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Abstract. Secure non-interactive simulation (SNIS), introduced in EU-
ROCRYPT 2022, is the information-theoretic analog of pseudo-correlation
generators. SNIS allows parties, starting with samples of a source corre-
lated private randomness (correlation), to non-interactively and securely
transform them into samples from a different correlation.

This work studies SNIS of binary symmetric or erasure correlations from
any arbitrary source correlation. In this context, our work presents:
1. The characterization of all sources that facilitate such SNIS,
2. An upper and lower bound on their maximum achievable rate, and
3. Exemplar SNIS instances where non-linear reductions achieve optimal

efficiency; however, any linear reduction is insecure.
These results collectively yield the fascinating instances of computer-
assisted search for secure computation protocols that identify ingenious
protocols that are more efficient than all known constructions.

Our work generalizes the algebraization of the simulation-based defi-
nition of SNIS as an approximate eigenvector problem. The following
technical contributions are the underpinnings of the results above.
1. Characterization of Markov and adjoint Markov operators’ effect on

the Fourier spectrum of reduction functions.
2. A new concentration phenomenon in the Fourier spectrum of reduc-

tion functions.
3. A statistical-to-perfect lemma with broad consequences for feasibility

and rate characterization of SNIS.

Our technical analysis relies on Fourier analysis over large alphabets
with arbitrary measure, the orthogonal Efron-Stein decomposition, and
junta theorems. Our technical approach motivates the new problem of
“security-preserving dimension reduction” in harmonic analysis, which
may be of independent interest.
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1 Introduction

Recently, Khorasgani, Maji, and Nguyen [32] introduced secure non-interactive
simulation (SNIS) as an information-theoretic analog of pseudo-correlation gen-
erator [10, 11]. In the two-party setting (refer to Figure 1), Alice and Bob
start with n independent samples of correlated private randomness (X,Y ), the
source distribution. Non-interactively, Alice and Bob compute U = fn(X

n) and
V = gn(Y

n), where fn(·) and gn(·) are reduction functions,1 and the joint dis-
tribution (U, V ) is the target distribution. This construction is a SNIS of the
target distribution (U, V ) from the source distribution (X,Y ) if it is simulation-
secure [13, 12, 14]. Note that SNIS security against semi-honest or malicious
adversaries is identical.

(xn, yn)
$←− (X,Y )⊗n

Alice

xn

U⊗m 3 u′ = fn(x
n, rA)

rA
$←− RA Bob

yn

v′ = gn(y
n, rB) ∈ V⊗m

rB
$←− RB

Fig. 1. System model for secure non-interactive simulation: SNIS.

Motivating Application for SNIS: Correlation generators [32]. Secure computa-
tion [52, 26] protocols often offload most of their computationally and crypto-
graphically expensive components to an offline procedure [39, 8, 17, 45]. This
offline procedure has high computation and communication costs, and it gener-
ates structured correlated private randomness like Beaver triples [5]. However,
several inexpensive sources of correlated private randomness also facilitate se-
cure computation, like, correlated samples from noise sources [33]. Therefore, a
natural solution is to non-interactively and securely convert these inexpensive
correlations into ones used in secure computation protocols.

Boyle et al. [10, 11] introduced pseudorandom correlation generators to achieve
this objective against computationally bounded adversaries. Recently, Khoras-
gani et al. [32] introduced the information-theoretic analog of this primitive,

1 The reduction functions fn(·) and gn(·) are randomized and use independent pri-
vate randomness; however, for brevity, the randomness is being excluded from the
formal representation. Strong sample-preserving derandomization results (i.e., the
derandomized reductions use an identical number of source samples and produce an
identical number of target samples) for SNIS [32] indicate the uselessness of inde-
pendent private randomness.
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modeled by the system in Figure 1, to study the feasibility and rate of SNIS,
which has straightforward consequences to the efficiency of secure computation.

Security & rate definition of SNIS [32]. Readers should follow the system in
Figure 1 for the discussion below. For feasibility considerations, substitutem = 1
in Figure 1. Khorasgani et al. [32] said that a SNIS of (U, V ) from (X,Y )⊗n using
reduction functions fn, gn has insecurity ν(n) if the following three conditions
are satisfied.

1. Correctness. The joint distribution of the output samples (u′, v′) is ν(n)-close
to the target distribution (U, V ) in statistical (i.e., total variational) distance.

2. Security against a corrupt Alice. Fix any (u, v) in the support of the target
distribution (U, V ). The distribution of xn conditioned on u′ = u and v′ = v
is ν(n)-close to being independent of v.2 In other words, Xn − U − V is an
(approximate) Markov chain.

3. Security against a corrupt Bob. Likewise, for any (u, v) in the support of the
target distribution (U, V ), the conditional distribution (Y n|U ′ = u, V ′ = v)
is ν(n)-close to being independent of u. In other words, Y n − V − U is an
approximate Markov chain.

[32] presented a simulation-based security definition that unifies these three con-
ditions. We represent this definition by the notation: “(U, V ) vν(n)fn,gn

(X,Y )⊗n.”
Fix the source (X,Y ) and the target (U, V ). To discuss (the single-letter char-

acterization of) rate, Khorasgani et al. [32] consider a SNIS family of (U, V )⊗m(n)

from (X,Y )⊗n using reduction function fn, gn with insecurity ν(n), parameter-
ized by n ∈ {1, 2, . . . }. The (production) rate, represented by R( (U, V ), (X,Y ) ),
is the supremum of the maximum achievable m(n)/n as n → ∞ and ν(n) → 0
over all possible families of reductions.

This reduction-based investigation facilitates characterizing the efficiency
limits of non-interactive secure computation irrespective of the origin of the
source samples. For example, the source samples can originate from noisy phys-
ical processes, trusted hardware, or the output of a protocol relying on crypto-
graphic hardness of computation assumptions.

Relation to other primitives and additional motivation. One-way secure com-
putation [22, 2] uses one additional round of communication to transform the
samples from source distributions into samples from a target distribution. Non-
interactive correlation distillation [43, 42, 51, 9, 16] restricts SNIS to the target
distribution (U, V ) being the independent coin distribution. SNIS is the crypto-
graphic extension of non-interactive simulation of joint distribution [21, 50, 48,
30, 31, 25, 18, 24] from information theory.

This non-cryptographic simulation problem (either non-interactive or with
rate-limited communication) has diverse applications, for example, as discussed
2 The conditional distribution (A|B = b) is ν-close to being independent of b if there is
a distribution A∗ such that the statistical distance between A∗ and the conditional
distribution (A|B = b) is at most ν for any b ∈ Supp(B).
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in [31], spanning from game-theoretic coordination in a network against an ad-
versary to control a dynamical system over a distributed network. These appli-
cations naturally extend to the cryptographic context with adversarial agents,
granting additional independent motivation to study SNIS.

Studying the cryptographic complexity [7, 38, 36, 6, 44] also motivates the
study of SNIS, as done in the independent work of [1].

Our problem statement. This work considers the simulation of two particular
target distributions (U, V ) (refer to Figure 2).

1. Noise from the binary symmetric channel. Alice outputs uniformly random
u ∈ {+1,−1} and Bob outputs v ∈ {+1,−1} such that, for each u, the
probability of u 6= v is ε ∈ (0, 1/2). We represent this correlated private
randomness by BSS(ρ), where ρ = (1 − 2ε). For example, BSS(1/2) is a
distribution where Alice and Bob samples disagree with a probability of 1/4.

2. Noise from the binary erasure channel. Alice outputs uniformly random u ∈
{+1,−1} and Bob outputs v ∈ {u, 0} such that, for each u, the probability
of v = 0 is ε ∈ (0, 1). We represent this correlated private randomness by
BES(ρ), where ρ =

√
1− ε. So, BES(

√
1/2) has erasure probability 1/2.

+1

−1

+1

−1

1− ε

ε
ε

1− ε

BSS(ρ = 1− 2ε)

+1

−1

+1

−1

0

1− ε

ε

ε

1− ε

BES(ρ =
√
1− ε)

Fig. 2. Random correlated noise generated by the binary symmetric channel (BSS)
and the binary erasure channel (BES) with maximal correlation ρ.

This work parameterizes the channels by their maximal correlation ρ for
brevity in our technical presentation (see Section 3.2 for formal definition). [32]
proved that a SNIS of BSS(ρ′) from BSS(ρ) exists if and only if ρ′ = ρk, for
some k ∈ {1, 2, . . . }. Furthermore, if this SNIS is feasible, it has a rate of 1/k:
each party outputs the product of k samples of their source – a linear reduction.
Similarly, a SNIS of BES(ρ′) from BES(ρ) exists if and only if ρ′ = ρk, for some
k ∈ {1, 2, . . . }. This SNIS also has a rate of 1/k, and linear reductions are rate-
achieving.

Our work considers the problem of determining the feasibility and rate of
SNIS generating BSS/BES target noise from arbitrary source distributions and
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identifying corresponding maximum rate-achieving secure constructions. The
source distribution (X,Y ) can be arbitrary; they may have arbitrary-size sample
spaces, and their marginal distributions need not be uniform or identical.

Summary of our results. We present an exhaustive characterization of all source
distributions that yield secure SNIS of BSS and BES target distributions. Fur-
thermore, if the insecurity of a SNIS is sufficiently small, then one can slightly
edit the reduction functions to convert them into perfectly secure SNIS. Next,
we present (positive constant) lower and upper bounds on the production rate
of such SNIS. Finally, we exhibit SNIS instances where non-linear reduction
functions achieve optimal rate (also demonstrating the tightness of our rate
estimates); however, every linear reduction is constant insecure. We efficiently
searched the space of all reductions (guided by our technical results) to identify
these fascinating non-linear reductions – even the authors were unaware of their
existence.

These cryptographic consequences rely on several foundational and technical
contributions of ours, which may be of independent and broader interest. We
generalize the [32]’s framework for algebraizing SNIS from arbitrary source dis-
tributions using the source’s Markov and the adjoint Markov operators (refer to
Section 3.4 for definition). This algebraization translates SNIS into an approxi-
mate eigenvector formulation for appropriate linear operators, where the reduc-
tion functions are their eigenvectors. Next, we quantify the impact of these linear
operators on the Fourier spectrum of the reduction functions. Our proof relies on
a critical synergy between the linear operators and the reduction functions over
the orthogonal Efron-Stein basis. Our work shows that this quantification entails
a concentration of the Fourier spectrum of the reductions on low-degree terms.
Fascinatingly, our bound on the degree depends on the maximal correlations of
the source and the target distributions. Finally, we apply appropriate junta the-
orems (i.e., dimension reduction) to prove the closeness of SNIS reductions to
juntas (a.k.a., canonical reductions).

Consequently, one obtains a technical tool: the statistical to perfect lemma.
This lemma, for instance, implies the following non-trivial phenomena for any
source and target pair.

1. One can error-correct any statistically-secure SNIS into a perfect SNIS.
2. The total number of canonical SNIS candidates is constant.
3. The rate of any feasible SNIS is a positive constant.

The presentation above is only a high-level overview of our proof strategy,
highlighting its primary landmarks. There are several subtleties to address and
technical challenges to overcome, which we further elaborate in Section 2.2.

Computer-assisted search for optimal secure computation protocols. Although
computer-assisted constructions are common while constructing error-correcting
codes and combinatorial designs [37], their role in secure protocols is novel. Our
work presents fascinating instances of computer-assisted search for finding opti-
mal secure computation protocols that are more efficient than known protocols.
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[32] discovered new alternative constructions that achieve already-known effi-
ciency parameters. [15] also used computer assistance to recover known garbling
constructions. Typically idealized information-theoretic models yield hardness
of computation results; however, the SNIS model also yields non-trivial positive
results. This research outcome indicates that one should be open to the possi-
bility of relying on computer-assisted search to design new and more efficient
secure computation protocols.

Overview of the paper. Section 2 presents an informal overview of our results
and technical approach. Section 3 introduces the preliminaries. Section 4 proves
our results pertaining to determining the feasibility of SNIS. Section 5 presents
our rate estimation results. Section 6 has results pertaining to 2 × 2 sources.
Section 7 presents the remaining results.

2 Overview of our Contributions

2.1 Overview of Our Results

This section presents an informal summary of our results and a technical overview
of the proof. In the presentation below, without loss of generality, we assume that
the SNIS reductions are deterministic [32].

Feasibility characterization of SNIS from arbitrary sources. We present
an efficient algorithm to determine whether a statistically secure SNIS of BSS/BES
from the source (X,Y ) is feasible or not (see Corollary 1). Theorem 1 states that
if the simulation error of a SNIS of BSS/BES from the source (X,Y ) is less than
c/n, where c a suitable positive constant, one can edit the reduction functions
into a perfect secure SNIS. Furthermore, these perfectly-secure reductions are
canonical reductions that are Boolean constant-juntas. That is, they depend on a
constant number of input variables, which entails that the total number of such
canonical candidate reductions is only a constant. Therefore, one can exhaus-
tively search for all such canonical reductions to determine if a SNIS of BSS/BES
from (X,Y ) is possible.

This technical result entails the following consequence for cryptographic con-
texts. Efficient secure constructions in cryptography insist on achieving negl(λ)
insecurity, where λ is the security parameter, using n = poly(λ) source samples.
Therefore, given a source and target, our result proves that either (a) there is
a perfectly secure SNIS or (b) every SNIS construction is insecure (because we
show that the insecurity is at least inverse-polynomial in the security parame-
ter). In particular, our result rules out the possibility of negligibly-insecure SNIS
existing where there is no perfectly secure SNIS.

Estimating rate of SNIS from arbitrary sources.We prove that if a SNIS is
feasible, it has a positive constant rate (see Corollary 2). Fix a BSS/BES target.
To lower-bound the rate of such SNIS by a positive constant, observe that if
a SNIS of BSS/BES from (X,Y ) is feasible, there is a canonical SNIS, which
is perfectly secure, and the reduction functions are constant-juntas. One can
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partition the samples of (X,Y )⊗n into constant-size blocks, apply the canonical
reduction to each block, and obtain one target sample from each block. This
construction has a positive constant rate. Such results are rare in cryptography
and challenging to prove for secure computation (cf., [29, 28, 32] for examples).

Theorem 5 upper-bounds the rate of SNIS of BSS/BES from any target dis-
tribution using the maximal correlation [27, 48, 3, 47, 4] of the target distribution
(refer to Section 3.2 for the definition of maximal correlation) and the eigenvalue
of the Markov operator TT (refer to Section 3.4) of the source distribution. We
emphasize that this upper bound is only for perfectly secure SNIS. This restric-
tion is unsurprising because, as demonstrated in [32], even estimating the rate of
simulating BSS from BSS is known only for perfectly secure SNIS. [32] present
evidence that overcoming this hurdle may require advances in harmonic analysis.

Our upper bounds for BSS and BES are tight as demonstrated by (1) the
rate of self-simulation of BSS and BES [32], and (2) the reduction of BSS(1/2)
and BES(

√
1/2) from the ROLE correlation (defined below), whose maximal

correlation is
√
1/2.

We clarify that this upper bound also extends to randomized perfectly-secure
SNIS because the sample-preserving derandomization of [32] preserves perfect
security.

Power of non-linear reductions and computer-assisted search. The ran-
dom oblivious linear-function evaluation [49] (ROLE) source samples uniformly
and independently random a, b, c ∈ {0, 1}, provides Alice x = (a, b), and provides
Bob y = (c, d), where d = a · c ⊕ b. The maximal correlation of ROLE is

√
1/2

(see the full version for the proof). Recall that BSS(1/2) is a random correlated
sample from the binary symmetric channel where parties’ samples are different
with probability 1/4.

We show that there is an optimal rate-1/2 SNIS of BSS(1/2) from ROLE
using non-linear reductions (refer to the protocol in Figure 3 and the discussion in
Section 7.3); however, any SNIS of BSS(1/2) from ROLE using linear reductions
is constant-insecure (refer to Lemma 4).3 The optimality of the rate follows from
the upper bound of Theorem 5. In the optimal protocol each party’s output
indicates whether their source samples form a ROLE correlation or not.

The previous best construction (as far as the authors are aware) uses three
ROLEs and one round of communication to implement a 1-out-of-4 bit-OT. Alice
feeds a random permutation of (u, u, u, 1−u), where u $←− {0, 1}, into the 1-out-of-
4 bit-OT. Bob chooses to receive the bit v at a random position i ∈ {1, 2, 3, 4}. In
comparison, our construction uses one less ROLE sample and no communication,
which significantly impacts the efficiency of this secure computation.4

3 Observe that “linearity” of a reduction may depend on how the samples of the source
are “named.” We prove our impossibility result in a strong sense. For any renaming
of the samples, we show that linear constructions are constant insecure.

4 We identified all reductions realizing this SNIS at an optimal rate. All the reductions
were essentially equivalent to each other. However, we chose this particular reduction
because it admits an elegant intuitive formulation.
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Source. Alice gets (a1, b1, a2, b2) and Bob gets (c1, d1, c2, d2) such that
a1, b1, c1, a2, b2, c2 are chosen uniformly and independently at random from the set
{0, 1} and d1 = a1 · c1 ⊕ b1 and d2 = a2 · c2 ⊕ b2.

Reductions.
1. Alice outputs u = +1, if b2 = a1 · a2 ⊕ b1; otherwise, u = −1.
2. Bob outputs v = +1, if d2 = c1 · c2 ⊕ d1; otherwise, v = −1.

Source. (In multiplicative notation.) Alice gets (A1, B1, A2, B2) and Bob gets
(C1, D2, C2, D2) such that A1, B1, C1, A2, B2, C2 are chosen uniformly and indepen-
dently at random from the set {+1,−1} and D1 = 1

2
· (1 +A1 + C1 −A1 · C1) · B1

and D2 = 1
2
· (1 +A2 + C2 −A2 · C2) ·B2.

Reductions.
1. Alice outputs U = 1

2
· (1 +A1 +A2 −A1 ·A2) ·B1 ·B2.

2. Bob outputs V = 1
2
· (1 + C1 + C2 − C1 · C2) ·D1 ·D2.

Fig. 3. SNIS of BSS(1/2) from ROLE achieving optimal production rate 1/2. The top
half of the figure presents the reduction using ROLE as defined for elements in {0, 1}.
The bottom half presents the equivalent reduction using the multiplicative notation
0 7→ +1 and 1 7→ −1. In the multiplicative representation, the Fourier spectrum of
each reduction function is explicit. One can verify that the (1) reduction functions
are non-linear and (2) their Fourier weights are not concentrated on terms of identical
degree.

Similarly, there is an optimal rate-1 SNIS of BES(
√

1/2) from ROLE using
non-linear reductions (refer to Section 7.3) ; however, any SNIS using linear
reductions is constant-insecure (refer to Lemma 4). The optimality of this pro-
tocol follows from Theorem 5. Furthermore, the spectrums of these reduction
functions are not concentrated on terms with an identical degree.

Additional Result: explicit characterization of SNIS of BSS from 2× 2
sources. Let the target distribution be BSS(ρ′) and (X,Y ) be an arbitrary
source such that the support size of both its marginals is two. We prove in The-
orem 6 that if the source (X,Y ) 6= BSS(ρ) or (X,Y ) = BSS(ρ) but ρ′ 6= ρk, for
all k ∈ {1, 2, . . . }, then any SNIS of BSS(ρ′) from (X,Y ) is constant insecure.
If (X,Y ) = BSS(ρ), ρ′ = ρk, for some k ∈ {1, 2, . . . }, and BSS(ρ′) vνf,g BSS(ρ)
for a sufficiently small ν, then one can slightly edit the reduction function to ob-
tain new reduction functions f∗, g∗ that are k-homogeneous5 and BSS(ρ′) v0

f∗,g∗

BSS(ρ) – a result already proved in [32]. The proof of Theorem 6 (additionally)
depends on (1) Theorem 8: a statistical-to-perfect lemma for BSS target from
arbitrary 2× 2 source, and (2) Theorem 9: the characterization of sources facil-
itating perfect SNIS of BSS target.

Remark 1. For 2×2 sources, our definition of “sufficiently small simulation error”
is slightly different from the arbitrary source case. In the 2 × 2 source case,
“sufficiently small simulation error” is a (global) constant. For arbitrary sources,
5 A homogeneous function is a linear combination of terms with an identical degree.
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“sufficiently small simulation error” is c/n, where c is a global constant. This
variation is a consequence of the different junta theorems our analysis uses.
Typically in cryptography, the security requires that the simulation error falls
faster than any inverse polynomial. Our results even work when considering
inverse polynomial simulation error.

Additional Result: explicit characterization of SNIS of BES from 2× 2
sources. We show that any SNIS of BES from a 2×2 source is constant insecure
(refer to Theorem 7). This generalizes the impossibility of SNIS of BES from
BSS [32].

Additional Result: necessary condition for SNIS feasibility. Theorem 11
presents easy-to-test necessary conditions for the feasibility of SNIS of BSS or
BES from eigenvalues of the Markov operator of the source. Our “eigenvalue test”
(derived independently) is identical to the test introduced in [1].

Additional Result: Incompleteness of string OT. Random samples from
the string oblivious transfer functionality, parameterized by ` ∈ {1, 2, . . . },
gives Alice two random `-bit strings (x0, x1) ∈ {0, 1}2` and gives Bob (b, xb) ∈
{0, 1}`+1

, where b is a uniformly random bit (see Definition 8). Lemma 5 states
that this family (for ` ∈ {1, 2, . . . }) of random samples from the string oblivious
transfer is not complete for SNIS because all of them have maximal correlation√
1/2. This family cannot yield a SNIS of any target with maximal correlation

>
√
1/2, because of Imported Theorem 2, and Imported Theorem 1.

This family is complete for one-way secure computation [22]. [1] show that a
single source cannot be complete for SNIS.

2.2 Overview of Our Technical Contributions

This section presents a high-level intuition of our technical contributions. It is
instructive to read this section with SNIS for BSS target as a representative
example.

Our starting point. For a source (X,Y ) ∈ {BSS,BES}, Khorasgani et al. [32]
algebraically captured the simulation-based security definition of SNIS using the
Markov (T) and the adjoint-Markov (T) operators associated with (X,Y ). If a
SNIS has a small simulation error, the reduction functions f and g are approxi-
mate eigenvectors of the linear operators TT and TT, respectively. We generalize
this result to an arbitrary source (X,Y ) using a similar idea. Furthermore, alge-
braization of security in [32] is not scalable. We perform a normalization change
(relying on maximal-correlation-based notation) to make it scalable. For exam-
ple, compare Theorem 4 in our paper with Claim 10 in [32].

Characterization of Markov operator’s effect on the Fourier spectrum.
It is essential to accurately characterize the impact on the Fourier spectrum when
applying the TT linear operator on the reduction f and applying the TT linear
operator on the reduction g. When the source is either BSS or BES as in [32],
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Fourier analysis over uniform measure suffices; both operators TT and TT are
the well-behaved noise (Bonami-Beckner) operators. Therefore, the impact of
Fourier spectrum is well understood. In contrast, if the source is an arbitrary
joint distribution, the marginal distributions of the source need not be uniform
or identical to each other and the two operators need not be the Bonami-Beckner
operators, complicating this technical challenge even further. If the source is a 2-
by-2 distribution, we present an accurate characterization of Markov’s operator’s
effect on the Fourier spectrum (see Lemma 1) using biased Fourier analysis. This
result is a generalization to correlated space of the Bonami-Beckner operator’s
effect on the Fourier spectrum.

When the source is an arbitrary joint distribution, straightforward control of
the Markov operator’s effect is not evident even when using Fourier analysis over
arbitrary product measure. Instead, we take a detour and use the Efron-Stein
orthogonal decomposition for this analysis step (see Section 3.5). Our linear
operators synergize well with the reduction functions over this decomposition,
and one bounds the effect of these operators on the reduction functions using the
maximal correlation of the source (X,Y ) (see Proposition 5 and Proposition 6).
Finally, we return to the Fourier basis and translate the bounds on the Fourier
spectrum using Proposition 7.

Fourier concentration. The approximate eigenvector problem (a consequence
of the SNIS definition) and the characterization of the Markov and adjoint-
Markov operators’ impact on the Fourier spectrum yields new Fourier concen-
tration results. For 2 × 2 sources, we prove that the Fourier spectrum of the
solutions of the approximate eigenvector problem (in particular, the reduction
functions) are concentrated on terms of a fixed degree (see Theorem 10). [32]
proved this concentration result for the particular cases of BSS and BES sources.

For arbitrary sources, we show that the Fourier spectrum is concentrated
on low-degree terms (see Theorem 3). This relaxation in concentration is also
necessary; i.e., we show perfectly secure reductions constructing BSS(1/2) and
BES(

√
1/2) from the ROLE source whose spectrums are not concentrated on

only one degree. This Fourier concentration phenomenon is a manifestation of
“security” and distinguishes our problems from those arising in non-interactive
simulation (i.e., SNIS without security) [21, 50, 48, 30, 31, 25, 18, 24].

Statistical to perfect lemma. The set of all reductions with Fourier spec-
trum concentrated on low-degree multi-linear is still potentially huge. 6 Using
appropriate junta theorems, Theorem 1 shows that Boolean functions satisfying
such Fourier concentration properties are (close to) juntas. Since these juntas
depend only on a constant number of inputs, the total number of such candidate
juntas is also a constant. Therefore, this result implies that (1) SNIS is either
perfectly secure or constant-insecure, (2) The size of the set of all canonical SNIS

6 A function whose Fourier spectrum is concentrated on low-degree multi-linear terms
may depend on all the variables. So, without using any additional properties of low-
degree Boolean functions, one cannot prune down the set of candidate functions.
Therefore, their number may be exponential in the number of variables.
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of (U, V ) from (X,Y ) is a constant, and (3) Any feasible SNIS has a positive
constant rate. Furthermore, these juntas yield perfectly-secure SNIS.

Consequently, for a particular number of source samples n and (sufficiently
small constant) insecurity budget ν(n), our analysis determines whether such a
SNIS exists or not. Furthermore, a constant-time algorithm can search for the
witness reductions. For example, an exhaustive search algorithm discovered all
SNIS of BSS(1/2) from ROLE, uncovering fascinating new reductions.

3 Preliminaries

3.1 Notation

We denote [n] as the set {1, 2, . . . , n} and N<m = {0, 1, . . . ,m − 1}. For two
functions f, g : Ω → R, the equation f = g implies that f(x) = g(x), for every
x ∈ Ω. We use Ω to denote the sample spaces, and π usually denotes a probabil-
ity distribution. (Ωx, Ωy) is a joint probability space. For x ∈ Ωnx , we represent
xi ∈ Ωx as the i-th coordinate of x. A Boolean function is a {±1}-valued func-
tion.
Correlated Spaces.We use (X,Y ) to denote the joint distribution over (Ωx, Ωy)
with probability mass function π, and πx, πy to denote the marginal probability
distributions of X and Y , respectively. Sometimes we will use (Ωx×Ωy, π) to de-
note the joint distribution. We sometimes use notation (X,Y )ρ to emphasize that
its maximal correlation (defined in Section 3.2) is ρ. We always use the following
notation for the expectation of functions f ∈ L2(Ωnx , πx

⊗n), g ∈ L2(Ωny , πy
⊗n)

over correlated spaces.

E[f ] := E
x∼πx

⊗n
[f(x)], E[g] := E

y∼πy
⊗n

[g(y)], E[fg] := E
(x,y)∼π⊗n

[f(x) · g(y)]

Statistical Distance. The statistical distance (total variation distance) be-
tween two distributions P and Q over a finite sample space Ω is defined as
SD (P,Q) = 1

2

∑
x∈Ω |P (x)−Q(x)|.

3.2 Maximal Correlation

We define maximal correlation and its properties in this subsection.

Definition 1 (Maximal Correlation [27, 23, 48, 3, 47, 4]). The Hirschfeld-
Gebelein-Rényi maximal correlation of (X,Y ) is defined as

ρ(X;Y ) := max
E[f ]=E[g]=0

E[f2]=E[g2]=1

E[f(X)g(Y )]

For example, the maximal correlation of BSS with flipping probability ε is
|1− 2ε| for every ε ∈ [0, 1], and the maximal correlation of BES with erasure
probability ε is

√
1− ε [53]. Note that maximal correlation of any distribution

is always between 0 and 1.
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Imported Theorem 1 (Tensorization [48]) If (X1, Y1)ρ1 and (X2, Y2)ρ2 are
independent, then the maximal correlation of (X1, X2;Y1, Y2) is equal to max(ρ1, ρ2)
and so if (X1, Y1), (X2, Y2) are i.i.d., then it is equal to ρ1 = ρ2.

Imported Theorem 2 (Data Processing [48]) Let (X,Y ) be a joint distri-
bution. Then, for any pair of (even randomized) functions, we ρ(f(X), g(Y )) 6
ρ(X,Y ).

One can compute maximal correlation as follows.

Proposition 1 ([48]). The maximal correlation of a finite joint distribution
(X,Y ) is the square root of the second largest eigenvalue of the Markov operator
TT, where T and T are Markov and adjoint Markov operator associated with
(X,Y ).

3.3 Fourier Analysis Basics

We follow the notation of [46] to introduce some background in Fourier analysis
over product measure.

Fourier Analysis over Higher Alphabet

Definition 2. Let (Ω, π) be a finite probability space where |Ω| > 2 and π denote
a probability distribution over Ω. Let π⊗n denote the product probability distri-
bution on Ωn such that π⊗n(x1x2 . . . xn) =

∏n
i=1 π(xi). For n ∈ N, we write

L2(Ωn, π⊗n) to denote the real inner product space of functions f : Ωn → R
with inner product

〈f, g〉π⊗n = E
x∼π⊗n

[f(x)g(x)].

Moreover, the Lp-norm of a function f ∈ L2(Ωn, π⊗n) is defined as

‖f‖p := E
x∼π⊗n

[|f(x)|p]1/p.

We define the distance between two functions f, g ∈ L2(Ω,µ) as ‖f − g‖1. Note
that if f, g are bounded i.e. |f(x)| 6 α and |g(x)| 6 α for every x ∈ Ω,
then ‖f − g‖22 6 2α‖f − g‖1. In particular, for Boolean valued functions f, g,
‖f − g‖22 6 2‖f − g‖1 = 4Prx∼µ[f(x) 6= g(x)]. Therefore,

Claim 1 Suppose f ∈ L2(Ω,µ) such that |f(x)| 6 α for every x ∈ Ω. Then, we
have ‖f‖22 6 α · ‖f‖1.

Definition 3. A Fourier basis for an inner product space L2(Ω, π) is an or-
thonormal basis φ0, φ1, . . . , φm−1 with φ0 ≡ 1, where by orthonormal, we mean
that for any i 6= j, 〈φi, φj〉 = 0 and for any i, 〈φi, φi〉 = 1.

It can be shown that if φ0, φ1, . . . , φm−1 is a Fourier basis for L2(Ω, π), then the
collection (φ)α∈Nn

<m
where φα(x) :=

∏n
i=1 φαi(xi) (each αi ∈ {0, 1, . . . ,m− 1})

is a Fourier basis for L2(Ωn, π⊗n). Note that the size of the basis (φ)α∈Nn
<m

is
mn.
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Definition 4. Fix a Fourier basis φ0, φ1, . . . , φm−1 for L2(Ω, π), then every f ∈
L2(Ωn, π⊗n) can be uniquely written as f =

∑
α∈Nn

<m
f̂(α)φα where f̂(α) =

〈f, φα〉. The real number f̂(α) is called the Fourier coefficient of f at α.

For α ∈ Nn<m, we denote |α| := |{i ∈ [n] : αi 6= 0}|. The Fourier weight of f
at degree k is defined as W k[f ] :=

∑
α:|α|=k f̂(α)

2. The Fourier weight of f at
degree strictly greater than k is defined as W>k[f ] :=

∑
α:|α|>k f̂(α)

2. We say
that the degree of a function f ∈ L2(Ωn, π⊗n), denoted by deg(f), is the largest
value of |α| such that f̂(α) 6= 0. For every coordinate i ∈ [n], the i-th influence
of f , denoted by Infi[f ], is defined as Infi[f ] :=

∑
α : αi 6=0 f̂(α)

2. And the total
influence is defined as Inf(f) :=

∑n
i=1 Infi[f ] =

∑
α|α|f̂(α)2 =

∑n
k=1 k ·W k[f ].

Biased Fourier Analysis over Boolean Cube. In the special case when
Ω = {±1}, we define the product Fourier basis functions φS for S ⊆ [n] as

φS(x) =
∏
i∈S

φ(xi) =
∏
i∈S

(
xi − µ
σ

)
,

where p = π(−1), µ = 1− 2p, σ = 2
√
p
√
1− p.

Definition 5 (Junta Function). A function f : Ωn → {±1} is called a k-junta
for k ∈ N if it depends on at most k of its inputs coordinates; in other words,
f(x) = g(xi1 , xi2 , . . . , xik), where i1, i2, . . . , ik ∈ [n]. Informally, we say that f
is a “junta” if it depends on only a constant number of coordinates. We also say
that f is ε-close to a k-junta function h if ‖f − h‖1 6 ε.

3.4 Markov Operator

Definition 6 (Markov Operator [40]). The Markov operator associated with
joint distribution (X,Y ), denoted by T, maps a function g ∈ Lp(Ωy, πy) to a
function Tg ∈ Lp(Ωx, πx) by the following map:

(Tg)(x) := E[g(Y ) | X = x],

where (X,Y ) is distributed according to π.
Furthermore, we define the adjoint operator of T, denoted as T, maps a

function f ∈ Lp(Ωx, πx) to a function Tf ∈ Lp(Ωy, πy) by the following map:

(Tf)(y) = E[f(X) | Y = y].

Note that the two operators T and T have the following property.

〈Tg, f〉πx
= 〈g,Tf〉πy

= E[f(Xn)g(Y n)].

Moreover, both Markov operators T and T are linear operators. Both TT and
TT are also Markov operators. We want to emphasize that the largest eigenvalue
of any Markov operator is always 1.
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Proposition 2. Let T,T be respectively the Markov and adjoint operator as-
sociated with the 2-by-2 distribution (X,Y )

⊗n
ρ . Let 1 = λ0 > λ1 > 0 be the

eigenvalues of TT
(1)

(multiplication of Markov and adjoint operators for n = 1).
Then, it holds that ρ =

√
λ1. Moreover, the set of all eigenvalues of TT and TT

is {1, ρ2, ρ4, . . . , ρ2n}.

Proposition 3. [48] Suppose (X,Y ) is a finite joint distribution over (Ωx, Ωy).
Let π denote the probability mass function of (X,Y ) and T and T respectively
denote the Markov operator and the adjoint Markov operator associated with
(X,Y ). Let (X,X ′) be the joint distribution over (Ωx × Ωx, µ) such that the
marginal distribution µx is the same as πx and the associated Markov operator
of (X,X ′) is TT. Then, the marginal distributions of (X,X ′) are the same, in
other words, µx = µx′ . Furthermore, we have ρ(Ωx×Ωx, µ) = ρ2, where ρ is the
maximal correlation of (X,Y ).

This result shows that for f ∈ L2(Ωx, πx), we have (TT)f ∈ L2(Ωx, πx).

3.5 Efron-Stein Decomposition

We shall use the orthogonal Efron-Stein decomposition as one of the main tech-
nical tools.

Definition 7 (Chapter 8 of [46]). Let {(Ωi, µi)}`i=1 be discrete probability
spaces and let (Ω,µ) =

∏`
i=1(Ωi, µi). The Effron-Stein decomposition of f : Ω →

R is defined as f =
∑
S⊆[n] f

=S where the functions f=S satisfy (1) f=S depends
only on xS, and (2) for all S 6⊆ S′ and all xS′ , E[f=S |XS′ = xS′ ] = 0.

Proposition 4 ([19]). Efron-Stein decomposition exists and is unique.

The following propositions give the relation between Markov operators and
Efron-stein decompositions. The first proposition shows that the Efron-Stein
decomposition commutes with Markov Operator.

Proposition 5 ([40, 41] Proposition 2.11). Let (Xn, Y n) be a joint distri-
bution over (Ωnx × Ωny , π

⊗n). Let T(i) be the Markov operator associated with
(Xi, Yi). Let T = ⊗ni=1T

(i), and consider a function g ∈ L2(Ωny , πy
⊗n). Then,

the Efron-Stein decomposition of g satisfies (Tg)=S = T(g=S).

The next proposition shows that Tg depends on the low degree expansion of g.

Proposition 6 ([41] Proposition 2.12). Assuming the setting of Proposi-
tion 5 and let ρ be the maximal correlation of the distribution (X,Y ). Then for
all g ∈ L2(Ωny , πy

⊗n) it holds that
∥∥Tg=S∥∥

2
6 ρ|S|

∥∥g=S∥∥
2
.

The next proposition shows the connection between Fourier decomposition and
Efron-Stein decomposition.
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Proposition 7 ([46] Proposition 8.36). Let f ∈ L2(Ωn, π⊗n) have the or-
thogonal decomposition f =

∑
S⊆[n] f

=S, and let {φH}H∈Ωn be an orthonormal
Fourier basis for L2(Ωn, π⊗n). Then f=S =

∑
α : Supp(α)=S f̂(α)φα. In particu-

lar, when Ω = {±1} we have f=S = f̂(S)φS.

This implies that
∥∥f=S∥∥2

2
=
∑
α : Supp(α)=S f̂(α)

2. Therefore, it holds thatW k[f ] =∑
|S|=k

∥∥f=S∥∥2
2
, and W>k[f ] =

∑
|S|>k

∥∥f=S∥∥2
2
.

3.6 Imported Theorems

Imported Theorem 3 (Kindler-Safra Junta Theorem [34, 35]) Fix d >
0. There exists ε0 = ε0(d) and constant C such that for every ε < ε0, if
f : {±1}n → {±1} satisfies W>d[f ] = ε then there exists a Cd-junta and de-

gree d function f̃ : {±1}n → {±1} such that
∥∥∥f − f̃∥∥∥2

2
6 (ε+ Cdε5/4).

Imported Theorem 4 (Friedgut’s Junta Theorem [20, 46]) There exists
a global constantM such that the following holds. Let (Ω, π) be a finite probability
space such that every outcome has probability at least λ. If f ∈ L2(Ωn, πn)
has range {±1} and 0 < ε 6 1, then f is ε-close to a (1/λ)M ·Inf(f)/ε-junta
h : Ωn → {±1}, i.e., Prx∼π⊗n [f(x) 6= h(x)] 6 ε.

4 Characterization of SNIS from arbitrary Sources

This section presents our feasibility characterization of SNIS from arbitrary joint
distributions stated below.

Corollary 1 (Feasibility Characterization). There is an algorithm that takes
as input a constant c > 0, a source (X,Y ), and a target (U, V ) ∈ {BSS(ρ′),BES(ρ′)},
and

1. outputs YES, if there is an infinite family of reduction functions {fn, gn}
satisfying (U, V ) vνnfn,gn (X,Y )

⊗n and νn 6 c/n, and
2. outputs NO, otherwise.

In the YES instance, the algorithm additionally outputs a pair of reduction func-
tions f∗ : Ωn0

x → {±1} and g∗ : Ωn0
y → {±1} that witness a perfect-SNIS con-

struction for some n0 = n0(c, ρ, ρ
′) ∈ N where ρ represents the maximal corre-

lation of source (X,Y ). Furthermore, the algorithm’s running time is bounded
and computable.

This theorem says that there is an algorithm that can determine whether there is
a statistically SNIS of BSS/BES from a given source. The algorithm also outputs
a canonical (perfect) SNIS construction in the YES instance. Corollary 1 follows
from the following statistical to perfect results.
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Theorem 1 (Statistical-to-perfect). Let (X,Y ) be an arbitrary joint dis-
tribution and (U, V ) ∈ {BSS(ρ′),BES(ρ′)}. For any c > 0, there are positive
constants n0, d,D such that the following result holds. If (U, V ) vνf,g (X,Y )⊗n,
for some n > n0, and ν 6 c/n, then f is νd-close to a D-junta reduction
function f∗, and g is νd-close to a D-junta reduction function g∗ such that
(U, V ) v0

f∗,g∗ (X,Y )⊗n.

We remark that the constant D does not depend on n but might depend on
the source, the target, the constant c, and the implicit constant in the Friedgut’s
junta theorem (Imported Theorem 4). Assuming this theorem, Figure 4 gives an
algorithm for Corollary 1. We provide the proof of Theorem 1 when (U, V ) =

SNISFeasChar ((X,Y ), (U, V ), c) :

1. Let D = D(ρ′, (X,Y ), c) be the constant defined in Theorem 1.
2. Consider all functions f : ΩDx → {±1}, and g : ΩDy → {±1}

– Return YES, if there exist f∗, g∗ such that BSS(ρ′) v0
f∗,g∗ (X,Y )⊗D.

– Return NO, otherwise.

Fig. 4. An algorithm to decide the feasibility of SNIS of BSS(ρ′) from samples of (X,Y )

BSS(ρ′) in Section 4.1, and when (U, V ) = BES(ρ′) in Section 4.2. At a high
level, our proof strategy for BES is similar to the strategy for BSS except one
technical challenge due to Bob’s reduction function, which is not a Boolean-
valued function.

4.1 Statistical to Perfect: BSS target

Consider a SNIS of BSS(ρ′) vνf,g (X,Y )ρ
⊗n where (X,Y ) is an arbitrary joint

distribution, f ∈ L2(Ωnx , πx
⊗n) and g ∈ L2(Ωny , πy

⊗n).

Step 1: Algebraization of SNIS and approximate eigenvalue problem. Following
a similar idea as in [32], we extend the algebraization of simulation-based SNIS
to arbitrary source distribution as follows.

Theorem 2 (BSS Algebraization of Security). For any ρ′ ∈ (0, 1) and any
joint distribution (X,Y ), the following statements hold.

1. If BSS(ρ′) vνf,g (X,Y )
⊗n, then E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − ρ′g∥∥
1
6 4ν, and

‖Tg − ρ′f‖1 6 4ν.
2. If E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − ρ′g∥∥
1
6 ν, and ‖Tg − ρ′f‖1 6 ν, then BSS(ρ′) v2ν

f,g

(X,Y )
⊗n.

This theorem gives a qualitative equivalence of the simulation-based definition
and the algebraized definition. Next, composing the two L1-norm constraints
yields

∥∥∥TTf − ρ′2f∥∥∥
1
6 8ν and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν. This implies that f and g

are an approximate eigenvector of the two operators TT and TT, respectively.
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Claim 2 (Approximate eigenvalue constraint) If BSS(ρ′) vνf,g (X,Y )
⊗n,

then
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν, and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν.7

Step 2: Effect of Markov operators on Fourier spectrum of reduction functions.
Let {φα} and {ψα} be some Fourier bases for L2(Ωnx , πx

⊗n) and L2(Ωny , πy
⊗n),

respectively. As common in Fourier analysis, it is natural to look at the effect of
the Markov operators on the Fourier characters. However, we don’t know how to
control the behavior of TTφα and TTψα. To circumvent this bottleneck, we take
a detour and look at the effect of these operators on the orthogonal (Efron-Stein)
decomposition. Let f =

∑
S⊆[n] f

=S and g =
∑
S⊆[n] g

=S be the orthogonal de-
composition. [41] showed that the decomposition has two important properties:
(1) it commutes with the Markov operators (Proposition 5) and (2) the higher
order terms in the decomposition of TTf =

∑
S⊆[n](TTf)

=S have significantly
smaller L2 norm compared to the L2 norm of the corresponding higher order
terms in the decomposition of f (Proposition 6 and similarly for TTg and g).
This help us first to rewrite

(TTf)=S = (TT)f=S = TTf=S , and (TTg)=S = TTg=S ,

and then bound them as:∥∥TTf=S∥∥
2
6 ρ2|S|‖f‖2, and

∥∥TTg=S∥∥
2
6 ρ2|S|‖g‖2

Step 3: Fourier concentration, low total influence, and junta properties of reduc-
tion functions. Those inequalities above together with the connection between
orthogonal decomposition and the Fourier decomposition (Proposition 7) yields
that Fourier spectrum of f and g are concentrated on low-degree terms.

Theorem 3. Suppose there exist reduction functions f : Ωnx → {±1} and g : Ωny →
{±1} such that BSS(ρ′) vδf,g (X,Y )

⊗n for some δ > 0.8. Let k ∈ N such that
ρk > ρ′ > ρk+1. Then, the following bounds hold.

W>k[f ] :=
∑

α : |α|>k

f̂(α)2 6
(1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ, and

W>k[g] :=
∑

α : |α|>k

ĝ(α)2 6
(1 + ρ′)2

(ρ2(k+1) − ρ′2)2
· δ,

Observe that if the Fourier weight of a function is mostly concentrated on low-
degree terms, then the function has small total influence (Claim 3).

Claim 3 (Concentrated on low degree implies low influence) Let f be a
Boolean-valued function in L2(Ωn, µ⊗n). If W>k[f ] 6 δ, then Inf[f ] 6 k + nδ.

7 Note that in general the operator TT (or TT) is not equal to the noise operator Tρ.
8 It is possible that δ depends on n.
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In particular, when δ is sufficiently small, the total influence of reduction func-
tions f, g are constant (not depend on n). This allows us to invoke the Friedgut’s
junta theorem (Imported Theorem 4) and conclude that reduction functions are
close to some junta functions.

Step 4: Must be Perfect. Since junta functions f̃ and g̃ depend on a constant
number of variables, so does Tf̃ and Tg̃. Observe that two distinct bounded
junta functions are always constant far (Claim 4).

Claim 4 (Distinct Bounded Junta are Far) Suppose h : Ωnx → {±1} and
` : Ωny → {±1} are two D-junta Boolean functions in L2(Ωnx , πx) and L2(Ωny , πy),
respectively. If Th 6= ρ′`, then there exists a constant c that depends only on
ρ′, D, (X,Y ) such that

∥∥Th− ρ′`∥∥
2
> c. Similarly, if T` 6= ρ′h, then there exists

a constant d that depends only on ρ′, D, (X,Y ) such that ‖T`− ρ′h‖2 > d.

In particular, if Tf̃ 6= ρ′g̃, then they are constant far, which implies a constant
insecurity; similarly, if Tg̃ 6= ρ′f̃ , then they are constant far, which also implies
a constant insecurity. Thus, it must hold that Tf̃ = ρ′g̃ and Tg̃ = ρ′f̃ . The
three facts that f̃ is a junta, f̃ and f are close, and E[f ] is small imply that
E[f̃ ] = 0. Similarly, it holds that E[g̃] = 0. Therefore, f̃ and g̃ witness a perfect
construction.

Proof of Theorem 3. Observe that
∣∣∣(TTf − ρ′2f)(x)∣∣∣ 6 2, and

∣∣∣(TTg − ρ′2g)(x)∣∣∣ 6
2 for every x by the contraction property of Markov operator and boundedness
of functions f and g. Observe that if a bounded function has small L1 norm so
does its L2 norm square. Thus, we have∥∥∥TTf − ρ′2f∥∥∥2

2
6 2δ, and

∥∥∥TTg − ρ′2g∥∥∥2
2
6 2δ. (1)

Let f =
∑
S⊆[n] f

=S be the orthogonal decomposition of f . Then, we have

∥∥∥TTf − ρ′2f∥∥∥2
2
=
∑
S⊆[n]

∥∥∥TTf=S − ρ′2f=S∥∥∥2
2

(Orthogonal property)

>
∑

S : |S|>k

∥∥∥TTf=S − ρ′2f=S∥∥∥2
2

(Property of norms)

>
∑

S : |S|>k

∣∣∣ ∥∥TTf=S∥∥
2
− ρ′2

∥∥f=S∥∥
2

∣∣∣2 (Triangle inequality)

By Proposition 6, we have
∥∥TTf=S∥∥

2
6 ρ2|S|

∥∥f=S∥∥
2
. This implies that, for

every S ⊆ [n] satisfying |S| > k,∥∥TTf=S∥∥
2
− ρ′2

∥∥f=S∥∥
2
6 (ρ2|S| − ρ′2)

∥∥f=S∥∥
2
6 0, (2)
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where the last inequality follows from ρ2|S| − ρ′2 6 ρ2(k+1) − ρ′2 6 0 for every
|S| > k, and

∥∥f=S∥∥
2
> 0. Thus, squaring both sides of inequality 2 for each

|S| > k yields∥∥TTf − ρ′2f∥∥2
2
>

∑
S : |S|>k

(ρ2|S| − ρ′2)2
∥∥f=S∥∥2

2

> min
S : |S|>k

(ρ2|S| − ρ′2)2
∑

S : |S|>k

∥∥f=S∥∥2
2

= (ρ2(k+1) − ρ′2)2 W>k[f ]

This together with the inequality (1) implies that W>k[f ] 6 (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ.

Similarly, it also holds that W>k[g] 6 (1+ρ′)2

(ρ2(k+1)−ρ′2)2 · δ, as desired.

4.2 Statistical to Perfect: BES target

Consider a SNIS of BES(ρ′) vνf,g (X,Y )ρ
⊗n where (X,Y ) is an arbitrary joint

distribution, f ∈ L2(Ωnx , πx
⊗n) and g ∈ L2(Ωny , πy

⊗n). Step 2 and step 4 basi-
cally are the same as these steps in Section 4.1. So we shall discuss steps 1 and
3 only.

Step 1: Algebraization of SNIS and approximate eigenvalue problem. We use a
similar idea as in [32] to extend the algebraization to arbitrary source.

Theorem 4 (BES target Algebraization of Security). For any ρ′ ∈ (0, 1),
and any joint distribution (X,Y ), the following statements hold.

1. If BES(ρ′) vνf,g (X,Y )
⊗n, then E[f ] 6 ν, E[g] 6 ν,

∥∥Tf − g∥∥
1
6 4ν, and∥∥∥Tg − ρ′2f∥∥∥

1
6 4ν.

2. If E[f ] 6 ν, E[g] 6 ν,
∥∥Tf − g∥∥

1
6 ν, and

∥∥∥Tg − ρ′2f∥∥∥
1
6 ν, then it holds

that BES(ρ′) v2ν
f,g (X,Y )

⊗n.

Claim 5 (Approximate eigenvalue constraint) If BES(ρ′) vνf,g (X,Y )
⊗n,

then
∥∥∥TTf − ρ′2f∥∥∥

1
6 8ν, and

∥∥∥TTg − ρ′2g∥∥∥
1
6 8ν.

Step 3: Fourier concentration, low total influence, and junta properties. When
the target is a BSS both the ranges of reduction functions are Boolean, so the
junta theorems can be applied for both functions. On the other hand, when
the target is a BES, the existing junta theorem for functions with more than
two values is not good enough for us. To overcome this barrier, we first use the
same idea to show that Alice’s reduction function f is close to a junta function
f∗ : Ωnx → {±1}, and then prove that Bob’s reduction function g is also close to
a junta function using the security constraint

∥∥Tf∗ − g∥∥
1
6 ν. More concretely,

since f∗ is a junta function, so is Tf∗. This together with the security constraint
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imply that g is close to the junta function Tf∗ whose range is not necessarily
{±1, 0}. However, we can round each value of (Tf∗)(y) to the closest value in
{±1, 0}. The rounded function is still a junta function and close to the original
function Tf∗. Therefore, g is close to the rounded junta function by triangle
inequality. We formalize this step at follows.

Claim 6 Suppose f∗ : Ωnx → {±1} is a junta function and g : Ωny → {±1, 0} is
an arbitrary function such that

∥∥Tf∗ − g∥∥
1
6 δ for some δ > 0. Then, there

exists a junta function g∗ : Ωny → {±1, 0} such that g is Θ(
√
δ)-close to g∗.

5 Estimation of Rate from arbitrary Sources

As a consequence of the statistical to perfect theorem (Theorem 1), we can lower
bound the rate by a positive constant, if it is feasible.

Corollary 2 (Constant Rate Lower Bound). Fix a constant c > 0, a source
(X,Y ), and a target (U, V ) ∈ {BSS(ρ′),BES(ρ′)} for ρ′ ∈ (0, 1). If there exists an
infinite family of reduction functions {fn, gn} such that (U, V ) vν(n)fn,gn

(X,Y )
⊗n,

and ν(n) 6 c/n, then the production rate R( (U, V ), (X,Y ) ) > 1/D for some
constant D = D((X,Y ), ρ′, c).

We note that the constant D is the number of input variables that perfect
reduction functions depend on. Next, we prove an upper bound the rate of perfect
SNIS.

Theorem 5 (Perfect Security Rate). Let (U, V ) ∈ {BSS(ρ′),BES(ρ′)} for
ρ′ ∈ (0, 1). If (U, V )

⊗m v0
~f,~g

(X,Y )
⊗n
ρ for somem,n ∈ N, thenm/n 6 1/blogσ ρ′c,

where σ2 is the smallest non-zero eigenvalue of the operator TT for the source
(X,Y ).

Remark 2. For the SNIS self-reduction of BSS or BES, [32] showed that ρ′ = ρk

for some k ∈ N and the rate m/n 6 1/k matching our bound here since σ = ρ,
where ρ is the maximal correlation of the source (X,Y ). The ROLE distribution
has maximal correlation ρ = 1/

√
2 and σ = 1/

√
2. Thus, when (X,Y ) = ROLE,

the rate is upper bounded by 1/2. Our new construction realizes this bound,
demonstrating its optimality.

Proof of Theorem 5. We shall prove for the case (U, V ) = BSS. The proof for
the case (U, V ) = BES is almost identical. Suppose BSS(ρ′)

⊗m v0
~f,~g

(X,Y )
⊗n

for some m,n ∈ N and (deterministic) reduction functions ~f = (f1, · · · , fm)
and ~g = (g1, · · · , gm). For ρ′′ = ρ′

m, there is a linear deterministic construc-
tion realizing BSS(ρ′′) v0 BSS(ρ′). By sequential composition, it holds that
BSS(ρ′′) v0 (X,Y )

⊗n. Let T,T denote the Markov operator and the adjoint
Markov operator associated with (X,Y ). Note that TT is non-negative definite
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(see [48] for a proof). Let 1 = λ1 > λ2 > . . . > λt = σ2 > 0 be all non-zero eigen-
values of TT. Then, according to Theorem 1, we have ρ′′2 =

∏t
i=2 λ

ki
i , where

ki ∈ N such that
∑t
i=2 ki 6 n. This implies that

ρ′′
2
= ρ′

2m
=

t∏
i=2

λkii > λk2+...+ktt = σ2(k2+...+kt) > σ2n.

Taking the logarithm of base σ < 1 of both sides yields 2m logσ ρ
′ 6 2n which

implies that m/n 6 1/ logσ ρ
′ as desired.

6 Characterization of BSS or BES from 2-by-2
Distributions

In this section, we present a succinct characterization of BSS/BES from a 2-by-
2 source. The following theorem states that SNIS of BSS(ρ′) from (X,Y )ρ is
possible if and only if the source is a BSS(ρ) such that ρ′ = ρk for some k ∈ N.

Theorem 6 (Characterization of BSS from 2-by-2). Fix a 2-by-2 distribu-
tion (X,Y )ρ, and also BSS(ρ′).

1. If (X,Y )ρ 6= BSS(ρ) or ρ′ 6= ρk for all k ∈ N: There is a positive constant
c = c(ρ, ρ′) such that BSS(ρ′) vν (X,Y )⊗n, for any n ∈ N, implies that
ν > c.

2. If (X,Y )ρ = BSS(ρ) and ρ′ = ρk, for some k ∈ N: There are positive con-
stants c = c(ρ, ρ′) and d = d(ρ, ρ′) such that the following result holds. If
BSS(ρ′) vνf,g BSS(ρ)⊗n, for any n ∈ N, and ν 6 c, then f is νd-close to
a reduction function f∗ and g is νd-close to a reduction function g∗ such
that BSS(ρ′) v0

f∗,g∗ BSS(ρ)⊗n. Furthermore, f∗ = g∗ is a k-homogeneous9
Boolean function.

Remark 3. It is shown in [1] that BES(ρ′) vνnfn,gn (X,Y )
⊗n (where νn = o(1))

only if the spectrum 10 of (U, V ) is contained in the spectrum of the (X,Y )
⊗n

for some n. Note that Theorem 6 implies that the necessary condition mentioned
in [1] is not sufficient since there exists a 2-by-2 distribution (X,Y )ρ 6= BSS(ρ)
and (U, V ) = BSS(ρ′) such that ρ′ = ρk, the spectrum of (U, V ) is contained in
the spectrum of (X,Y )

⊗n, but there is no SNIS of (U, V ) from (X,Y ).

Next, we show that SNIS of BES from a 2-by-2 source is impossible.

9 A function f : {±1}n → {±1} is k-homogeneous if all the terms in the multi-linear
expansion of f have degree k.

10 Spectrum of a distribution matrix M is defined in [1] as the multi-set of non-zero
singular values of the matrix ∆−1/2

MT M∆
−1/2
M where ∆M represents a diagonal matrix

with the vector 1TM along its diagonal.
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Theorem 7 (Characterization of BES from 2-by-2). Fix a 2-by-2 distri-
bution (X,Y )ρ, and also BES(ρ′). There are positive constants c = c(ρ, ρ′) such
that if BES(ρ′) vνf,g (X,Y )⊗n for some n ∈ N, then the simulation error ν is at
least c.

We shall first prove Theorem 6, and then we provide a proof of Theorem 7 in
Section 6.3.
Proof outline of Theorem 6. First, we show that if there is a statistical
SNIS of BSS(ρ′) from (X,Y )

⊗n, then a perfect construction exists (Theorem 8).
Next, we characterize for which 2-by-2 distribution (X,Y ) there exists a perfect-
SNIS of BSS(ρ′) from (X,Y )

⊗n. Theorem 9 says that (X,Y ) must be a BSS.
Finally we conclude the proof by using the characterization of SNIS between
BSS distributions in [32].

Theorem 8 (Statistical-to-perfect of BSS from 2-by-2). Let ρ′ ∈ (0, 1) and
(X,Y )ρ be an arbitrary 2-by-2 joint distribution. There are positive constants
c = c((X,Y )ρ, ρ

′), d = d((X,Y )ρ, ρ
′), and D = D((X,Y )ρ, ρ

′) such that the
following result holds. If BSS(ρ′) vνf,g (X,Y )⊗nρ , for any n ∈ N, and ν 6 c, then
f is νd-close to a D-junta reduction function f∗, and g is νd-close to a D-junta
reduction function g∗ such that BSS(ε′) v0

f∗,g∗ (X,Y )⊗nρ . Furthermore, ρ′ = ρk,
and Wk[f∗] = Wk[g∗] = 1.

Informally, there is a statistical SNIS of BSS(ε′) from (X,Y ) if and only if
(X,Y )ρ = BSS(ρ) for some ρ satisfying ρ′ = ρk for some k ∈ N. Furthermore,
any statistical reduction functions can be error-corrected to junta ones that
witness a perfect construction.

Theorem 9 (Characterization of Perfect-SNIS of BSS from 2-by-2).
Suppose there exists n ∈ N and Boolean functions f, g : {±1}n → {±1} such
that BSS(ρ′) v0

f,g (X,Y )
⊗n. Then, the distribution (X,Y ) must be a BSS(ρ)

such that ρ′ = ρk for some positive integer k 6 n.

As a consequence of Theorem 6, the rate for perfect SNIS of BSS from an
arbitrary 2-by-2 distribution is completely settled, while the rate for statistical
security (even if the source is BSS) is still open.

Corollary 3. If (X,Y ) 6= BSS(ρ) for all ρ ∈ (0, 1) or ρ′ 6= ρk for all k ∈ N,
then the rate of BSS(ρ′) from (X,Y ) is zero. Otherwise, it is shown in [32] that
the maximum achievable rate is 1/k in perfect SNIS.

6.1 Statistical to Perfect

This section presents the proof of the statistical to perfect (Theorem 8). The
high-level idea is similar to the general case. The key different is that we are able
to precisely characterize the effect of Markov operators on Fourier coefficients for
2-by-2 distribution. We remark that Fourier basis and the orthogonal Efron-Stein
basis are the same in this case.
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Proof Outline of Theorem 8. Consider a SNIS of BSS(ρ′) vνf,g (X,Y )ρ
⊗n

where (X,Y ) is a 2-by-2 distribution and f, g : {±1}n → {±1}.
Steps 1,3, and 4 are similar to these steps in Section 4.1 except that in step 3

(1) we prove that the Fourier spectrum of reduction functions are concentrated
on a fixed degree (Theorem 10), and (2) we use the Kindler-Safra junta theorem
[35, 34] instead of the Friedgut’s junta. So we shall discuss steps 2 only.

Step 2: Effect of Markov operators on Fourier spectrum of reduction functions. If
TT and/or TT is equal to the Bonami-Beckner operator Tγ for some appropriate
γ, which happens when (X,Y ) = BSS, then the Tγ operator scales f̂(S) propor-
tional to γ|S|, which, in turn, solves the approximate eigenvalue problem nicely
as done in [32]. However, both TT and TT are not equal to Tρ in general. We
overcome this bottleneck by characterizing the effect of these Markov operators
on the Fourier coefficients as follows.

Lemma 1. Let {φS}S⊆[n] be a biased Fourier basis for L2(Ωnx , πx
⊗n), and {ψS}S⊆[n]

be a biased Fourier basis for L2(Ωny , πy
⊗n). Then, for any S ⊆ [n], it holds that

TTφS = ρ2|S|φS , and TTψS = ρ2|S|ψS .

Consequently, for any real-valued functions f ∈ L2(Xn, πx⊗n) and g ∈ L2(Ωny , πy
⊗n),

the Fourier expansion of TTf and TTg is given by

TTf =
∑
S⊆[n]

ρ2|S|f̂(S)φS , and TTg =
∑
S⊆[n]

ρ2|S|ĝ(S)ψS .

One can view this lemma as an analog/extension of TρχS = ρ|S|χS and Tρf =∑
S ρ
|S|f̂(S)χS to correlated space. Intuitively, the TT and TT operator scales

f̂(S) and ĝ(S) proportional to ρ2|S|, respectively. Lemma 1 is crucial to prove
the concentration of Fourier spectrum of reduction functions.

Theorem 10 (Constant Insecurity or Close to Low Degree Junta). Sup-
pose that

∥∥∥TTf − ρ′2f∥∥∥
1
= δ1,

∥∥∥TTg − ρ′2g∥∥∥
1
= δ2. Then the following state-

ments hold.

1. If ρt+1 < ρ′ < ρt, then min(δ1, δ2) > 1
2 min((ρ′

2 − ρ2t)2, (ρ′2 − ρ2(t+1))2).
2. If ρ′ = ρk for some k ∈ [n], then there exists D = D(k) such that

(a) The functions f and g are 2δ1
(1−ρ2)2ρ4k , and 2δ2

(1−ρ2)2ρ4k concentrated on
degree k, respectively.

(b) There exist Boolean degree-k D-junta functions f̃ , g̃ : {±1}n → {±1}
such that

∥∥∥f − f̃∥∥∥2
2
6 σ1 + Dσ

5/4
1 , and ‖g − g̃‖22 6 σ2 + Dσ

5/4
2 , where

σ1 = 2
(1−ρ2)2ρ4k · δ1 and σ2 = 2

(1−ρ2)2ρ4k · δ2.



24 Khorasgani et al.

6.2 Perfect-SNIS Characterization

In this section, we prove Theorem 9. We need the following result for the proof.

Claim 7 Suppose f is a Boolean function in L2({±1}n, π⊗n) such that Wk[f ] =
1. Then, the distribution π must be the uniform distribution over {±1}.

The following result is needed to prove Claim 7. First let us introduce some nota-
tion. Let f : {±1}n → {±1} be a Boolean function. For each p ∈ (0, 1), we write
a Boolean function f as f (p) when viewing f as an element of L2({±1}n), πp⊗n),
where πp is a distribution over {±1} such that πp(−1) = p and πp(1) = 1 − p.
Observe that σ = 2

√
p
√
1− p is the standard deviation of the distribution.

Claim 8 If W6k[f (p)] = 1, then Wk[f (1/2)] = Wk[f (p)]/σ2k where σ = 2
√
p(1− p).

Intuitively, this claim says that the Fourier weight measured over the p-biased
distribution on a particular degree is equal to the product of the Fourier weight
measured over the uniform distribution on the same degree and a power of the
standard deviation the p-biased distribution.

Proof (Proof of Claim 7). Let p := π(−1). It follows from Claim 8 thatWk[f (p)] 6
σ2kWk[f (1/2)]. Since f is Boolean it follows from Parseval identity thatWk[f (1/2)] 6
1, and so 1 = Wk[f (p)] 6 σ2k which implies that σ = 1 and so p = 1/2. Therefore,
the distribution π is uniform.

Now we are ready to prove Theorem 9 as follow.

Proof (of Theorem 9). Suppose there exists n ∈ N and two Boolean func-
tions f, g : {±1}n → {±1} such that BSS(ρ′) v0

f,g (X,Y )
⊗n. Then, applying

Theorem 1 for insecurity bound ν = 0 yields ρ′ = ρk for some k ∈ N, and
Wk[f ] = Wk[g] = 1, where ρ is the maximal correlation of (X,Y ). By Claim 7,
both the marginal distributions πx and πy must be uniform distribution over
{±1}. This implies that the joint distribution (X,Y ) is a BSS(ε) for some
ε ∈ (0, 1/2). Using the fact that the the maximal correlation of BSS(ε) = ρ
and the result from [32], one concludes that ρ′ = ρk.

6.3 Proof Outline of Theorem 7

The proof of Theorem 7 is similar to the proof of Theorem 6 except that here
we again use the same idea that we applied in BES from arbitrary to deal with
the non-binary range of Bob’s reduction function. Again, we have a statistical
to perfect result. Similar to Theorem 9, we can show that the source must be a
BSS. We conclude the proof by using the impossibility result of simulating BES
from BSS even in the (non-secure) NIS due to reverse hypercontractivity.
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7 Additional Results and Discussions

7.1 Necessary Condition on Eigenvalues

Theorem 11. Let (X,Y ) be an arbitrary joint distribution whose Markov opera-
tor and adjoint are respectively T(1) and T

(1)
, and let (U, V ) ∈ {BSS(ρ′),BES(ρ′)}

for ρ′ ∈ (0, 1). For any c > 0, there are positive constants n0 and d = d((X,Y ), ρ′)
such that the following result holds. If (U, V ) vνf,g (X,Y )⊗n, for some n > n0,
and ν 6 c/n, then ρ′

2
=
∏t
i=1 λ

ki
i , where 1 = λ1 > λ2 > . . . > λt are all

eigenvalues of (TT)(1), and ki ∈ N such that
∑t
i=1 ki = n.

By the reduction of statistical to perfect (Theorem 1), without loss of gen-
erality, assume that BSS(ρ′) v0

f,g (X,Y )
⊗n. Theorem 2 and Claim 2 imply that

TTf = ρ′
2
f . This means that ρ′2 is an eigenvalue of the Markov operator TT.

Suppose 1 = λ1 > λ2 > . . . > λt be all eigenvalues of (TT)(1), then it follows
from tensorization property of eigenvalues that ρ′2 =

∏t
i=1 λ

ki
i for some ki ∈ N

such that k1 + k2 + · · · + kt = n, as desired. As a consequence, we have the
following result.

Corollary 4. There is no complete joint distribution in SNIS.

7.2 Decidability

Corollary 1 gives an algorithm to decide whether there is a statistical SNIS of
BSS(ρ′) from (X,Y ) with insecurity bound ν(n) = O(1/n). In (non-secure) NIS,
[25, 18, 24] considered a different problem of decidability called gap decidability.
Given a constant δ > 0, a source (X,Y) and a target (U, V ), the goal is to
distinguish between (1) there exists a n0 ∈ N such that (U, V ) can be non-
interactively simulated (not necessarily secure) from (X,Y )

⊗n0 with error at
most δ and (2) for any n ∈ N, any simulation of (U, V ) from (X,Y )

⊗n has
error at least cδ, where c is some constant. The gap decidability of BSS from an
arbitrary source in SNIS is still open. We formulate this problem as follows.

SNIS gap decidability problem. Given any c > 1, δ > 0, a source (X,Y ),
and a target BSS(ρ′). Distinguish between the following 2 cases:

1. There exist n0 ∈ N and functions f : Ωn0
x → {±1} and g : Ωn0

y → {±1} such
that SNIS of BSS(ρ) from (X,Y )

⊗n0 has simulation error at most δ.
2. For any n ∈ N and f : Ωnx → {±1} and g : Ωny → {±1}, SNIS of BSS(ρ) from

(X,Y )
⊗n has simulation error at least cδ.

When the source is a 2-by-2 distribution, our characterization solves this problem
and we know for sure it is a Yes instance when the threshold δ is less than the
constant in our Theorem 8. We conjecture the following “junta theorem over
correlated space”/“dimension reduction preserving security” that would help us
solve the gap decidability problem for any δ > 0. In the following, we abuse the
notation and let T,T denote the Markov operator and adjoint Markov operator
of both (X,Y )

⊗n and (X,Y )
⊗n0 .
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Conjecture 1. Given any δ > 0, and f : Ωnx → {±1} and g : Ωny → {±1} sat-
isfying E[f ] 6 δ,E[g] 6 δ,

∥∥Tf − ρ′g∥∥
1
6 δ and ‖Tg − ρ′f‖1 6 δ, there exist

n0 = n0((X,Y ), ρ′, δ), functions f∗ : Ωn0
x → {±1} and g∗ : Ωn0

y → {±1} such
that

(i) |E[f∗]− E[f ]| 6 2δ, (ii) |E[g∗]− E[g]| 6 2δ,

(iii)
∥∥Tf∗ − ρ′g∗∥∥

1
6 2δ, and (iv) ‖Tg∗ − ρ′f∗‖1 6 2δ.

The conjecture holds true when the source is 2-by-2 and δ is a small enough
constant due to our characterization theorem.

The requirement that both f∗ and g∗ remains Boolean-valued functions is
unique to security constraint in SNIS. In contrast, the reduction functions in NIS
setting [25] only need to be bounded functions since they only need to preserve
the correlation (see Theorem 3.1 in [25]) not the security.

7.3 On Power of Non-linear Constructions

Lemma 2. There are exactly 16 perfect non linear SNIS constructions of BSS(1/2)
from two samples of ROT.

By implementing our exhaustive search algorithm, we found 16 perfect construc-
tions (see the full version for detailed constructions).

Lemma 3. There is a perfect non linear SNIS construction of BES(
√

1/2) from
one sample of ROT.

Next, we shall show that there is no SNIS construction of BSS(1/2) or BES(
√

1/2)
from n independent samples of ROT for any n ∈ N.

Lemma 4. For any naming of the samples from the ROT distribution, any n ∈
N, any SNIS of BSS(1/2) or BES(

√
1/2) from ROT⊗n with linear reductions has

a constant simulation error.

7.4 Incompleteness of string-ROT

Definition 8. The `-bit string random oblivious transfer source, represented as
ROT (`), samples uniformly and independently random x1, x2 ∈ {0, 1}` and a bit
b ∈ {0, 1}n, provides Alice (x1, x2), and provides Bob (b, xb).

In contrast to the completeness result in OWSC, we show that the family of
string-ROT is not complete in SNIS.

Lemma 5. The family of string-ROT is not complete for SNIS.

This lemma follows from the fact that the maximal correlation of ROT (`) =
1/
√
2 for every ` ∈ N and the data processing inequality (Imported Theo-

rem 2).
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