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Abstract. In the first part of the paper, we show a generic compiler
that transforms any oracle algorithm that can query multiple oracles
adaptively, i.e., can decide on which oracle to query at what point de-
pendent on previous oracle responses, into a static algorithm that fixes
these choices at the beginning of the execution. Compared to naive ways
of achieving this, our compiler controls the blow-up in query complexity
for each oracle individually, and causes a very mild blow-up only.
In the second part of the paper, we use our compiler to show the security
of the very efficient hash-based split-key PRF proposed by Giacon, Heuer
and Poettering (PKC 2018), in the quantum random-oracle model. Using
a split-key PRF as the key-derivation function gives rise to a secure KEM
combiner. Thus, our result shows that the hash-based construction of
Giacon et al. can be safely used in the context of quantum attacks, for
instance to combine a well-established but only classically-secure KEM
with a candidate KEM that is believed to be quantum-secure.
Our security proof for the split-key PRF crucially relies on our adaptive-
to-static compiler, but we expect our compiler to be useful beyond this
particular application. Indeed, we discuss a couple of other, known results
from the literature that would have profitted from our compiler, in that
these works had to go though serious complications in order to deal with
adaptivity.

1 Introduction

This paper offers two main contributions. In a first part, we show a generic
reduction from adaptive to static multi-oracle algorithms, with a mild increase
of the query complexity for each oracle individually, and in the second part,
exploiting the reduction from the first part, we prove quantum security of the
hash–based split-key pseudorandom function (skPRF) proposed in [6]. We now
discuss these two contributions in more detail.

Adaptive versus Static Multi-Oracle Algorithms. In certain cryptographic
security games, the attacker A is an oracle algorithm that is given query access
to multiple oracles. This is in particular the case when considering the design of a
cryptographic scheme in an idealized setting. Consider for instance the security



definitions of public-key encryption and signature schemes in the (quantum)
random-oracle model, where the attacker is given oracle access to both: the
random-oracle and to a decryption/signing oracle.

By default, such an attacker A can then choose adaptively, i.e., depending
on answers to previous queries, at what point to query which oracle. This is
in contrast to a static A that has a predefined order of when it queries which
oracle.3 In certain cases, proving security for a static attacker is easier than
proving security for a full fledged adaptive attacker, or taking care of adaptivity
(naively) results in an unnecessary blow-up in the error term (see later).

In this light, it seems to be desirable to have a generic compiler that trans-
forms any adaptive attacker A into a static attacker Ā that is equally successful
in the attack. And there is actually a simple, naive solution for that. Indeed,
let A be an arbitrary oracle algorithm that makes adaptive queries to n ora-
cles O1, . . . ,On, and consider the static oracle algorithm Ā defined as follows:
Ā simply runs A, and at every point in time when A makes a query to one of
O1, . . . ,On (but due to the adaptivity it will only become clear at the time of
the query which Oi is to be queried then), the algorithm Ā makes n queries, one
to every Oi, and it relays A’s query to the right oracle, while making dummy
queries to the other oracles.

At first glance, this simple solution is not too bad. It certainly transforms
any adaptive A into a static Ā that will be equally successful, and the blow-up
in the total query complexity is a factor n only, which is mild given that the
typical case is n = 2. However, it turns out that in many situations, considering
the blow-up in the total query complexity is not good enough.

For example, consider again the case of an attacker against a public-key en-
cryption scheme in the random-oracle model. In this example, it is typically
assumed that A may make many more queries to the random-oracle than to
the decryption oracle, i.e., qH ≫ qD. But then, applying the above simple com-
piler, Ā makes the same number of queries to the random-oracle and to the
decryption oracle; namely q̄H = q̄D = qH + qD. Furthermore, the actual figure
of merit, namely the advantage of an attacker Ā, is typically not (bounded by)
a function of the total query complexity, but a function of the two respective
query complexities qH and qD individually. For example, if one can show that
the advantage of any static attacker Ā with respective query complexities q̄H
and q̄D is bounded by, say, q̄H q̄2D, then the above compiler gives a bound on
the advantage of any adaptive attacker A with respective query complexities qH
and qD of q3H + 2q2HqD + qHq2D. If qH ≫ qD then this is significantly worse than
≈ qHq2D, which one might hope for given the bound for static Ā.

Our first result is a compiler that transforms any adaptive oracle algorithm
A that makes at most qi queries to oracle Oi for i = 1, . . . , n into a static oracle
algorithm Ā that makes at most q̄i = nqi queries to oracle Oi for i = 1, . . . , n.
Thus, rather than controling the blow-up in the total number of queries, we can
control the blow-up in the number of queries for each oracle individually, yet still

3 In either case, we allow A to decide adaptively what input to query, when having
decided (adaptively or statically) on which oracle to query.
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with the same factor n. Our result applies for any vector q = (q1, . . . , qn) ∈ Nn

and contains no hidden constants. Our compiler naturally depends on q (or,
alternatively, needs q as input) but otherwise only requires straight-line black-
box access to A, and it preserves efficiency: the run time of Ā is polynomial in
Q = q1 + · · ·+ qn, plus the time needed to run A. Furthermore, the compiler is
applicable to any classical or quantum oracle algorithm A, where in the latter
case the queries to the oracles O1, . . . ,On may be classical or quantum as well;
however, the choice of the oracle for each query is assumed to be classical (so
that individual query complexities are well defined).

In the above made-up example of a public-key encryption scheme with ad-
vantage bounded by q̄H q̄2D for any static Ā with respective query complexities
q̄H and q̄D, we now get the bound 8qHq2D for any adaptive A with respective
query complexities qH and qD.

We show the usefulness of our adaptive-to-static compiler by discussing two
example results from the literature. One is the security proof by Alkim et al. [3]
of the qTESLA signature scheme [2] in the quantum random-oracle model; the
other is the recent work by Alagic, Bai, Katz and Majenz [1] on the quantum
security of the famous Even-Mansour cipher. In both these works, the adaptivity
of the attacker was a serious obstacle and caused a significant overhead and
additional complications in the proof. With our results, these complications could
have been avoided without sacrificing much in the security loss (as would be the
case with using a naive compiler). We also exploit our adaptive-to-static compiler
in our second main contribution, discussed below.

Interestingly, all three example applications are in the realm of quantum
security (of a classical scheme). This seems to suggest that the kind of adaptivity
we consider here is not so much of a hurdle in the case of classical queries.
Indeed, in that case, a typical argument works by inspecting the entire query
transcript and identifying an event with the property that conditioned on this
event, whatever needs to be shown holds with certainty, and then it remains
to show that this event is very likely to occur. In the case of quantum queries,
this kind of reasoning does not apply since one cannot “inspect” the query
transcript anymore; instead, one then typically resorts to some sort of hybrid
argument where queries are replaced one-by-one, and then adaptivity of the
queries may—and sometimes does, as we discuss— form a serious obstacle.

Quantum-security of a Split-key PRF. In the upcoming transition to post-
quantum secure cryptographic standards, combinersmay play an important role.
A combiner can be used compile several crypographic schemes into a new, “com-
bined” scheme, which offers the same (or a similar) functionality, and so that
the new scheme is secure as long as at least one of the original schemes is se-
cure. For example, combining a well-established but quantum-insecure scheme
with a believed-to-be quantum-secure (but less well studied) scheme then offers
the best of both worlds: it offers security against quantum attacks, should there
really be a quantum computer in the future, but it also offers some protection
in case the latter scheme turns out to be insecure (or less secure than expected)
even against classical attacks. In other words, using a combiner in this context
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ensures that we are not making things less secure by trying to aim for quantum
security.

In [6], Giacon, Heuer and Poettering showed that any split-key PRF (skPRF)
gives rise to a secure KEM combiner. In more detail, they show that if a skPRF
is used in the (rather) obvious way as a key-derivation function in a KEM com-
biner, then the resulting combined KEM is IND-CCA secure if at least one of
the component KEMs is IND-CCA secure. They also suggest a few candidates
for skPRFs. The most efficient of the proposed constructions is a hash-based
skPRF, which is proven secure in [6] in the random-oracle model. However, in
the context of a quantum attack, which is in particular relevant in the above
example application of a combiner, it is crucial to prove security in the quan-
tum random-oracle model [4]. Here, we close this gap by proving security of
the hash-based skPRF construction proposed by Giacon et al. in the quantum
random-oracle model.

Our security proof crucially exploits our adaptive-to-static compiler to reduce
a general, adaptive attacker/distinguisher to a static one. Namely, in spirit, our
security proof is a typical hybrid proof, where we replace, one by one, the queries
to the (sk)PRF by queries to a truly random function; however, the crux is
that for each hybrid, corresponding to a particular function query that is to
be replaced, the closeness of the current to the previous hybrid depends on the
number of hash queries between the current and the previously replaced function
query. In case of an adaptive A, each such “window” of hash queries between
two function queries could be as large as the total number of hash queries in the
worst case, giving rise to a huge multiplicative blow-up when using this naive
bound. Instead, for a static A, each such window is bounded by a fixed number,
with the sum of these numbers being the total number of hash queries.

By means of our compiler, we can turn the possibly adaptive A into a static
one (almost) for free, and this way avoid an unnecessary blow-up, respectively
bypass additional complications that arise by trying to avoid this blow-up by
other means.

2 Preliminaries

We consider oracle algorithms AO1,...,On that make queries to (possibly unspec-
ified) oracles O1, . . . ,On, see Fig. 1 (left). Sometimes, and in particular when
the oracles are not specified, we just write A and leave it implicit that A makes
oracle calls. We allow A to be classical or quantum, and in the latter case we
may also allow the queries (to some of the oracles) to be quantum; however, the
choice of which oracle is queried is always classical. For the purpose of our work,
we may assume A to have no input; any potential input could be hardwired
into A. For a vector q = (q1, . . . , qn) ∈ Nn, we say that A is a q-query oracle
algorithm if it makes at most qi queries to the oracle Oi.

In general, such an oracle algorithm A may decide adaptively which oracle to
query at what step, dependent on previous oracle responses. In contrast to this,
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a static oracle algorithm has an arbitrary but pre-defined order in querying the
oracles.

Our goal will be to transform any adaptive oracle algorithm A into a static
oracle algorithm Ā that is functionally equivalent, while keeping the blow-up in
query complexity for each individual oracle, i.e., the blow-up for each individual
qi, small. By functionally equivalent (for certain oracle instantiations) we mean
the respective executions of AO1,...,On and ĀO1,...,On give rise to the same out-
put distribution for all (the considered) instantiations O1, . . . , On of the oracles
O1, . . . ,On. In case of quantum oracle algorithms, we require the output state
to be the same.

For this purpose, we declare that an interactive oracle algorithm B is an inter-
active algorithm with two distinct interaction interfaces, one for the interaction
with A (we call this the simulation interface), and one for the oracle queries (we
call this the oracle interface), see Fig. 1 (middle). For any oracle algorithm A,
we then denote by B[A] the oracle algorithm that is obtained by composing A
and B in the obvious way. In other words, B[A] runs A and answers all of A’s
oracle queries using its simulation interface; furthermore, B[A] outputs whatever
A outputs at the end of this run of A, see Fig. 1 (right).4

A
...

... B
...

... A
...

... B
...

...

B[A]

...
...

Fig. 1. An oracle algorithm A (left), an interactive oracle algorithm B (middle), and
the oracle algorithm B[A] obtained by composing A and B (right).

In contrast to A (where, for our purpose, any input could be hardwired),
we explicitly allow an interactive oracle algorithm B to obtain an input. Indeed,
our transformation, which turns any adaptive oracle algorithm A into a static
oracle algorithm Ā, needs to “know” q, i.e., the number of queries A makes to
the different oracles. Thus, this will be provided in the form of an input to B;
for reasons to be clear, it be provided in unary, i.e., as 1q := (1q1 , . . . , 1qn).

We stress that we do not put any computational restriction on the oracle
algorithms A (beyond bounding the queries to the individual oracles); however,

4 Note, we silently assume consistency between A and B, i.e. A should send a message
when B expects one and the format of these messages should match the format of
the messages that B expects (and vice versa), so that the above composition makes
sense. Should B encounter some inconsistency, it will abort.
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we do want our transformation to preserve efficiency. Therefore, we say that an
interactive oracle algorithm B is polynomial-time if the number of local compu-
tation steps it performs is bounded to be polynomial in its input size, and where
we declare that copying an incoming message on the simulation interface to an
outgoing message on the oracle interface, and vice versa, is unit cost (irrespec-
tively of the size of the message). By providing q in unary, we thus ensure that
B is polynomial-time in q1 + · · ·+ qn.

3 A General Adaptive-to-static Reduction for
Multi-oracle Algorithms

3.1 Our Result

Let n ∈ N be an arbitrary positive integer. We present here a generic adaptiv-
to-static compiler B that, on input a vector q ∈ Nn, turns any adaptive q-query
oracle algorithm AO1,...,On into a static nq-query algorithm.

Theorem 1. There exists a polynomial-time interactive oracle algorithm B,
such that for any q ∈ Nn and any adaptive q-query oracle algorithm AO1,...,On ,
the oracle algorithm B[A](1q) is a static nq-query oracle algorithm that is func-
tionally equivalent to A for all stateless instantiations of the oracles O1, . . . ,On.

Remark 1. As phrased, Theorem 1 applies to oracle algorithms A that have no
input. This is merely for simplicity. In case of an oracle algorithm A that takes
an input, we can simply apply the statement to the algorithm A(x) that has the
input x hardwired, and so argue that Theorem 1 also applies in that case.

Remark 2. B[A] is guaranteed to behave the same way as A for stateless (in-
stantiations of the) oracles only. This is become most of the queries that B[A]
makes are actually dummy queries (i.e., queries on a default input and with the
response ignored), which have no effect in case of stateless oracles, but may mess
up things in case of stateful oracles. Theorem 1 extends to arbitrary stateful or-
acles if we allow B[A] to skip queries instead of making dummy queries (but the
skipped queries would still count towards the query complexity).

Given the vector q = (q1, . . . , qn) ∈ Nn, the core of the problem is to find
a fixed sequence of Oi’s in which each individual Oi occurs at most nqi times,
and so that every sequence of Oi’s that contains each individual Oi at most qi
times can be embedded into the former. We consider and solve this abstract
problem in the following section, and then we wrap up the proof of Theorem 1
in Section 3.3.

3.2 The Technical Core

Let Σ be an non-empty finite set of cardinality n. We refer to Σ as the alphabet.
As is common, Σ∗ denotes the set of finite strings over the alphabet Σ. In other
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words, the elements of Σ∗ are the strings/sequences s = (s1, . . . , sℓ) ∈ Σℓ with
arbitrary ℓ ∈ N (including ℓ = 0).

Following standard terminology, for s = (s1, . . . , sℓ) and s′ = (s′1, . . . , s
′
m) in

Σ∗, the concatenation of s and s′ is the string s∥s′ = (s1, . . . , sℓ, s
′
1, . . . , s

′
m), and

s′ is a subsequence of s, denoted s′ ⊑ s if there exist integers 1 ≤ j1 < . . . <
jm ≤ ℓ with (sj1 , . . . , sjm) = (s′1, . . . , s

′
m). Such an integer sequence (j1, . . . , jm)

is then called an embedding of s′ into s.5

Finally, for a function q : Σ → N, σ 7→ qσ, we say that s = (s1, . . . , sℓ) ∈ Σ∗

has characteristic (at most) q if #{i | si = σ} = qσ (≤ qσ) for any σ ∈ Σ.

Lemma 1 (Embedding Lemma). Let Σ be an alphabet of size n, and let
q : Σ → N, σ 7→ qσ. Then, there exists a string s ∈ Σ∗ with characteristic
n · q : σ 7→ n · qσ such that any string s′ ∈ Σ∗ with characteristic at most q is a
subsequence of s, i.e., s′ ⊑ s.

The idea of the construction of the sequence s is quite simple: First, we evenly
distribute n ·qσ copies of σ within the interval (0, n] by “attaching” one copy of σ
to every point in (0, n] that is an integer multiple of 1/qσ (see Fig. 2). Note that
it may happen that different symbols are “attached” to the same point. Then,
we walk along the interval from 0 and n and, one by one, collect the symbols we
encounter in order to build up s′ from left to right; in case we encounter a point
with multiple symbols “attached” to it, we collect them in an arbitrary order.

0

{σ1}

1/qσ1

{σ2}

1/qσ2

{σ1}

2/qσ1

{σ1, σ2}

3/qσ1 = 2/qσ2
. . .

. . .

Fig. 2. Constructing the string s by distributing the different symbols evenly within
the interval (0, n] (here with 3/qσ1 = 2/qσ2), and then collecting them from left to
right.

It is then not too hard to convince yourself that this s indeed satisfies the
claim. Namely, for any s′ = (s′1, . . . , s

′
m) as considered, we can again walk along

the interval from 0 and n, and we will then encounter all the symbols of s′, one
by one: we will encounter the symbol s′1 within the walk from 0 to 1/qs′1 , the
symbol s′2 then within the walk from 1/qs′1 to 1/qs′1 + 1/qs′2 , etc.

Putting this idea into a formal proof is somewhat tedious, but in the end not
too difficult. In order to formalize things properly, we generalize the standard
notion of a sequence s ∈ Σ∗ in a way that allows us to talk about “attaching”
a symbol to a point on R, etc., in a rigorous way. Formally, we define a line

5 We use string and sequence interchangeably; however, following standard terminol-
ogy, there is a difference between a substring and subsequence: namely, a substring
is a subsequence that admits an embedding with ji+1 = ji + 1.
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sequence to be an arbitrary finite (possibly empty) subset S ⊆ R×Σ, i.e.,

S = {(t1, s1), . . . , (tℓ, sℓ)} ∈ P<∞(R×Σ) ,

where w.l.o.g. we will always assume that t1 ≤ . . . ≤ tℓ. We may think of the
symbol si to “occur at the time” ti.

6 For a subset T ⊂ R, the set P<∞(T×Σ)
then obviously denotes the set of line sequences with t1, . . . , tℓ ∈ T .

Assuming that the alphabet Σ is equipped with a total order ≤, any line
sequence S = {(t1, s1), . . . , (tℓ, sℓ)} is naturally associated with the ordinary
sequence

π(S) := (s1, . . . , sℓ) ∈ Σ∗ ,

which is uniquely determined by the convention t1 ≤ . . . ≤ tℓ and insisting on
si ≤ sj whenever ti = tj for i < j.

This projection π : P<∞(R×Σ) → Σ∗ preserves the characteristic of the
sequence, i.e., if s = (s1, . . . , sℓ) = π(S) then

#{t | (t, σ) ∈ S} = #{i | si = σ} (1)

for any σ ∈ Σ. Furthermore, for T, T ′ ⊂ R with T < T ′ point-wise, and for S ∈
P<∞(T×Σ) and S′ ∈ P<∞(T ′×Σ), it is easy to see that π(S∪S′) = π(S)∥π(S′) ,
from which it then follows that for ordinary sequences s, s′ ∈ Σ∗

s ⊑ π(S) ∧ s′ ⊑ π(S′) =⇒ s∥s′ ⊑ π(S)∥π(S′) = π(S ∪ S′) . (2)

A final, simple observation, which follows directly from the definitions, is that
for σ ∈ Σ, i.e. a sequence of length m = 1, σ ⊑ π(S) holds if and only if there
exists a time t ∈ R such that (t, σ) ∈ S.

Proof of Lemma 1. For any symbol σ ∈ Σ let Sσ be a line sequence

Sσ :=
{

1
qσ
, ..., nqσ

qσ

}
× {σ} ∈ P<∞((0, n]×Σ) ,

and set S :=
⋃

σ∈Σ Sσ. We will show that s := π(S) is as claimed.
The claim on the characteristic of s follows from the preservation of the

characteristic under π, i.e. (1), and from #{t | (t, σ) ∈ S} = #Sσ = n · qσ, which
holds by construction of S.

Let s′ = (s′1, . . . , s
′
m) ∈ Σ∗ be arbitrary with characteristic bounded by q.

We consider the times τj := 1/qs′1 + · · ·+1/qs′j for j ∈ {1, . . . ,m}, and we let Tj

be the interval
Tj :=

(
τj−1, τj

]
=

(
τj−1, τj−1+

1
q′j

]
⊂ R ,

and decompose S = S1 ∪ . . .∪ Sm with Sj := S ∩ (Tj×Σ) ∈ P<∞(Tj×Σ). Here,
we exploit that

τm =
∑
σ∈Σ

#{i | s′i = σ}
qσ

≤
∑
σ∈Σ

qσ
qσ

= n ,

6 Note that we allow ti = tj for i ̸= j while the definition prohibits (ti, si) = (tj , sj).
If desired, one could allow the latter by letting S be a multi-set, but this is not
necessary for us.
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and so the Sj ’s indeed cover all of S ∈ P<∞((0, n]×Σ). Given that the interval
Tj ⊂ (0, n] has size 1/qs′j , there exists a time tj ∈ Tj ∩

{
1
qσ
, ..., nqσ

qσ

}
. But then,

(tj , s
′
j) ∈ Sj by construction of S, and therefore s′j ⊑ π(Sj). Finally, since

Tj−1 < Tj , property (2) implies that

s′ = s′1∥ · · · ∥s′m ⊑ π(S1 ∪ . . . ∪ Sm) = s

which was to be shown.

While Lemma 1 above settles the existence question, the following two obser-
vations settle the corresponding efficiency questions. For concreteness, we assume
Σ = {1, . . . , n} below, and thus can identify the function q : Σ → N, σ 7→ qσ
with the vector q = (q1, . . . , qn).

First, we observe that the line sequence S defined in the proof above, as well
as its projection s = π(S), can be computed in polynomial time in q1 + · · ·+ qn;
thus, we have the following.

Lemma 2. There exists a polynomial-time algorithm that, on input 1q, com-
putes a string s ∈ Σ∗ as specified in the proof of Lemma 1.

Furthermore, for any s′ ∈ Σ∗ with characteristic at most q, for which we
then know by Lemma 1 that s′ can be embedded into s, the following ensures
that this embedding can be computed efficiently and on the fly.

Lemma 3. There exists a polynomial-time algorithm E such that for every string
s ∈ Σ∗ and every subsequence s′ = (s′1, . . . , s

′
m) ⊑ s, the following holds. Com-

puting inductively ji ← E(s, s′i, ji−1) for every i ∈ [m], where j0 := 0, results in
an increasing sequence j1 < · · · < jm with

s′ = (sj1 , . . . , sjm) .

The algorithm E simply follows the obvious greedy strategy: for each s′i it
looks for the next ji for which s′i = sji . More formally:

Proof. The algorithm E(s, s′i, ji−1) computes

ji := min {k ∈ N | ji−1 < k ≤ m, sk = s′i} . (3)

It can be easily shown that the minimum is well-defined, i.e. taken over a non-
empty set for each i by the assumption that s′ is a subsequence of s, and thus
by construction, every ji is such that s′i = sji while keeping j1 < · · · < jn
increasing. This concludes the proof.

3.3 Wrapping up the Proof of Theorem 1

The claimed interactive oracle algorithm B now works in the obvious way. On
input q (provided in unary) and for any A, B[A] will make static oracle queries to
Os1 ,Os2 , . . . ,OsnQ

, where s = (s1, . . . , snQ) ∈ {1, . . . , n}∗ is the string promised
to exist by Lemma 1, with Q = q1 + · · · + qn. In more detail, it first computes
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s using the algorithm from Lemma 2. Then, for the i-th oracle query that B
receives from A (starting with i = 1), and which consists of the identifier s′i ∈
{1, . . . , n} of which oracle to query now and of the actual input to the oracle
Os′i

, the algorithm B does the following: it computes ji ← E(s, s′i, ji−1) using
the algorithm from Lemma 3, makes dummy queries to Osji−1+1

, . . . ,Osji−1
, and

forwards A’s query input to Osji
= Os′i

. The fact that (j1, . . . , jQ) computed
this way forms an embedding of s′ = (s′1, . . . , s

′
Q) into s ensures that B is able to

forward all the queries that A makes to the right oracle, and so A will produce
its output as in an ordinary run with direct adaptive access to the oracles.

3.4 Applications

To demonstrate the usefulness of our adaptive-to-static compiler, we briefly dis-
cuss three results from the literature. For two of them, the adaptivity of the
attacker was explicitly declared as an obstacle in the security proof, and deal-
ing with it complicated the proof substantially. These complications could be
avoided/removed by means of our adaptive-to-static compiler. For the third one,
we can immediately strengthen one of the results, which is restricted to hold for
static multi-oracle adversaries, by dropping this restriction via our compiler.

Quantum Security of qTESLA. Our first application is in the context of
qTESLA [2], which is a signature scheme that made it into the second round
of the NIST post-quantum competition. Its security is based on the Ring-LWE
problem, to which the authors of [3] give a reduction in the quantum random-
oracle model (QROM).7 In the reduction, which starts from the security notion
of Unforgeability under Chosen Message Attack (UF-CMA), the adversary can
query a random-oracle H as well as a signing oracle, where the order of oracle
queries may be adaptive.

The reduction strategy of [3] applies only to a static adversary, with a fixed
query pattern. Thus, the authors first compile the adaptive into a naive static
attacker by letting it do qH (the number of H-queries of the original adaptive ad-
versary) H-queries between any two signing queries. Leaving it with this would
blow up the number of H-queries to qSqH . In order to avoid that, they give the
attacker a “live-switch”, meaning that each query to H may be in superposition
of making the query and not making the query, and the total “query magnitude”
on actual H-queries is still restricted to qH . Not so surprising, adding even more
“quantumness” to the problem in this way, makes the analysis more complicated
(compared to using standard “all-or-nothing” static queries and a standard clas-
sical bound on the query complexity), but it allows the authors to avoid the
above blow-up in the (classical) query complexity to transpire into the security
loss. The overall loss they obtain in the end is O((qSq

2
H +q3S+q2SqH) ·ϵ) for small

ϵ determined by the parameters of the scheme.

7 We note that some versions of qTESLA have been broken [8], but the attack only
applies to an optimized variant that was developed for the NIST-competition, and
does not apply to the scheme in [3] that we discuss here.
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Since the security reduction in [3] intertwines the adaptive to static hurdle
with other aspects of the proof, we cannot simply insert our Theorem 1 and then
continue the proof as is. Still, by applying our result, we could obtain a static
adversary with almost no cost in the number of H-queries, avoiding the need for
the rather complicated “live-switch superposition” attacker, thus simplifying the
overall proof significantly. Furthermore, looking ahead at Section 4, our result
allows us to obtain the much better O(

√
qOq2Hϵ +

√
q2OqHϵ) loss in a similar

context—similar in the sense that it also involves two oracles where one repro-
grams the other at some high-entropy input. The adaptive to static reduction
there allows us to apply some additional QROM tools that could potentially also
be applied in the setting of qTESLA to improve the bound. However, actually
doing this would require us to rewrite the entire proof of [3], which we consider
outside the scope of this work.

Quantum Security of the Function FX Our second application is to [7],
where the post-quantum security of the FX key-length extension is studied
(which is a generalization of the Even-Mansour cipher). In a first part, post-
quantum security of FX is shown under the restriction that the inputs to the
queries are fixed in advance. In a second part, towards avoiding this restriction,
the authors consider a variation of the FX construction, which they call FFX
(for “function FX”), and they show in their Theorem 3 post-quantum security
of FFX under the restriction that the attacker is “order consistent”, as they call
it in [7], which is precisely our notion of a static multi-oracle algorithm. Thus, by
a direct application of our Theorem 1, this restriction can be dropped (almost)
for free, i.e., with a small constant blow-up on the attackers advantage.

Quantum Security of the Even-Mansour Cipher. The recent work [1]
shows full post-quantum security of the (unmodified) Even-Mansour cipher. Is
in the case of qTESLA, the fact that the attacker can choose adaptively whether
to query the public permutation of the cipher complicates the proof. Indeed, as
is explained on page 3 in [1], this adaptivity issue forces the authors to extend
the blinding lemma of Alagic et al. to a variant that gives a bound in terms of
the expected number of queries. While the authors succeed in providing such an
extended version of the blinding lemma (Lemma 3 in [1]), it further increases
the complexity of an already involved proof.8

Thus, again, our Theorem 1 could be used to simplify the given proof by
bypassing the complications that arise due to the attacker choosing adaptively
which oracle to query at what point.

8 To be fully precise, Lemma 3 in [1] also generalizes the original blinding lemma
in a different direction by allowing to reprogram to an arbitrary value instead of
a uniformly random one; however, this generalization comes for free in that the
original proof still applies up to obvious changes, while allowing an expected number
of queries, which is needed to deal with the adaptivity issue, requires a new proof.
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4 Quantum Security of a Split-key PRF

4.1 Hybrid Security and skPRFs

A split-key pseudorandom function (skPRF), as introduced in [6], is a polynomial-
time computable function F : K1 × · · · × Kn × X → Y that is a pseudoran-
dom function (PRF) in the standard sense for every i ∈ [n] when considered
as a keyed function with key space Ki and message space K1 × · · · × Ki−1 ×
Ki+1× · · ·×Kn×X , with the additional restriction that the distinguisher A (in
the standard PRF security definition) must use a fresh x ∈ X in every query
(k1, . . . , ki−1, ki+1, . . . , kn, x).

This restriction on the PRF distinguisher may look artificial, but is motivated
by this definition of a skPRF being good enough for the intended purpose of a
skPRF, namely to give rise to a secure KEM combiner. Indeed, [6] shows that the
naturally combined KEM, obtained by concatenating the individual ciphertexts
to C = (c1, . . . , cn), and combining the individual session keys k1, . . . , kn using
the above mentioned skPRF as

K = F (k1, . . . , kn, C) ,

is IND-CCA secure if at least one of the individual KEM’s is IND-CCA secure.
The paper [6] also proposes a particularly efficient hash-based construction,

given by

F (k1, . . . , kn, x) := H(g(k1, . . . , kn), x) (4)

where g : K1 × · · · × Kn → W is a polynomial-time mapping with the property
that, for some small ϵ,

Pr
ki←Ki

[g(k1, . . . , kn) = w] ≤ ϵ , (5)

for every i ∈ [n] and for every k1, . . . , ki−1, ki+1, . . . , kn and every w; furthermore,
H :W → Y is a cryptographic hash function. Simple choices for the function g
are g(k1, . . . , kn) = (k1, . . . , kn) and g(k1, . . . , kn) = k1 + · · ·+ kn.

It is shown in [6] that this construction is a skPRF when H is modelled as
a random-oracle; indeed, it is shown that the distinguishing advantage is upper-
bounded by qHϵ, where qH is the number of queries to the random-oracle H.

Given the natural use of combiners in the context of the upcoming transi-
tion to post-quantum cryptography, it is natural—and well-motivated—to ask
whether F can be proven to be a skPRF in the presence of a quantum attacker,
i.e., when H is modeled as a quantum random-oracle. Below, we answer this in
the affirmative.

4.2 Quantum-security of the skPRF

The goal of this section is to show the security of the skPRF (4) in the quantum
random-oracle model. In essence, this requires proving that F is a PRF (in the
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quantum random-oracle model) with respect to any of the ki’s being the key,
subject to the restriction of asking a fresh x in each query.

To simplify the notation, we fix the index i ∈ [n] and simply write k for ki
and x for (k1, . . . , ki−1, ki+1, . . . , kn, x), and we abstract away the properties of
the function g as follows. We let

F (k, x) := H(h(k, x)) ,

where h : K×X →W is an arbitrary function with the property that, for some
parameter ϵ > 0,

Pr
k←K

[h(k, x) = w] ≤ ϵ (6)

for all w ∈ W and x ∈ X . Furthermore, in the PRF security game, we restrict
the attacker/distinguisher A to queries x with a fresh value of h(k, x), no matter
what k is.

More formally, let AH,O be an arbitrary quantum oracle algorithm, making
quantum superposition queries to an oracle H and classical queries to another
oracle O, with the restriction that for every query x to O it holds that

h(κ, x) ̸= h(κ, x′) , (7)

for any prior query x′ to O and all κ ∈ K. For any such oracle algorithm AH,O,
we consider the standard PRF security games

PR1 := AH,F and PR0 := AH,R ,

obtained by instantiating H with a random function H (the random-oracle) in
both games, and in one game we instantiate O with the pseudorandom function
F , which we understand to return F (k, x) on query x for a random k ← K,
chosen once and for all queries, and in the other we instantiate O with a truly
random function R instead.

We show that the distinguishing advantage for these two games is bounded
as follows.

Theorem 2. Let AH,O be a (qH, qO)-query oracle algorithm satisfying (7). Then∣∣Pr [1← PR1
]
− Pr

[
1← PR0

]∣∣ ≤ 4
√
2q2OqHϵ+ 4

√
2q2HqOϵ .

We can now apply Theorem 2 to the function h(k, x) := (g(k1, . . . , kn), x̃),
where k := ki and x := (k1, . . . , ki−1, ki+1, . . . , kn, x̃). Indeed, the condition (5)
on g implies the corresponding condition (7) on h, and the restriction on x̃ being
fresh in the original skPRF definition implies the above restriction on h(k, x)
being fresh no matter what k is, i.e., 6). Thus, we obtain the following.

Corollary 1. For any function g satisfying (5) for a given ϵ > 0, the func-
tion F (k1, . . . , kn, x) := H(g(k1, . . . , kn), x) is a skPRF in the quantum random-
oracle model with distinguishing advantage at most 4

√
2q2OqHϵ+ 4

√
2q2HqOϵ.
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4.3 Proof of Theorem 2

Proof (of Theorem 2). Let AH,O be an oracle algorithm as considered in the
previous subsection. Thanks to Theorem 1, taking a factor-2 blow-up in the
query complexity into account, we may assume A to be a static (qH, qO)-query
oracle algorithm. It will be convenient to write such a static algorithm as

A[H0OH1OH2...OHqO ] ,

where each block Hi = H · · ·H consists of a (possibly empty) sequence of sym-
bols H of length qHi = |Hi|, and with the understanding that A first makes
qH0 queries to H, then a query to O, then qH1 queries to H, etc., where, obvi-
ously, qH0 + · · ·+ qHqO = qH then. Instantiating H with H, and O with F and R,
respectively, we can then write

PR0 = A[H0RH1...RHqO ] and PR1 = A[H0FH1...FHqO ] .

For the proof, we introduce certain hybrid games. For this purpose, we introduce
the following alternative (stateful and R-dependent) instantiation H ′ of H. To
start with,H ′ is set to be equal toH, but whenever R is queried on some input x,
H ′ is reprogrammed at the point h(k, x) to the value H ′(h(k, x)) := R(x). For
any i, we now define the two hybrid games

PR2
i :=A[H0R...RHiFH′

i+1F...FH′
qO

]

P̃R
2

i :=A[H0R...RHiRH′
i+1F...FH′

qO
]

and also spell out

PR2
i+1 =A[H0R...RHiRHi+1F...FH′

qO
]

to emphasize its relation to P̃R
2

i . We note that in all of the above, the first
occurrences of H and O are instantiated with R and H, respectively, but at
some point we switch to R and H ′ instead.

The extreme cases match up the games we are interested in. Indeed,

PR2
0 = A[H0FH′

1...FH′
qO

] = A[H0FH1...FHqO ] = PR1 ,

where we exploit that there are no queries to R and thus H ′ remains equal to
H, and, by definition,

PR2
qO = A[H0RH1...RHqO ] = PR0 .

Our goal is to prove the closeness of the following games

PR1 = PR2
0 ≈ P̃R2

0 ≈ PR2
1 · · · ≈ PR2

qO−1 ≈ P̃R
2

qO−1 ≈ PR2
qO = PR0 .

We do this by means of applying Lemma 4 and 5, which we state here and prove
further down.
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Lemma 4. For each 0 ≤ i < qO,∣∣∣Pr[1← PR2
i

]
− Pr

[
1← P̃R

2

i

]∣∣∣ ≤ 2

√ ∑
1≤j≤i

qHj ϵ .

Lemma 5. For each 0 ≤ i < qO,∣∣∣Pr[1← P̃R
2

i

]
− Pr

[
1← PR2

i+1

]∣∣∣ ≤ 2qHi+1

√
qOϵ .

Indeed, by repeated applications of these lemmas, and additionally using that
qH0 + · · ·+ qHi ≤ qH for all 0 ≤ i ≤ qO, we obtain

∣∣Pr [1← PR1
]
− Pr

[
1← PR0

]∣∣ ≤ 2

qO∑
i=0

√ ∑
1≤j≤i

qHj ϵ+ 2

qO∑
i=0

qHi+1

√
qOϵ

≤ 2
√

q2OqHϵ+ 2
√

q2HqOϵ

which concludes the claim of Theorem 2 when incorporating the factor-2 increase
in qH and qO due to switching to a static A.

It remains to prove Lemma 4 and 5, which we do below. In both proofs,
we use the gentle measurement lemma [9, Lemma 9.4.1], which states that if a
projective measurement has a very likely outcome then the measurement causes
only little disturbance on the state. More formally, for any density operator ρ
and any projector P , where p := tr(PρP ) then is the probability to observe the
outcome associated with P when measured using the measurement {P, I − P},
the trace distance between the original state ρ and the post-measurement state
ρ′ := PρP/p is bounded by

√
1− p. This in turn implies that ρ and ρ′ can be

distinguished with an advantage
√
1− p only.

The proof of Lemma 4 additionally makes use of Zhandry’s compressed oracle
technique [10]. It is out of scope of this work to give a self-contained description
of this technique; we refer to the original work [10] instead, or to [5], which
offers an alternative concise description. At the core is the observation that
one can purify the random choice of the function H and then, by switching to
the Fourier basis and doing a suitable measurement, one can check whether a
certain input x has been “recorded” in the database (mind though that such
a measurement disturbs the state). If the outcome is negative then the oracle
is still in a uniform superposition over all possible hash values for x, and as a
consequence, when removing the purification by doing a full measurement of H
(in the computational basis), H(x) is ensured to be a “fresh” uniformly random
value, with no information on H(x) having been leaked in prior queries.

In the proof of Lemma 4, we use this technique to check whether prior to the
crucial query, which is to F in one and to R in the other game, there was a query
to H that would reveal the difference, and we use (6) to argue that it is unlikely
that such a query occurred. Since this measurement has a likely outcome, it is
also ensured by the gentle measurement lemma that this measurement causes
little disturbance.
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Proof (of Lemma 4). For convenience, we refer to the crucial query as the re-
spective query to F and R that differs between

PR2
i = A[H0R...RHiFH′

i+1F...FH′
qO

] and P̃R
2

i = A[H0R...RHiRH′
i+1F...FH′

qO
] .

Furthermore, we let x be the input to that query, and we set w := h(k, x), with
k being the key chosen and used by F . Note that up to this very query, the two
games are identical. Also, by (7) it is ensured that for any prior query x′ to R
it holds that h(k, x′) ̸= w.

First, we consider the games G1 and G̃1 that work exactly as PR2
i and P̃R

2

i ,
respectively, except that, at the beginning of the games we set up the compressed
oracle and answer all queries made to H prior to the crucial query using the
compressed oracle. Then, once x is received during the crucial query, we do a
full measurement of the purified (i.e. uncompressed) oracle in order to obtain
the function H, which is then to be used in the remainder of the games. We
note that setting up the function H ′ is then necessarily also deferred to after
this measurement, where H ′ is then set to be equal to H, except that for any
prior query x′ to R it is reprogrammed to H ′(h(k, x′)) := R(x′). Only once H
has been measured and H ′ set up as above, is the crucial query then actually
answered.

It follows from basic properties of the compressed oracle that the respective
output distributions of G1 and G̃1 match with those of PR2

i and P̃R
2

i .

Then, we defineG2 and G̃2 fromG1 and G̃1, respectively, by introducing one
more measurement. Namely, right after x is sent by A and before H is measured,
we measure in the compressed oracle whether the input w = h(k, x) has been
recorded in the database, and in case of a positive outcome, the game aborts.
By the gentle measurement lemma (and basic properties of the trace distance),∣∣Pr [1← G1

]
− Pr

[
1← G2

]∣∣ ≤√
Pr [G2 aborts]

and similarly for G̃1 and G̃2, where G̃2 aborts with the same probability as G2.
By basic properties, after t := qH0 + · · ·+qHi queries to the compressed oracle,

no more than t values have been recorded. I.e., if we were to measure, for the
sake of the argument, the entire compressed oracle to obtain the full database
D, it would hold that supp(D) := {u |D(u) ̸=⊥} has cardinality at most t. Since
k has not been used yet and so is still freshly random (i.e., independent of x and
D), the high-entropy condition (6) then ensures that

Pr
[
G̃2 abort

]
= Pr

[
G2 abort

]
= Pr

[
w ∈ supp(D)

]
≤

∑
j<i

qHj ϵ .

It remains to show that G2 and G̃2 behave identically conditioned on not
aborting. The only difference between the two games is that in G2 the crucial
query is answered with y := H(h(k, x)) = H(w) and H ′ is not reprogrammed at

the point w, while in G̃2 the crucial query is answered with y := R(x) and H ′ is
reprogrammed at the point w to H ′(w) := R(x). We argue that this difference
is not noticable by A.
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First, we note that y is a fresh random value in both games. In the former
game it is because, conditioned on not aborting, the compressed oracle at the
register h(k, x) is ⊥, and so when uncompressing and measuring to obtain H, the
hash value H(w) will be a fresh random value. In the latter game it is because
R(x) is a truly random function and, due to (7), x has not been queried to R
before.

Second, we observe that y = H ′(w) in both games. Indeed, in G̃2 this holds
by definition; in G2 it holds because H ′(w) = H(w), which follows from the
fact that H ′ is reprogrammed only at points w′ = h(k, x′) with x′ being a prior
query to R, but then (7) ensures that w′ ̸= w.

Thus, in both games, from A’s perspective, the tuple (k, y,H ′, H\w) of ran-
dom variables has the same distribution, where H\w refers to the function (table
of) H but with the value at the point w removed. The only difference is that
in one game H ′(w) = H(w) and in the other not (necessarily). However, the
future behavior of A in both games only depends on (k, y,H ′, H\w), and thus
A behaves the same way in both games. Here we are exploiting that the future
hash queries by A are to H ′ (and not to H anymore), and, once more, we are
using the restriction (7), here to ensure that for any future F -query x′ by A, it
holds that h(k, x′) ̸= w, and thus the response does not depend on H(w). Thus,
H(w) does indeed not affect A’s behavior after the crucial query.

Exploiting that PR2
i = G1 ≈ G2 = G̃2 ≈ G̃1 = P̃R

2

i , with the approxima-
tions bounded as discussed further up, we obtain the claimed closeness claim.
This concludes the proof.

Proof of Lemma 5. In order to show the closeness between P̃R
2

i and PR2
i+1, we

define the intermediate games

Gi,j := A[H0R...HiRH′
i,jHi,jF...FH′

qO
]

for 0 ≤ j ≤ m := qHi+1, where H′i,j and Hi,j consists of j and m− j copies of H ′

and H respectively. Note that for the extrame cases we have

Gi,0 = P̃R
2

i and Gi,m = PR2
i+1 .

Thus, it suffices to show closeness between Gi,j and Gi,j+1 for any 0 ≤ j < m.
Note that they only differ at one query, which is either to H ′ or to H, which we
will refer to as the crucial query for convenience. In the remainder, i and j are
arbitrary (in the considered ranges) but fixed.

Define the games G̃1 and G1 from Gi,j and Gi,j+1 respectively as follows.
Let X be the set of queries x made to R prior to the crucial query, and set
S := {h(k, x) |x ∈ X}. We then measure the crucial query, which may be in
a superposition, with the binary measurement that checks whether the crucial
query is an element of S, and we abort if this is the case.

In case of a negative outcome, i.e., the crucial query is not in S, there is
no difference between the reply provided by H and by H ′, and thus there is
no difference between the two games—and in case of a positive outcome, they
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both abort. In order to argue that this measurement causes little disturbance,
we again use the gentle measurement lemma to argue that∣∣Pr [1← G1

]
− Pr [1← Gi,j+1]

∣∣ ≤√
Pr [G1 abort] ,

and correspondingly for Gi,j and G̃1. So it remains to bound the abort prob-
ability. For the purpose of the argument, let us do a full measurement of the
query, and let w be the outcome. We note that k has not been used yet, and
thus remains a fresh random key, independent of w and X. Thus, using (6),

Pr
[
G1 abort

]
= Pr

[
G̃1 abort

]
= Pr [w ∈ S] ≤

∑
x∈X

Pr [w = h(k, x)] ≤ qOϵ .

Adding up this error term over the sequence Gi,0 ≈ · · · ≈ Gi,m of approxima-
tions, the proof is concluded.
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The lattice-based digital signature scheme qTESLA. In: Conti, M., Zhou, J., Casal-
icchio, E., Spognardi, A. (eds.) Applied Cryptography and Network Security. pp.
441–460. Springer (2020)

3. Alkim, E., Bindel, N., Buchmann, J., Dagdelen, Ö., Eaton, E., Gutoski, G.,
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