we get that

adv+Ak
(X0, X1) > (dX − dX · dY + εk) + dY · adv+Ak−1

(X0, X1) >

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY )
2 · adv+Ak−2

(X0, X1) >

> · · · > (dX − dX · dY + εk)

k−1∑
i=0

(dY )
i + (dY )

k · adv+A0
(X0, X1) =

= (dX − dX · dY + εk)

k−1∑
i=0

(dY )
i =

(dX − dX · dY + εk)
(
1− (dY )

k
)

1− dY
=

=

(
dX (1− dY ) +

(dY )k·dX(1−dY )
1−(dY )k

) (
1− (dY )

k
)

1− dY
=

(
dX +

(dY )
k · dX

1− (dY )k

)(
1− (dY )

k
)
=

= dX
(
1− (dY )

k
)
+ (dY )

k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage
better than dX . Next, for the circuit size, in order to implement Ak we start by
applying Ak−1, sample y0 ← Y0, y1 ← Y1, use a multiplexer to choose y ← yb
where b is the output gate of Ak−1, and finally use the circuit C. Instead of
sampling y0, y1, we can simply use non-uniformity to hard-code the best samples,
at the cost of 2ℓY gates. Implementing the multiplexer can be done using 3ℓY +1
gates, with one gate computing ¬b and for every i ∈ [ℓY ] another 3 gates to
compute y[i] = (y0[i] ∧ ¬b) ∨ (y1[i] ∧ b). Overall, we conclude that size(Ak) =
size(Ak−1) + 5ℓY + 1 + sk and therefore

size(Ak) = size(A0) + k · (5ℓY + 1 + sk) ≤ 1 + k ·
(
5ℓY + 1 +

(
sX − 1

k
− 5ℓY − 1

))
= sX

which is a contradiction to our assumption that dX is an upper bound on the
advantage of size sX circuits distinguishing X0 from X1.
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3.1 The N-Fold Case

Corollary 2. Let D,Q be distributions over ℓ bits that are d indistinguishable
for size s circuits. Then, for every m ∈ N and ε, we have that D⊗m, Q⊗m are
(1− (1− d)

m
+ ε) indistinguishable for size sm,ε circuits, where

sm,ε =
s− 1

km,ε
−5mℓ−1, km,ε =

⌈
log(dε)

log(1− (1− d)m + ε)

⌉
≤

⌈
log(1/dε)

(1− d)m − ε

⌉
.

Proof. If ε ≥ (1− d)m the statement is trivially true. Otherwise, we start from
D,Q and use Theorem 2 to repeatedly add copies of D,Q for m−1 times, using
km,ε set at the statement, where each time the added copy of D,Q is treated
as X0, X1 and D⊗i, Q⊗i are treated as Y0, Y1. Let di denote the bound on the
advantage of i copies, then we have that d1 = d and di ≤ di−1 + d − di−1 · d +

(di−1)
km,ε . We can see by induction that di ≤ 1− (1− d)i + ε for i ∈ [m] as

di ≤ di−1 + d− di−1 · d+ (di−1)
km,ε = (1− d)di−1 + d+ (di−1)

km,ε ≤

≤ (1− d)
(
1− (1− d)i−1 + ε

)
+ d+

(
1− (1− d)i−1 + ε

)km,ε
=

= 1− d− (1− d)i + (1− d)ε+ d+
(
1− (1− d)i−1 + ε

)km,ε
=

= 1− (1− d)i + (1− d)ε+
(
1− (1− d)i−1 + ε

)km,ε ≤

≤ 1− (1− d)i + (1− d)ε+ (1− (1− d)m + ε)
km,ε ≤ 1− (1− d)i + ε

where in the last inequality we used the choice of km,ε. For the circuit size, we
can easily see by induction on i that si,ε ≥ (s − 1)/km,ε − 5iℓ − 1, as we have
that s1,ε = s and

si,ε ≥ min

{
s(i−1),ε − ℓ,

s− 1

km,ε
− 5(i− 1)ℓ− 1

}
≥

≥ min

{
s− 1

km,ε
− 5(i− 1)ℓ− 1− ℓ,

s− 1

km,ε
− 5(i− 1)ℓ− 1

}
≥ s− 1

km,ε
− 5iℓ− 1.

3.2 Tightness

This is somewhat folklore knowledge, that we explicitly state for the sake of
completeness. We show that for every choice of dX , dY , sX , sY , ℓX , ℓY there exist
two pairs of distributions X0, X1 and Y0, Y1, such that X0, X1 are over ℓX bits
and cannot be distinguished with advantage better than dX by size sX circuits
(resp. for Y0, Y1 with ℓY , dY , sY ), yet (X0, Y0) and (X1, X1) can be distinguished
with advantage dX + dY − dX · dY using a size 1 circuit. For the n-fold case,
we show that for every choice of d, s, ℓ there exist distributions X,Y over ℓ
bits with distance at most d against s-sized circuits, such that X⊗k, Y ⊗k can
be distinguished with advantage 1 − (1 − d)k using a circuit of size 2k − 1.
We will use statistical distance in these examples, noting that the statistical
distance between distributions is equal to the maximal advantage of unbounded
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adversaries distinguishing between them, and that the statistical distance from
a constant variable is equal to the probability to differ from it.

For the isolated case, we let X0 ≡ 0ℓX , X1 := B(dX)ℓX , Y0 ≡ 0ℓY , Y1 :=
B(dY )

ℓY , where B(p)ℓ denotes sampling from B(p) and outputting ℓ copies of
the result. We have that size sX circuits can distinguish between X0, X1 with
advantage at most dX (resp. for Y0, Y1 with sY , dY ) as this is the statistical dis-
tance between them. Also, it is easy to verify that the simple size 1 circuit which
given (x, y) computes x[1]∨y[1] distinguishes between (X0, Y0) and (X1, Y1) with
advantage 1− (1− dX)(1− dY ) = dX + dY − dX · dY .

For the n-fold case, let X ≡ 0ℓ, Y := B(d)ℓ, then size s circuits can dis-
tinguish X from Y with advantage at most d. Yet, the circuit of size 2k − 1
which given (z1, . . . , zk) computes ∨izi[1] (using a full binary tree of OR gates)
distinguishes between X⊗k and Y ⊗k with advantage 1− (1− d)k.

4 The Uniform Variant

We used non-uniformity two times in the proof of Theorem 2. The second time,
which is easier to deal with, is in the circuit size analysis where we hard-coded
the best samples of y0, y1 to each iteration of Ai. Instead, in the uniform version,
we will use uniform samplers of Y0, Y1.

The first use of non-uniformity was when we assumed that C(x, ·) is at most
a dY -distinguisher between Y0 and Y1, for every fixed x, otherwise we can use
non-uniformity to be done. More specifically, we used this assumption to get
that

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] .

For the uniform case, we will relax this condition to x not being easy to hard-
code, in the following sense:

Pr
x←X1/2

[
adv+C(x,·) (Y0, Y1) > dY + εk

]
≤ εk

where X1/2 is given by b← {0, 1} , x← Xb. If this condition does not hold then
we can efficiently compute a good x, except for negligible probability, assuming
that efficient uniform samplers for X0, X1, Y0, Y1 exist. Otherwise, we will see
that

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] + 3εk

and so almost the same argument from the non-uniform case works, except
that now we lose another small additive term. Let us state and prove this more
formally:

Lemma 1. Let X0 = {X0,n}, X1 = {X1,n}, Y0 = {Y0,n}, Y1 = {Y1,n} be ensem-
bles of efficiently samplable distributions, and dX(n), dY (n) be efficiently com-
putable functions between 0 and 1. Then, for every k ∈ N and time t(n) Turing
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machine M distinguishing (X0, Y0) from (X1, Y1) infinitely often with advantage
at least (dX + dY − dX · dY + 7εk) for

εk :=
(dY )

k · dX (1− dY )

1− (dY )k
≤ (dY )

k,

we have that either M efficiently yields a distinguisher for Y0, Y1 through a hard-
coding of x, in the sense that for infinitely many n’s

Pr
x←X1/2

[
adv+M(1n,x,·) (Y0, Y1) > dY + εk

]
> εk,

or there exists a time t · poly(nk) infinitely often distinguisher between X0, X1

with advantage at least dX .

Proof. For the sake of notational ease, we will drop the asymptotic notation and
replace M(1n) with C. Assume that for all but finitely many n’s,

Pr
x←X1/2

[
adv+C(x,·) (Y0, Y1) > dY + εk

]
≤ εk.

Then, for every candidate distinguisher A between X0 and X1, for all but finitely
many n’s, we have that

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
≤ dY · Pr [A(X1) = 0] + 3εk

adv+C
(
(X0, Y0) ,

(
X0, YA(X0)

))
≤ dY · Pr [A(X0) = 1] + 3εk

where x, y ← X1, YA(X1) is resulted by x← X1, b← A(x), y ← Yb. To see this,
we first note that

εk ≥ Pr
x←X1/2

[
adv+C(x,·) (Y0, Y1) > dY + εk

]
≥

≥ 1

2
Pr [A(X1) = 0] Pr

x←X1|A(X1)=0

[
adv+C(x,·) (Y0, Y1) > dY + εk

]
which implies that

Ex←X1|A(X1)=0

[
adv+C(x,·) (Y0, Y1)

]
≤ dY +εk+

2εk
Pr [A(X1) = 0]

≤ dY +
3εk

Pr [A(X1) = 0]
.

Plugging it into the last inequality in the following, we get

adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
= E

[
C(X1, Y1)− C(X1, YA(X1))

]
=

= E [C(X1, Y1)− C(X1, Y0)|A(X1) = 0] · Pr [A(X1) = 0]+

+ E [C(X1, Y1)− C(X1, Y1)|A(X1) = 1] · Pr [A(X1) = 1] =

= Ex←X1|A(X1)=0 [C(x, Y1)− C(x, Y0)] · Pr [A(X1) = 0] =

= Ex←X1|A(X1)=0

[
adv+C(x,·) (Y0, Y1)

]
· Pr [A(X1) = 0] ≤ dY · Pr [A(X1) = 0] + 3εk
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and use a symmetric argument for the second upper bound. Using that (in
general) ∑

i∈[n]

adv+C(Di, Di+1) = adv+C(D1, Dn+1)

we conclude that

adv+C ((X0, Y0) , (X1, Y1)) = adv+C
(
(X0, Y0) ,

(
X0, YA(X0)

))
+

+ adv+C
((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
+ adv+C

((
X1, YA(X1)

)
, (X1, Y1)

)
and thus

adv+C
((
X0, YA(X0)

)
,
(
X1, YA(X1)

))
= adv+C ((X0, Y0) , (X1, Y1))−

− adv+C
((
X1, YA(X1)

)
, (X1, Y1)

)
− adv+C

(
(X0, Y0) ,

(
X0, YA(X0)

))
>

> (dX + dY − dX · dY + 7εk)− (dY · Pr [A(X1) = 0] + 3εk)− (dY · Pr [A(X0) = 1] + 3εk) =

= (dX − dX · dY + εk) + dY (1− Pr [A(X1) = 0]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (Pr [A(X1) = 1]− Pr [A(X0) = 1]) =

= (dX − dX · dY + εk) + dY (E [A(X1)]− E [A(X0)]) =

= (dX − dX · dY + εk) + dY · adv+A (X0, X1) .

In other words, we can build a new distinguisher A′ for X0, X1 by applying A
to our input x, sampling y ← YA(x) and feeding (x, y) to C, and have that

adv+A′ (X0, X1) > (dX − dX · dY + εk) + dY · adv+A (X0, X1) .

If we start from A0 being the trivial distinguisher that always outputs 1 and
keep repeating this process for k steps, we get that

adv+Ak
(X0, X1) > (dX − dX · dY + εk) + dY · adv+Ak−1

(X0, X1) >

> (dX − dX · dY + εk) + dY · (dX − dX · dY + εk) + (dY )
2 · adv+Ak−2

(X0, X1) >

> · · · > (dX − dX · dY + εk)

k−1∑
i=0

(dY )
i + (dY )

k · adv+A0
(X0, X1) =

= (dX − dX · dY + εk)

k−1∑
i=0

(dY )
i =

(dX − dX · dY + εk)
(
1− (dY )

k
)

1− dY
=

=

(
dX (1− dY ) +

(dY )k·dX(1−dY )
1−(dY )k

) (
1− (dY )

k
)

1− dY
=

(
dX +

(dY )
k · dX

1− (dY )k

)(
1− (dY )

k
)
=

= dX
(
1− (dY )

k
)
+ (dY )

k · dX = dX .

And so, we have concluded that Ak distinguishes X0 from X1 with advantage
better than dX . In order to implement Ak we need to run C, sample Y0, Y1 and
use a multiplexer, for k times, so we conclude that time(Ak) = t · poly(n, k).
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Remark 2. In particular, we can use this lemma to show that if X0, X1 are dX
ind. and Y0, Y1 are dY ind. then (X0, Y0) and (X1, Y1) are dX+dY −dX ·dY +7εk
ind. for Turing machines with running time of

t = min{tX/poly(n, k), tY /poly(n, 1/εk)},

which may be good enough for a constant number of uses, but does not work well
beyond that, as every use costs us a division of the time bound by a polynomial.
This is why we cannot prove the n-fold case immediately by repeatedly applying
Lemma 1. The key idea is that we do not need to keep resampling and testing
over and over again, but instead, once we find a good enough x in the i’th
coordinate, we fix it for the rest of the process, or if the hard-coding of the i’th
coordinate does not succeed, the above lemma states we can distinguish there.

Theorem 3. Let X = {Xn}, Y = {Yn} be ensembles of efficiently samplable dis-
tributions that are d(n) indistinguishable for time t(n) Turing machines. Then,
for every m = m(n), we have that X⊗m and Y ⊗m are (1 − (1 − d)m + 7mε)
indistinguishable for time tm,ε Turing machines, where

tm,ε = t/poly(n,m, km,ε, 1/ε), km,ε =

⌈
log(ε)

log(1− (1− d)m + 7mε)

⌉
≤

⌈
log(1/ε)

(1− d)m − 7mε

⌉
.

Proof. For i = 0, 1, . . . ,m − 1, we try to hard-code the m − i’th coordinate
using poly(n, 1/ε) samples, and getting a distinguisher for X⊗m−i, Y ⊗m−i with
advantage of at least 1− (1− d)m−i+7(m− i)ε except for negligible probability
(the probability that the estimate was good but not truthful to the expectation)
until for some i we fail to find a good value to hard-code (if we reached i = m−1
and succeeded then we are done). Once we fail, we apply the isolated case of
Lemma 1, which essentially states that if the hard-coding of X,Y into such
circuit failed, then one can build a distinguisher for them, and we are done.

Let us be more explicit about how we sample and hard-code the m − i’th
coordinate: We are given (except for negligible probability) good samples for
the coordinates in m − i + 1, . . . ,m and hard-code them into A, getting a 1 −
(1 − d)m−i + 7(m − i)ε distinguisher for X⊗m−i, Y ⊗m−i, which we view as the
product of X⊗m−i−1, Y ⊗m−i−1 with X,Y . We first note that our choice of k
guarantees that εk ≤ ε for all 1− (1− d)m−i + 7(m− i)ε. We start by trying to
work under the “hard-coding” assumption that

Pr
z←X/Y

[
adv+A(z,·)

(
X⊗m−i−1, Y ⊗m−i−1

)
> 1− (1− d)m−i−1 + 7(m− i− 1)ε+ ε

]
> ε

and generate a distinguisher for X⊗m−i−1, Y ⊗m−i−1 as follows: Keep sampling
z ← X/Y and estimating adv+A(z,·)

(
X⊗m−i−1, Y ⊗m−i−1

)
using r samples from

X⊗m−i−1/Y ⊗m−i−1, until we succeed in finding z with an estimate of at least
1−(1−d)m−i−1+7(m−i−1)ε+0.5ε, then fix this good z in this coordinate and
move forward, or stop after q tries if no such z has been found. Using Hoeffding’s
inequality, for every z, the probability that the estimate’s error is greater than
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ε/2 is at most 2e−r·(ε/2)
2/2. If all estimates were ε/2 accurate and a good z

has been drawn, the process succeeds in finding a z with advantage of at least
1− (1− d)m−i−1 + 7(m− i− 1)ε and we can move on, so our probability to fail
at that, under the above assumption, is at most

q · 2e−r·ε
2/32 + (1− ε)

q ≤ 2elog(q/2)−r·ε
2/32 + e−q·ε ≤ neg(n)

by choosing, say,

q = n/ε = poly(n, 1/ε), r = 64n/ε3 > (log(q/2) + n) · 32/ε2 = poly(n, 1/ε).

Hence paying with a time complexity of tm,ε · poly(n, 1/ε) for every coordinate.
If we could not find a good z, we use Lemma 1: If we can distinguish

X⊗m−i, Y ⊗m−i with advantage

(1− d)
(
1− (1− d)m−i−1 + 7(m− i− 1)ε

)
+ d+ 7ε =

= 1− (1− d)m−i + (1− d)7(m− i− 1)ε+ 7ε ≤
≤ 1− (1− d)m−i + 7(m− i)ε ≤ adv+A

(
X⊗m−i, Y ⊗m−i

)
and the assumption about finding a good z to hard-code for X⊗m−i−1, Y ⊗m−i−1
does not hold, then we can build a d-distinguisher for X,Y in time tm,ε ·
poly(n, k). The probability that at some point in the process we failed to hard-
code a good z at the m − i’th coordinate even though the assumption held is
m(n) · neg(n) = neg(n).

We remark this proof is easily generalized to the case where not all pairs in
the product are identical, that is, for

⊗
Xi and

⊗
Yi, with a distance bound of

(1−
∏

i(1− di) + 7mε).

5 Applications

As an application, we consider the amplification of weak oblivious transfer pro-
tocols. We briefly explain how our bounds, paired with Yao’s XOR Lemma, yield
a natural generalization in the computational setting to the amplification pro-
cess presented in [2, Subsection 4.3]. We note that it was already shown, using
The Hardcore Theorem [8, 1], that the same amplification process also works
computationally [13]. Yet we find our constructive and explicit approach more
natural and straightforward.

For the sake of simplicity, let us consider the amplification of error-less (p, q)-
weak semi-honest 1-2 OT: The receiver with bit c is trying to learn bc, where
(b0, b1) is the database of the sender. We say the protocol is (p, q) weak if the
view of the sender when c = 0 is p-indistinguishable from its view when c = 1
(equivalently, c is at most p-correlated to the view of the sender), and the view
of the receiver when bc = 0 is q-indistinguishable from its view when bc = 1.

In [2, Subsection 4.2], two fundamental operations that will be used as build-
ing blocks in the amplification process are presented. One is an operation called
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S-Reduce that amplifies indistinguishability against the sender but worsens in-
distinguishability against the receiver, and the other is an operation called R-
Reduce that amplifies indistinguishability against the receiver but worsens indis-
tinguishability against the sender. Both of them work using secret sharing over
multiple applications of the underlying protocol, in the first the receiver’s choice
bit is secret shared and in the other, the sender’s database. They receive a weak
protocol W together with a parameter k and work as follows:

S-Reduce(k,W)

1: Inputs: c, (b0, b1)
2: The receiver splits c randomly into k shares {ci}ki=1 conditioned on ⊕k

i=1ci = c.
3: The sender splits b0 randomly into k shares {b0i}ki=1 conditioned on ⊕k

i=1b0i = b0,
and sets b1i = b0i ⊕ b0 ⊕ b1.

4: for i = 1 to k do
5: Run W with ci, (b0i, b1i).
6: end for
7: The receiver outputs the XOR of all k received bits, that is, ⊕k

i=1bci, i.

R-Reduce(k,W)

1: Inputs: c, (b0, b1)
2: The receiver sets ci = c for i ∈ [k].
3: The sender splits b0 randomly into k shares {b0i}ki=1 conditioned on ⊕k

i=1b0i = b0,
and also splits b1 randomly into k shares {b1i}ki=1 conditioned on ⊕k

i=1b1i = b1.
4: for i = 1 to k do
5: Run W with ci, (b0i, b1i).
6: end for
7: The receiver outputs the XOR of all k received bits, that is, ⊕k

i=1bci, i.

Correctness of R-Reduce is straightforward. For S-Reduce, note that in the
i’th call the receiver learns b0i ⊕ ci · (b0 ⊕ b1). When XORing them all together
over i ∈ [k], we get b0 ⊕ c · (b0 ⊕ b1) which is exactly what we needed.

For receiver-security, if W has receiver-security of p, we can use the XOR
Lemma to deduce that S-Reduce(k,W) has receiver-security of pk + ε, because
the shares {ci}ki=1 are random and independent (over a random choice of c) and
for every fixing of the sender’s randomness, the i’th transcript is independent
of the rest and is at most p-correlated to ci. We can also use our own product
bound to deduce that R-Reduce(k,W) has receiver-security of 1− (1− p)k + ε,
because for every fixing of the sender’s randomness, the transcripts are indepen-
dent conditioned on c and each one is at most p-correlated to c. Using similar
arguments, it can be shown that symmetrically, sender-security amplifies to qk+ε
in R-Reduce(k,W) and weakens to 1 − (1 − q)k + ε in S-Reduce(k,W). These
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are exactly the same bounds used in the information-theoretic OT amplification
analysis, up to the additive ε paid for each use.

The goal is to use these two operations repeatedly one after the other in order
to reduce both parameters. It is already shown in [2, Lemma 4] exactly how this
is done, but for the sake of completeness let us summarize the process as follows:
Assume without loss of generality that p ≤ q (other case is symmetric). If p ≥ 0.2,
by applying R-Reduce(2, ·) followed by S-Reduce(2, ·), the distance between the
error sum p + q and 1 is multiplied by at least 1.1. Otherwise, if q > 0.4, by
applying R-Reduce(2, ·) the distance between p + q and 1 is multiplied by at
least 1.2. Otherwise, if p + q > 0.2, we again apply R-Reduce(2, ·) followed by
S-Reduce(2, ·), with the guarantee that the error sum p+q multiplies by a factor
of at most 0.8. Finally, in the case where p + q ≤ 0.2, we apply R-Reduce(4, ·)
followed by S-Reduce(4, ·), and the guarantee is that the error sum is at least
squared, that is, (p′ + q′) ≤ (p+ q)2, so the progress downwards is quick.

To conclude, the same analysis from the information-theoretic setting holds
here, up to an additive ε accumulated at each use. Let p(n) be a bound on
the total number of calls to the original protocol in the information-theoretic
transformation, then all advantages throughout the process are 1/p(n)-bounded
away from 1, otherwise we would not be able to reduce them to negligible.
By setting ε′ = ε/p(n), for every advantage d through the process we have
d + ε′ ≤ ε + (1 − ε)d, so we can imagine, for the sake of the analysis, as if
every call to either S-Reduce or R-Reduce incurs a chance of ε at failing and
revealing everything, and otherwise works exactly like the information-theoretic
world. Since the number of calls is polynomial, the total probability of failing is
at most poly(n) · ε and we can make it as (polynomially) small as we want.

There is one small issue, however - the running time. In the information-
theoretic process we make log log(n) calls to S-Reduce and R-Reduce (when p
and q are constants), and each such call, when using Yao’s XOR Lemma or the
bounds in this paper, decreases the bound on the running time by a division in
a polynomial. Therefore, we need the assumption that our weak OT is secure
against nO(log logn) adversaries. We remark that this issue can be overcome by
choosing an increasing series of errors instead of fixing ε throughout the process.
If 1− (p+ q) is not lower bounded by a constant but by 1/poly(n), then we need
security against nO(logn) adversaries.

6 Open Questions

An issue that keeps appearing in security reductions where amplification is in-
volved is the problem of amplification beyond negligible [3]. For example see [5,
Lemma 3] and the discussion following it. Roughly speaking, in these types of
reductions we can show security holds except for negligible probability but noth-
ing concrete beyond that without increasing the running time of the reduction
to be super-polynomial.

For a more specific example, let us consider Levin’s proof of the XOR Lemma
[10]. Informally, it is shown that if for X0, X1 we have that b is at most d-
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correlated to Xb by s-sized circuits, then
⊕t

i=1 bi is at most dt + ε-correlated to
Xb1 , . . . , Xbt by s · poly(ε)-sized circuits. Note the trade-off between the reduc-
tion accuracy and the circuit size bound. Another trade-off can also be seen in
Theorem 2. If we only know that s is greater than any polynomial then we can
push ε up to negligible but nothing concrete beyond that, otherwise the circuit
size bound becomes meaningless.

As noted in [5], Rudich has observed that we cannot expect to overcome
this issue in a black-box way. Further, in [3] an example is given, based on non-
standard assumptions, of a weak OWF that cannot be amplified beyond negligi-
ble using the direct product transformation. That is, it may be that overcoming
this issue is not just hard to prove, but can be altogether false. Nonetheless,
what happens in general is still unclear, and there are still open directions of
either strengthening the impossibilities by reducing assumptions, or of showing
that some form of amplification beyond negligible is achievable.

Interestingly enough, when considering Corollary 2, we note how the circuit
size growth is actually only logarithmic in 1/ε, although linear in 1/(1 − d)m.
Still, if d and m are constants, then we can reduce the error exponentially well
while maintaining efficiency of the circuits. This brings us to the following conjec-
ture, aiming to formulate the XOR equivalent of the above, stated with specific
parameters for simplicity:

Conjecture 1 (Informal). If b is at most 0.5-correlated to Xb by s-sized circuits,
then b1 ⊕ b2 is at most 0.25 + 2−n-correlated to Xb1 , Xb2 by s/poly(n)-sized
circuits.

In other words, as long as we are not trying to achieve correlation beyond negli-
gible, we can get exponentially close efficiently. This could be seen as a first step
towards a positive result.
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