
Universally Composable Σ-protocols in the
Global Random-Oracle Model

Anna Lysyanskaya and
Leah Namisa Rosenbloom

Brown University, Providence RI 02906, USA
{anna lysyanskaya,leah rosenbloom}@brown.edu

Abstract. Numerous cryptographic applications require efficient non-
interactive zero-knowledge proofs of knowledge (NIZKPoK) as a build-
ing block. Typically they rely on the Fiat-Shamir heuristic to do so,
as security in the random-oracle model is considered good enough in
practice. However, there is a troubling disconnect between the stand-
alone security of such a protocol and its security as part of a larger,
more complex system where several protocols may be running at the
same time. Provable security in the general universal composition model
(GUC model) of Canetti et al. is the best guarantee that nothing will
go wrong when a system is part of a larger whole, even when all parties
share a common random oracle. In this paper, we prove the minimal nec-
essary properties of generally universally composable (GUC) NIZKPoK
in any global random-oracle model, and show how to achieve efficient
and GUC NIZKPoK in both the restricted programmable and restricted
observable (non-programmable) global random-oracle models.

1 Introduction

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) [5,28,42] form
the basis of many cryptographic protocols that are on the cusp of widespread
adoption in practice. For example, the Helios voting system [1] and other effi-
cient systems employing cryptographic shuffles [46] use zero-knowledge proofs of
knowledge to ensure that each participant in the system correctly followed the
protocol and shuffled or decrypted its inputs correctly. Anonymous e-cash [12]
and e-token [11] systems use them to compute proofs of validity of an e-coin or
e-token. In group signatures [18,2] they are used to ensure that the signer is in
possession of a group signing key. In anonymous credential constructions [13,14],
they are used to ensure that the user identified by a given pseudonym is in pos-
session of a credential issued by a particular organization.

The non-interactive aspect of NIZKPoK is especially important to most of
these applications—it enables a prover to form a proof of some attribute for a
general verifier rather than forcing the prover to talk to each verifier individually,
which is inefficient in most cases and infeasible for some applications. It is also
extremely important that the NIZKPoK be efficient. Thus, the constructions

https://orcid.org/0000-0002-3567-3550
https://orcid.org/0000-0002-4323-5315

2 A. Lysyanskaya and L.N. Rosenbloom

cited above use efficient Σ-protocols [26] made non-interactive via the Fiat-
Shamir heuristic [29] to instantiate the NIZKPoK in the random-oracle model
(ROM) [3]. Recall that a Σ-protocol for a relation R is, in a nutshell, a (1−negl)-
sound honest-verifier three-move proof system in which the single message from
the verifier to the prover is a random ℓ-bit string. The Fiat-Shamir transform
makes the proof system non-interactive by replacing the message from the verifier
with the output of a random oracle (RO).

Recently, a better understanding of how badly such NIZKPoK fare in the con-
current setting emerged [44,27,4,39]. Allowing for secure concurrent executions
is of vital importance for the real-world application of any of the cryptographic
protocols mentioned above, and especially for distributed protocols. But Drijvers
et al. [27] demonstrated subtleties in the proofs of security for concurrent pro-
tocol executions that often go undetected, leaving building-block cryptographic
protocols vulnerable to attacks like Wagner [44] and Benhamouda et al.’s ex-
ploitation of the ROS problem [4].

One way to circumvent the unique subtleties of composing cryptographic
primitives is to prove that each primitive is universally composable using Canetti’s
universal composition (UC) framework [19]. In the UC framework, the security
of a particular session of a protocol is analyzed with respect to an environment,
which represents an arbitrary set of concurrent protocols. The environment in
the UC framework can talk to and collude with the traditional “adversary” in
cryptographic protocols, directing it to interfere with the protocol. However, the
original UC framework did not provide a mechanism for parties in different set-
tings to use a shared global functionality, for instance a shared RO or common
reference string (CRS). In real-world applications, it is virtually guaranteed that
parties will share setup and state between sessions.

To address the issue of shared state and concurrency in the UC framework,
Canetti, Dodis, Pass, and Walfish developed the general UC (GUC) framework,
which considers “global” functionalities G that can be queried by any party
in any session at any time, including the environment [20]. Canetti, Jain, and
Scafuro later showed several practical applications of the GUC framework with
a restricted observable global RO GroRO as the only trusted setup. They include
commitment, oblivious transfer, and secure function evaluation protocols, all
GUC in the GroRO-hybrid model [22]. Building on Canetti et al.’s framework,
Camenisch, Drijvers, Gagliardoni, Lehmann, and Neven developed a restricted
programmable observable global RO, denoted GrpoRO, that allows for more efficient
GUC commitments in the GrpoRO-hybrid model [10].

Thus, the GroRO- and GrpoRO-hybrid models are attractive ones for constructing
and analyzing practical and composable non-interactive zero-knowledge proofs.
Obtaining an efficient NIZKPoK (for a relation R) in either global ROM from an
efficient Σ-protocol (for the same relation) is a natural goal. We begin by showing
that any protocol that can be considered a GUC NIZKPoK in any global ROM
must satisfy particular flavors of completeness, zero-knowledge, and soundness
(formalized in Definitions 3, 4, and 5, respectively) — i.e., that these flavors are
necessary to achieve security in the global RO model.

UC Σ-protocols in the Global ROM 3

Theorem 1 (Informal). If a protocol is a GUC NIZKPoK in any global
ROM, then it satisfies Definitions 3, 4, and 5.

Next, we obtain GUC NIZKPoK in the (programmable) GrpoRO-hybrid model
by using a straight-line compiler on any Σ-protocol. A straight-line compiler [30]
transforms a Σ-protocol into a non-interactive zero-knowledge proof system in
which the knowledge extractor uses the proof itself as well as the adversary’s
random-oracle query history in order to compute an adversarial prover’s witness.
(More formally, the resulting protocol satisfies our Definitions 3-5.)

Theorem 2 (Informal). The non-interactive proof system obtained by
running any Σ-protocol for relation R through any straight-line compiler is a

GUC NIZKPoK for relation R in the GrpoRO-hybrid model.

While the programming property of GrpoRO is helpful in proving security, it
also localizes aspects of the global RO by providing a programming verification
interface that concurrent protocols cannot access. It is unclear how localized
interfaces that are vital to the security of component protocols might impact
the security analysis of composed protocols.

Therefore, we also consider NIZKPoK in the less restrictive (non-program-
mable) GroRO-hybrid model, where GroRO’s interfaces are completely public. Un-
fortunately, Pass [40] and Canetti et al. [22] point out that it is not possible
to construct NIZKPoK using only a global functionality, because there is no
way for the simulator in the security experiment to exercise control over it. We
introduce a new model called the GroRO-FCRS-hybrid model, in which protocol
participants have access to a trusted common reference string (CRS) function-
ality. Participants can compute this CRS for a one-time cost at the beginning
of the session using only GroRO and Canetti et al.’s GUC non-interactive secure
computation (NISC) protocol [22]. We prove that any straight-line compiler in
conjunction with our new construction, which uses a special type of Σ-protocol
called an OR-protocol [26,24], is sufficient to transform any Σ-protocol into a
GUC NIZKPoK in the GroRO-FCRS-hybrid model.

Theorem 3 (Informal). The non-interactive proof system obtained by
composing any Σ-protocol for relation R with a local CRS relation S and

running the combined OR-protocol through any straight-line compiler is a GUC
NIZKPoK for relation R ∨ S in the GroRO-FCRS-hybrid model.

The straight-line compiler we use ensures that the protocols we obtain satisfy
the flavors of completeness, zero-knowledge, and soundness from Definitions 3,
4, and 5. Combined with Theorem 1, this demonstrates that these flavors are
both necessary and sufficient.

Finally, we realize our GUC transforms for Σ-protocols using Kondi and
shelat’s randomized version of the Fischlin transform [35,30], demonstrating that
it is possible to construct efficient GUC NIZKPoK from a broad class of Σ-
protocols in both the GrpoRO and GroRO-FCRS-hybrid models.

4 A. Lysyanskaya and L.N. Rosenbloom

Along the way, we uncover theoretical observations that may be of indepen-
dent interest. First, that straight-line compilers afford strong security guarantees:
because they work exclusively using information the adversary already knows,
we can compose them with other building blocks such as zero-knowledge simula-
tors without compromising the security of the overall system. This “decoupling”
property [30], and security properties of non-rewinding extractors in general,
are of interest in the quantum random-oracle model (QROM), where rewinding
is tricky because of the no-cloning theorem [45,34,43]. It is the subject of fu-
ture work to explore whether other mechanisms of straight-line extraction (for
example, ones that do not rely on the adversary’s query history) [17,40,34,43]
are sufficient to bootstrap Σ-protocols into GUC NIZKPoK in the GrpoRO- or
GroRO-FCRS-hybrid models, a different global ROM, or the QROM.

Organization. In the remainder of the introduction, we provide general back-
ground information on Σ-protocols, the GUC model, the global ROM(s), and
straight-line extraction. In Section 2, we give formal definitions of Σ-protocols
and straight-line compilers. Section 3 contains definitions of GUC-security in
various global ROMs and a proof of Theorem 1 (that any GUC NIZKPoK must
have the security properties afforded by straight-line compilers). In Section 4, we
prove Theorem 2 (that any straight-line compiler is sufficient to transform any
Σ-protocol into a GUC NIZKPoK in the GrpoRO-hybrid model), and in Section 5
we prove Theorem 3 (that any straight-line compiler in conjunction with our
OR-protocol construction is sufficient to complete the transform in the GroRO-
FCRS-hybrid model). Finally in Section 6, we leverage the randomized Fischlin
transform to efficiently realize our constructions in both global ROMs.

Σ-Protocols. AΣ-protocol for a binaryNP relationR is a three-round, public-
coin proof system. On input x and w such that (x,w) ∈ R, the prover generates
its first message com (in the literature on Σ protocols, this first message is often
referred to as a “commitment”). In response, the honest verifier sends a unique ℓ-
length random “challenge” chl to the prover. Finally, the prover “responds” with
a value res. The resulting transcript (com, chl, res) is then fed to a verification
algorithm that determines whether the verifier accepts or rejects.

Σ-protocols must additionally satisfy three properties. First, they must sat-
isfy completeness: if the prover has a valid witness and both parties engage in the
protocol honestly, the verifier always accepts. Next, they must be special honest-
verifier zero-knowledge: there must exist a simulator algorithm that on input
x and chl ∈ {0, 1}ℓ outputs an accepting transcript (com, chl, res) for x such
that, if chl was chosen uniformly at random, (com, chl, res) is indistinguish-
able from that output by an honest prover on input x. Finally, they must have
special soundness: if there are two accepting transcripts for any statement with
the same commitment com but different challenges chl ̸= chl′, there exists an
extractor algorithm that can produce a valid witness from the transcripts. The
stronger version of soundness, special simulation soundness, says that special
soundness must still hold even if an adversary has oracle access to the simulator.

UC Σ-protocols in the Global ROM 5

The Σ-protocol format captures many practical zero-knowledge proof sys-
tems. For example, Wikström [46] shows Σ-protocols for proving a rich set of
relations between ElGamal ciphertexts, which in turn allow proving that a set
of ciphertexts was shuffled correctly; similar protocols exist for Paillier cipher-
texts [23,17]. A robust body of literature exists giving Σ-protocols for proving
that values committed using Pedersen [41] and Fujisaki-Okamoto [32] commit-
ments satisfy general algebraic and Boolean circuits [8,15,16] and lie in certain
integer ranges [6,36]. For all the Σ-protocols listed above, the size and complexity
of the proof system is a O(1) factor of the complexity of verifying the underlying
relation R(x,w), making Σ-protocols extremely desirable in practice.

Σ-protocols are also the most efficient technique to achieve zero-knowledge
proofs of knowledge of a commitment opening in the lattice setting [38,25], where
the complexity grows by a factor of O(k) in order to achieve soundness (1−2−k).
Thus, for all the relations R cited above, our results immediately yield the most
efficient known GUC NIZKPoK in the global ROM.

The General Universal Composability (GUC) Model. Our security ex-
periment is that of the GUC model of Canetti et al. [20], which enables the
UC-security analysis of protocols with global functionalities.

Briefly, the UC and GUC modeling of the world envisions an adversarial
environment Z, which provides inputs to honest participants, observes their
outputs, and (at a high level) directs the order in which messages are passed
between different system components. Additionally, the world includes honest
participants (that receive inputs from Z and let Z observe their outputs) and
adversarial participants controlled by the adversary A (whose behavior is also
directed and observed by Z).

The ideal world additionally contains an ideal functionality F and an ideal
adversary S, also called the simulator. In the ideal world, the honest partici-
pants pass their inputs directly to F and receive output from it. The real world
does not contain such a functionality; instead, the honest participants run a
cryptographic protocol. The corrupted participants in the ideal world always
communicate through S, who simulates their view and may pass their inputs
to F through a private channel. There are also worlds in between these two: in
a G-hybrid world, the honest participants run a protocol that can make calls
to an ideal functionality G. In the GUC model, G is accessible not only to the
honest participants, but also to Z. A cryptographic protocol is said to be (G)UC
with respect to a functionality F (in other words, the protocol (G)UC-realizes
F) if for any real-world adversary A , there exists an “ideal” adversary (simu-
lator) S which creates a view for the environment (in the ideal world) that is
indistinguishable from its view of the cryptographic protocol.

In our case, the ideal functionality is the NIZKPoK ideal functionality, or
FNIZK, which works as follows. An honest participant in a protocol session s can
compute a proof π of knowledge of w such that (x,w) ∈ R by querying FNIZK’s
Prove interface and giving it (s, x, w). The string π itself is computed according
to the algorithm SimProve provided by the ideal adversary S. The functionality

6 A. Lysyanskaya and L.N. Rosenbloom

guarantees the zero-knowledge property because SimProve is independent of
w. An honest participant can also verify a supposed proof π for x by querying
FNIZK’s Verify interface on input (x, π). FNIZK ensures the soundness of the proof
system as follows: if the proof π was not issued by FNIZK, then it runs an extractor
algorithm Extract provided by S to try to compute a witness w from the proof
π. The Extract algorithm may also require additional inputs from S.

The Global Random-Oracle Models (Global ROMs). The traditional
random oracle (RO) H : {0, 1}∗ → {0, 1}ℓ is a function that takes any string
as input and returns a uniformly random ℓ-bit string as output [3]. The global
random-oracle model (global ROM) allows us to capture the realistic scenario in
which the same RO is reused by many parties over many (potentially concurrent)
executions of numerous distinct protocols. As envisioned by Canetti et al. [22]
and formalized by Camenisch et al. [10], the “strict” global RO functionality
GsRO is a public, universally-accessible RO that can be queried by any party in
any protocol execution, including by the arbitrary concurrent protocols modeled
by the environment in the UC framework [20].

Pass [40], Canetti and Fischlin [21], Canetti et al. [20,22], and Camenisch
et al. [10] have all discussed the limitations of GsRO. In particular, Canetti and
Fischlin [21] demonstrated that it is impossible to achieve UC commitments with
only a global setup, and Canetti et al. extended this argument to commitments
and zero knowledge in the GUC framework [20] and the GroRO-hybrid model [22].
The limitation stems from the fact that in a “strict” setup, the simulator does not
have any special advantage over a regular protocol participant. In our setting,
FNIZK needs to observe the adversary’s RO queries in order to extract witnesses
and ensure the special soundness property. Most zero-knowledge simulators also
rely on the extra ability to program the RO at selected points in order to simulate
proofs of statements without witnesses.

Canetti et al. first introduced a global RO GroRO with a restricted “observ-
ability” property [22]. The ideal adversary (simulator) S in the security proof
of a protocol Π emulating an ideal functionality F in the GroRO-hybrid model is
able to observe all adversarial queries to GroRO as follows. First, S can observe the
corrupted parties’ queries to GroRO by directly monitoring their input and output
wires (recall that in the ideal world, corrupted parties communicate through S).
The environment’s queries to GroRO, on the other hand, are not directly moni-
tored by S. Since GroRO is completely public, the environment is free to query it
anytime; however, the environment is not free to query it with the same session
identifier (SID) as the participants in Π or F , because it is external to legitimate
sessions of Π by definition. In order to ensure the environment’s queries are still
available to the simulator, GroRO checks whether the SID for a query matches the
SID of the querent. In the event that it does not, this query is labelled “illegit-
imate,” creating the restriction. GroRO makes a record of all illegitimate queries
available to an ideal functionality F with the correct SID, if it exists. We will
see that for our construction of GUC NIZKPoK in the GrpoRO- and GroRO-FCRS-

UC Σ-protocols in the Global ROM 7

hybrid models, FNIZK can leverage these queries to extract witnesses from the
environment’s proofs.

Camenisch et al.’s restricted programmable observable global RO GrpoRO [10]
builds on the functionality of GroRO as follows. In order to ensure that program-
ming is restricted to the simulator, GrpoRO has an IsProgrammed interface that
allows participants with a particular SID to check whether the output of GrpoRO
was programmed on some input pertaining to the same session. Honest par-
ties in the challenge session can therefore check whether the adversary has pro-
grammed GrpoRO, and can refuse to continue the protocol if so. In the real world,
no programming occurs; in the ideal world, the simulator, who controls the cor-
rupted parties’ views of the experiment, can program GrpoRO and then pretend
it did not program anything by returning “false” to all of the corrupted parties’
IsProgrammed queries. Since only parties running a legitimate protocol session
s are allowed to use the IsProgrammed interface for s, the environment can-
not make IsProgrammed queries for s—if it could, it would easily be able to
distinguish between the real and ideal experiments by checking whether honest
parties’ responses were programmed.

We show how to construct efficient, GUC NIZKPoK in the GrpoRO-hybrid
model. However, we believe there may be downsides to programmable global
ROs like GrpoRO: it is not clear how compromising the fully-public aspect of the
global RO with a locally-restricted interface might impact the overall compos-
ability of protocols proven secure in the GrpoRO-hybrid model.1 In order to achieve
efficient GUC NIZKPoK without this localized interface, we build a new hybrid
model called the GroRO-FCRS-hybrid model. The GroRO-FCRS-hybrid model shifts
the localized interface from inside of the global RO to inside of the protocol.
For a one-time cost at the beginning of the protocol execution, participants can
compute this CRS securely and realize FNIZK using only the observable global RO
GroRO by leveraging Canetti et al.’s GUC NISC protocol [22]. Similar mechanisms
are used in practice to obtain practical NIZKPoK in other ROMs [7].

In the real world, our ideal CRS functionality FCRS returns a random string
CRS (the CRS our real-world participants might compute using the NISC proto-
col). In the ideal world, the simulator generates CRS itself, along with a trapdoor
trap that only it knows. The proof-generation process in our construction of
GUC NIZKPoK in the GroRO-FCRS-hybrid model is to show that the prover either
knows a “real” witness w for a statement x such that (x,w) ∈ R, or it knows
the trapdoor to the CRS. The Prove and SimProve algorithms differ only in
the witness used: a real prover must use a real witness, while the simulator can
use trap in a way that we will show is imperceptible to the environment. We
formalize this intuition using an OR-protocol [24,26] over the original relation
R and what we call a samplable-hard relation for the CRS.

Straight-Line Extraction and the Fischlin Transform. The original Fis-
chlin transform [30] is a non-interactive transform for Σ-protocols in the stan-

1 For a full discussion of the subtle differences between observation and programming
privileges in the global ROM(s), see Appendix A.2 in the full version [37].

8 A. Lysyanskaya and L.N. Rosenbloom

dard ROM that allows for straight-line (or online) extraction. Straight-line ex-
traction is a process by which the extractor can produce a witness straight from
a valid proof without any further interaction with the prover. (In order to do so,
it will need additional, auxiliary information available to the extractor algorithm
only.) This is in contrast to extraction in the “rewinding” model, in which the
extractor resets the prover to a previous state and hopes for a certain pattern of
interaction before it can obtain a witness. Straight-line extraction is necessary
in the (G)UC model, which does not allow the simulator to rewind the envi-
ronment [20]. Furthermore, straight-line extraction produces a tight reduction,
which avoids security nuances surrounding the forking lemma [33].

In order to create a straight-line extractable proof system from a Σ-protocol,
the Fischlin transform essentially forces the prover to rewind itself, requiring
multiple proofs on repeated commitments until the probability that the prover
has generated at least two responses to different challenges on the same com-
mitment is overwhelming. Kondi and shelat recently showed that because the
Fischlin prover is deterministic—that is, because it tests challenges by iterating
from zero to some fixed constant—the original transform is open to a “replay”
attack that breaks the the witness indistinguishability property of OR-protocols
[35]. To avoid the attack, Fischlin’s original construction requires the underly-
ing Σ-protocols to have a property called quasi-unique responses, which Kondi
and shelat demonstrate precludes the transformation of OR-protocols. Kondi
and shelat show how this property can be omitted (and most OR-protocols
transformed) by randomizing the challenge selection process and replacing the
quasi-unique responses property with a (more general) property called strong
special soundness. We review the details of the resulting “randomized” Fischlin
transform [31,35] in Appendix A.12 of the full version of the paper [37].

2 Preliminaries

We use standard notation, available in Appendix A.1 of the full version [37].

2.1 Σ-protocols, Revisited

Let R be any efficiently computable binary relation. For pairs (x,w) ∈ R, or
equivalently such that R(x,w) = 1, we call x a statement in the language of R,
denoted LR, and say w is a witness to x ∈ LR. We consider Σ-protocols over a
relation R between a prover P and a verifier V that have the general commit-
challenge-respond format discussed in Section 1, which Damg̊ard formalizes as a
protocol template [26]. Since we will later introduce compilers for Σ-protocols—
first to make them non-interactive and straight-line extractable and then to make
them GUC—it will be helpful to define Σ-protocol interfaces with precise inputs
and outputs. We begin by formalizing an algorithmic version of the protocol tem-
plate τ as a tuple of algorithms (Setup, Commit, Challenge, Respond, Decision),
the details of which are provided alongside Damg̊ard’s original version in Ap-
pendix A.3 [37].

UC Σ-protocols in the Global ROM 9

Σ-protocols must also satisfy the properties of completeness, special honest-
verifier zero-knowledge (SHVZK), and special soundness (SS). The SHVZK prop-
erty requires the existence of a simulator algorithm SimProve for simulating
proofs, and the SS property requires an extractor algorithm Extract for extract-
ing witnesses. Therefore, our algorithmic specification of a Σ-protocol includes
three additional algorithms: SimSetup, SimProve, and Extract.

In order to more easily translate our definition of Σ-protocols into the non-
interactive setting, we combine the Commit, Challenge, and Respond algorithms
of the protocol template into a Prove interface. For now we are still dealing with
the interactive version, and the specification of Prove below is a two-party pro-
tocol where the first input to the algorithm is the prover’s input, and the second
input is the verifier’s. After running Prove, both parties obtain the same copy
of the proof transcript π = (com, chl, res). In the next section, we will intro-
duce a straight-line compiler that makes the Prove interface a non-interactive
algorithm in the random-oracle model (ROM). The non-interactive, straight-line
extractable (NISLE) proof system resulting from the transformation will have
different versions of the SHVZK and SS properties; because we will work almost
exclusively with these versions, we defer formal definitions and discussions of the
original formulations [26] to Appendix A.5 of the full version of the paper [37].

Definition 1 (Σ-protocol). A Σ-protocol for a relation R based on a proto-
col template τ (Definition 15 in [37]) is a tuple of efficient procedures ΣR,τ =
(Setup, Prove, Verify, SimSetup, SimProve, Extract), defined as follows.

– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain the public parameters ppm.

– π ← Prove((ppm, x, w), (ppm, x)): Let the first (resp. second) argument to
Prove be the input of the prover (resp. verifier), where both parties get ppm
and the statement x, but only the prover gets w. P and V run τ.Commit,
τ.Challenge, and τ.Respond. Output π = (com, chl, res).

– {0, 1} ← Verify(ppm, x, π): Given a proof π for statemenet x, parse π
as (com, chl, res) and output the result of running τ.Decision on input
(x, com, chl, res). Verify must satisfy the completeness property from Def-
inition 18 in Appendix A.5 of the full version of the paper [37].

– (ppm, z)← SimSetup(1λ): Generate ppm and the simulation trapdoor z. To-
gether, SimSetup and SimProve must satisfy the special honest-verifier zero-
knowledge property from Definition 19 in Appendix A.5.

– π ← SimProve(ppm, z, x, chl) : Given public parameters ppm, trapdoor z,
statement x, and a challenge chl, produce a proof π = (com, chl, res).

– w ← Extract(ppm, x, π, π′) : Given two proofs π = (com, chl, res) and π′ =
(com, chl′, res′) for a statement x such that τ.Decision(x, π) = τ.Decision
(x, π′) = 1 and chl ̸= chl′, output a witness w. Extract must satisfy the
special soundness property from Definition 20 in Appendix A.5.

For convenience and when the meaning is clear, we use ΣR to represent ΣR,τ

and omit ppm from the input of the algorithms.

10 A. Lysyanskaya and L.N. Rosenbloom

2.2 Straight-Line Compilers

Inspired by the straight-line transform due to Fischlin [31,30] described in Sec-
tion 1, our formalization of a straight-line compiler (SLC) for Σ-protocols in
the random-oracle model (ROM) takes any interactive Σ-protocol ΣR for re-
lation R and creates a non-interactive, straight-line extractable (NISLE) proof
system ΠSLC

R for the same relation. Both the proof simulation and witness ex-
traction procedures in a NISLE proof system are non-interactive algorithms in
the ROM—the challenger in the security experiment may not rely on rewinding
the prover, but is permitted to use the adversary’s previous queries to the RO.

The non-interactive equivalent of the special honest-verifier zero-knowledge
(SHVZK) game must reflect the fact that the zero-knowledge simulator might
be programming the RO. The SHVZK property must continue to hold even as
the RO is updated, meaning that if the simulator changes the RO at all, it
must be done in a way that is imperceptible to to the adversary A . Note that
the definition does not imply that the simulator has to program the RO—just
that if it does, it must do so imperceptibly. This nuance is important because
we will later give a construction in Section 5.3 for GUC NIZKPoK in the (non-
programmable) GroRO-FCRS-hybrid model—this construction should not (and does
not) contradict our result from Theorem 1, which says that any GUC NIZKPoK
must meet the requirements of non-interactive (multiple) SHVZK.

In the non-interactive version of the special soundness (SS) game in Fischlin’s
construction, the Extract algorithm works on input (x, π,QA), where QA are
A ’s queries to the RO. Fischlin’s approach is not the only one for achieving
straight-line extraction. Verifiable encryption [17,9] provides a different mech-
anism: the parameters ppm contain a public key, and the proof π contains an
encryption of the witness under this key. The extractor’s trapdoor is the decryp-
tion key. The latter approach requires additional machinery: it needs a proof
system for proving that a plaintext of a particular ciphertext is a witness w, and
thus cannot be constructed directly from ΣR. It is the subject of future work to
determine how such a “key-based” extractor would fare; for now, we assume the
extractor works on the adversary’s queries to the RO.

Finally, Fischlin proposes an optional (negligible) weakening of the complete-
ness property, which we call overwhelming completeness, that allows protocol
designers to optimize other parameters for efficiency reasons. Certainly any SLC
that satisfies the regular notion of completeness will also satisfy the weaker no-
tion, so we recall the weaker property below and demonstrate in Section 3.5 that
it is sufficient for GUC NIZKPoK.

Definition 2 (Straight-Line Compiler). An algorithm SLC is a straight-
line compiler (SLC) in the random-oracle model if given any Σ-protocol ΣR

for relation R (Definition 1) as input, it outputs a tuple of algorithms ΠSLC
R =

(SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) with access to ran-
dom oracle H that satisfy the following properties: overwhelming completeness
(Definition 3), non-interactive multiple special honest-verifier zero-knowledge
(Definition 4), and non-interactive special simulation-soundness (Definition 5).

UC Σ-protocols in the Global ROM 11

We refer to ΠSLC
R ← SLC(ΣR) as a non-interactive, straight-line extractable

(NISLE) proof system for R, and proofs generated by ΠSLC
R as non-interactive,

straight-line extractable zero-knowledge proofs of knowledge (NISLE ZKPoK).

Definition 3 (Overwhelming Completeness). A NISLE proof system ΠSLC
R

= (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) for relation R in
the random-oracle model has the overwhelming completeness property if for any
security parameter λ, any random oracle H, any (x,w) ∈ R, and any proof
π ← ΠSLC

R .ProveH(x,w),

Pr[ΠSLC
R .VerifyH(x, π) = 1] ≥ 1− negl(λ).

Recall from the introduction of this section that the simulator in the non-
interactive version of the SHVZK experiment is allowed to program the RO. In
order to precisely describe this programming, we differentiate in Figure 1 the
traditional RO Hf , which is parameterized by a function f ←$ F selected from
random function family F , from the programmable RO HL, which is parameter-
ized by a list L that can be added to (but not edited by) the simulator. We call
this type of oracle a “Random List Oracle,” and provide the simulator algorithms
in the non-interactive SHVZK game oracle access to an interface ProgL, which
allows the caller to map any (previously unmapped) input x to an output v of
its choice. The adversary’s inability to distinguish between the real-world oracle
Hf that is simply a random function and the ideal-world oracle HL that is a
list managed by the simulator is an essential part of the non-interactive SHVZK
experiment—it ensures that the introduction of the non-interactivity property
(via queries to a programmable RO) does not compromise the SHVZK property.

RO Hf (x)

1 : return f(x)

Random List Oracle HL(x)

1 : if ∃ v s.t. (x, v) ∈ L :

2 : return v

3 : else :

4 : v ← {0, 1}ℓ

5 : L.append(x, v)

6 : return v

Interface ProgL(x, v)

1 : if ∄ v′ s.t. (x, v′) ∈ L :

2 : L.append(x, v)

Fig. 1. Random Oracle Functionalities for NIM-SHVZK and NI-SSS Games.

In the standard definition of SHVZK, A is only permitted to issue one Prove

query. In the GUC security experiment (and in most natural applications of Σ-
protocols), the environment is allowed to issue polynomially-many Prove queries,
and we will still need the SHVZK property to hold. Therefore, we present a
version of non-interactive multiple SHVZK (NIM-SHVZK) [30].

12 A. Lysyanskaya and L.N. Rosenbloom

Definition 4 (Non-Interactive Multiple SHVZK). A NISLE proof system
ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) for relation
R in the random-oracle model has the non-interactive multiple special honest-
verifier zero-knowledge (NIM-SHVZK) property if for any security parameter λ,
any random oracle H, any PPT adversary A , and a bit b←$ {0, 1}, there exists
some negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is the

result of running the game NIM–SHVZKH∗,∗
A ,ΠSLC

R
(1λ, b) from Figure 2. We say A

wins the NIM–SHVZK game if Pr[b′ = b] > 1
2 + negl(λ).

NIM–SHVZKH∗,F
A ,ΠSLC

R
(1λ, 0) : REAL

1 : f ←$ F

2 : ppm← ΠSLC
R .SetupHf (1λ)

3 : st← A Hf (1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A Hf (st)

6 : if R(x,w) = 1 :

7 : π ← ΠSLC
R .ProveHf (x,w)

8 : else :

9 : π ← ⊥

10 : st← A Hf (st, π)

11 : return st

NIM–SHVZKH∗,Prog
A ,ΠSLC

R
(1λ, 1) : IDEAL

1 : L← ⊥

2 : ppm, z ← ΠSLC
R .SimSetupProgL(1λ)

3 : st← A HL(1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A HL(st)

6 : if R(x,w) = 1 :

7 : π ← ΠSLC
R .SimProveProgL(z, x)

8 : else :

9 : π ← ⊥

10 : st← A HL(st, π)

11 : return st

Fig. 2. Non-Interactive Multiple SHVZK (NIM-SHVZK) Game.

Similarly, the environment in the ideal-world GUC experiment will have ac-
cess to polynomially-many proofs generated by the SimProve algorithm, which
FNIZK will use to simulate proofs. We therefore define our straight-line compilers
to have the NI special simulation soundness property (NI-SSS), which says that
special soundness must still hold even after an adversary has seen polynomially-
many proofs from the simulator. Fischlin’s original construction is both NIM-
SHVZK and NI-SSS [30]. We will use his results in Section 6.1 to prove that the
randomized Fischlin transform [35,30] is also NIM-SHVZK and NI-SSS.

Definition 5 (Non-Interactive Special Simulation-Soundness). A NISLE
proof system ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract)
for relation R in the random-oracle model has the non-interactive special simula-
tion-soundness property if for any security parameter λ, any random oracle H,
and any PPT adversary A , there exists some negligible function negl such that

Pr[Fail← NI–SSSH∗,Prog
A ,ΠSLC

R
(1λ)] ≤ negl(λ),

UC Σ-protocols in the Global ROM 13

where NI–SSS is the game described in Figure 3. We say A wins if Pr[Fail ←
NI–SSSH∗,Prog

A ,ΠSLC
R

(1λ)] > negl(λ).

NI–SSSH∗,Prog
A ,ΠSLC

R
(1λ)

1 : L← ⊥

2 : ppm, z ← ΠSLC
R .SimSetupProgL(1λ)

3 : st← A HL(1λ, ppm)

4 : pflist, Response← ⊥
5 : while st ̸= ⊥ :

6 : (Query,QA , st)← A HL(st)

7 : if Query = (Prove, x, w) :

8 : if R(x,w) = 1 :

9 : π ← ΠSLC
R .SimProveProgL(z, x)

10 : pflist.append(x, π)

11 : Response← (x, π)

12 : elseif Query = (Challenge, x, π)

13 : if ΠSLC
R .VerifyHL(x, π) = 1 ∧ (x, π) /∈ pflist :

14 : w ← ΠSLC
R .Extract(x, π,QA)

15 : if R(x,w) = 0 :

16 : return Fail

17 : st← A HL(st, Response)

18 : return Success

Fig. 3. Non-Interactive Special simulation-soundness (NI-SSS) Game.

Σ-protocols that maintain the SHVZK property under any non-interactive
transform in the ROM must additionally have com messages with entropy that is
superlogarithmic in the security parameter [31], such that the adversary cannot
exhaustively query commitments to the RO and check whether the challenge
supplied by the prover matches what it receives. We recall and discuss Fischlin’s
superlogarithmic commitment entropy property further in Appendix A.7 [37].

2.3 OR-protocols

Rather than producing a proof corresponding to a single statement x in a lan-
guage LR, the prover in an OR-protocol proves that it knows a witness for either
a statement x0 in LR0 or another statement x1 in LR1 . At a high level, the prover
does this by simulating the proof of the statement for which it does not have

14 A. Lysyanskaya and L.N. Rosenbloom

a witness, while computing the proof of the statement for which it does have a
witness honestly.

Our definition is adapted directly from Damg̊ard’s [26], with a few minor
tweaks to make it more general. Since we will use the OR-protocol functionality
as a black box in our construction, it suffices for the purpose of understanding our
results to treat the OR-protocol as a Σ-protocol (according to Definition 1) with
compound inputs. For example, we represent the compound statement x0 ∨ x1

with the upper-case variable X = (x0, x1). The witness W = (w, b) includes
a witness along with a bit b such that (xb, w) ∈ Rb. We provide the detailed
version of our definition alongside Damg̊ard’s, as well as a discussion of the
minor differences between them, in Appendix A.8 of the full version [37].

3 Properties of GUC NIZKPoK

In this section we formalize the definitions of the programmable global RO GrpoRO
and the observable global RO GroRO, the ideal NIZKPoK functionality FNIZK, the
CRS ideal functionality FCRS, and the security requirements for protocols that
GUC-realize FNIZK in the GrpoRO- and GroRO-FCRS-hybrid models. We then show
that the non-interactive multi-SHVZK and non-interactive special simulation-
soundness properties are strictly necessary to obtain GUC NIZKPoK in any
global ROM.

3.1 GroRO and GrpoRO, Revisited

Building on the overview of the global ROM(s) given in Section 1, we now for-
malize Canetti et al.’s restricted observable global RO GroRO [22] and Camenisch
et al.’s restricted programmable observable global RO GrpoRO. As with traditional
ROs, both oracles act as functions that respond to each input string xi ∈ {0, 1}∗
with a uniformly random ℓ-bit string vi ∈ {0, 1}ℓ. We call this original algo-
rithm Query. Since GrpoRO builds on the interfaces of GroRO, we will start with the
specification of GroRO and follow with the extra interfaces of GrpoRO.

The first thing GroRO does when it receives a query is to check whether the
querent’s SID sidmatches the session s for which it has requested randomness. If
sid ̸= s, GroRO assumes this is an “illegitimate” query made by the environment,
and records the query in its special list of illegitimate queries for s, denoted Qs.
In the original version of the definition [22], only the ideal functionality Fs for
session s can query GroRO using the Observe interface to get the list of illegitimate
queries for s. However, note that no honest provers’ queries will ever be recorded
in this list, as they will only ever be querying GroRO for randomness sessions in
which they are participating legitimately. Therefore, we follow Camenisch et al.’s
version of the restricted observability property [10] and simply release the list
Qs to anyone who wants it.

Definition 6 (Observable Global RO GroRO). [22,10] The observable global
RO GroRO is a tuple of algorithms (Query, Observe) defined over an output length
ℓ and an initially empty list of queries Q:

UC Σ-protocols in the Global ROM 15

– v ← Query(x) : Parse x as (s, x′) where s is an SID. If a list Qs of ille-
gitimiate queries for s does not yet exist, set Qs = ⊥. If the caller’s SID
̸= s, add (x, v) to Qs. If there already exists a pair (x, v) in the query list Q,
return v. Otherwise, choose v uniformly at random from {0, 1}ℓ, store the
pair (x, v) in Q, and return v.

– Qs ← Observe(s) : If a list Qs of illegitimate queries for s does not yet exist,
set Qs = ⊥. Return Qs.

In addition to the Query and Observe interfaces, Camenisch et al.’s restricted
programmable observable global RO GrpoRO has two extra interfaces, Program and
IsProgrammed. GrpoRO keeps track of which queries have been programmed us-
ing the set prog. Note that since privileged (simulator-only) programming is
not allowed in the GUC model, anyone can program GrpoRO. In order to func-
tionally restrict this privilege to the simulator, Camenisch et al. introduces the
IsProgrammed interface, which reveals whether or not GrpoRO was programmed
on an index x = (s, x′), but only to a calling party with sid = s. Notably, this
interface directly restricts the environment from ever seeing whether or not the
oracle was programmed (since the environment is by definition not part of any
legitimate protocol session), and indirectly restricts the adversary from ever see-
ing whether or not the oracle was programmed (since the simulator is in charge
of its view in the ideal-world experiment in which programming is employed.)

Definition 7 (Restricted Programmable Observable Global RO GrpoRO).
[10] The restricted programmable observable global random oracle GrpoRO is a tu-
ple of algorithms (Query, Observe, Program, IsProgrammed) defined over an out-
put length ℓ and initially empty lists Q (queries) and prog (programmed queries):

– v ← Query(x) : Same as Definition 6 above.

– Qs ← Observe(s) : Same as Definition 6 above.

– {0, 1} ← Program(x, v) : If ∃v′ ∈ {0, 1}ℓ such that (x, v′) ∈ Q and v ̸= v′,
output 0. Otherwise, add (x, v) to Q and prog and output 1.

– {0, 1} ← IsProgrammed(x) : Parse x as (s, x′). If the caller’s SID ̸= s,
output ⊥. Otherwise if x ∈ prog, output 1. Otherwise, output 0.

3.2 The NIZKPoK Ideal Functionality

We now formalize the NIZKPoK ideal functionality FNIZK. Recall from Section 1
that in the “ideal” world, the honest parties who would execute protocol Π
are actually dummy parties who do not perform any computations of their own.
Instead, they pass all of their inputs to an ideal functionality FNIZK, who instructs
them on how to respond. As is standard in the (G)UC framework [19,20,22], there
is one ideal functionality for each SID s. A dummy party with SID s can only
send input and receive output from the FNIZK with the same SID, denoted Fs

NIZK.
Each Fs

NIZK will need to run some kind of setup, then process proofs and
verifications on behalf of the honest parties in its session. Recall that in order
to be NIZKPoK, the proofs must be non-interactive, zero-knowledge (satisfying

16 A. Lysyanskaya and L.N. Rosenbloom

the SHVZK property), and proofs of knowledge (satisfying the SS property).
These properties imply the existence of SHVZK simulator algorithms SimSetup
and SimProve that do not take the prover’s witness as input, as well as of the
SS algorithm Extract that can compute witnesses from adversarially-created
proofs. During FNIZK’s Setup procedure, FNIZK requests the specifications of these
algorithms from the ideal adversary (simulator) S.

Note that there are two conditions in which FNIZK can output Fail. The first
is a completeness error, where FNIZK’s execution of the SimProve algorithm on
input (x,w) ∈ R fails to produce a proof π such that Verify(x, π) = 1. The
second is an extraction error, where FNIZK’s execution of the Extract algorithm
on input a valid, non-simulated proof tuple (x, π) fails to produce a witness
w such that R(x,w) = 1. In the proof of Theorem 1 in Section 3.5, we will
draw a direct correspondence between these failures and the functionality of a
Σ-protocol.

Definition 8 (NIZKPoK Ideal Functionality). The ideal functionality FNIZK

of a non-interactive zero-knowledge proof of knowledge (NIZKPoK) is defined
as follows.

Setup: Upon receiving the request (Setup, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Setup, s) was received, pass (Setup, s) to the ideal adversary S, who returns
the tuple (Algorithms, s, Setup, Prove, Verify, SimSetup, SimProve, Extract)
with definitions for the algorithms FNIZK will use. FNIZK stores the tuple.

Prove: Upon receiving a request (Prove, s, x, w) from a party P = (pid, sid),
first check that sid = s and R(x,w) = 1. If not, output ⊥. Otherwise, com-
pute π according to the SimSetup and SimProve algorithms and check that
Verify(x, π) = 1. If it doesn’t, output Fail. Otherwise, record then output the
message (Proof, s, x, π).

Verify: Upon receiving a request (Verify, s, x, π) from a party P = (pid, sid),
first check that sid = s. If it doesn’t, output ⊥. Otherwise if Verify(x, π) = 0,
output (Verification, s, x, π, 0). Otherwise if (Proof, s, x, π) is already stored,
output (Verification, s, x, π, 1). Otherwise, compute w according to the Extract
algorithm. If R(x,w) = 1, output (Verification, s, x, π, 1) for a successful ex-
traction. Else if R(x,w) = 0, output Fail.

3.3 The CRS Ideal Functionality

Below is the ideal common reference string (CRS) functionality, which relies on
a generic “GenCRS” algorithm. In Section 5.1, we will articulate the properties
that GenCRS must have for the purposes of our construction.

Definition 9 (CRS Ideal Functionality). The ideal functionality FCRS of a
common reference string (CRS) for a particular CRS generation mechanism
GenCRS is defined as follows.

UC Σ-protocols in the Global ROM 17

Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).

3.4 GUC Security Definitions

We are now ready to formalize what it means for a protocol Π to be a GUC
NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models. We review the standard
GUC model real- and ideal-world experiments given by Canetti et al. [20] in
Appendix A.9 of the full version of the paper [37], noting that we are working
in the passive corruption model—i.e. Z must decide at the time of a party’s
invocation whether or not they are corrupt.

Definition 10 (GUC NIZKPoK in the GrpoRO-hybrid Model). A protocol
Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security param-
eter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GrpoRO-hybrid
model if for all efficient A , there exists an ideal adversary S efficient in expec-
tation such that for all efficient environments Z,

IDEAL
GrpoRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GrpoRO

Π,A ,Z(1
λ, aux),

where GrpoRO is the restricted programmable observable global RO (Definition 7)
and aux is any auxiliary information provided to the environment.

Definition 11 (GUC NIZKPoK in the GroRO-FCRS-hybrid Model). A pro-
tocol Π = (Setup, Prove, Verify, SimSetup, SimProve, Extract) with security
parameter λ GUC-realizes the NIZKPoK ideal functionality FNIZK in the GroRO-
FCRS hybrid model if for all efficient A , there exists an ideal adversary S efficient
in expectation such that for all efficient environments Z,

IDEALGroRO

FNIZK,S,Z(1
λ, aux) ≈c REAL

GroRO,FCRS

Π,A ,Z (1λ, aux),

where GroRO is the restricted observable global RO (Definition 6), FCRS is the ideal
CRS functionality (Definition 9), and aux is any auxiliary information provided
to the environment.

3.5 GUC NIZKPoK Are Complete, NIM-SHVZK, and NI-SSS

We prove in this section that any protocolΠ = (Setup, Prove, Verify, SimSetup,
SimProve, Extract) that GUC-realizes FNIZK in any global ROM must be over-
whelmingly complete, non-interactive multiple special honest-verifier zero-know-
ledge (NIM-SHVZK) and non-interactive special simulation simulation-sound
(NI-SSS) according to the definitions in Section 2.2. In other words, the NIM-
SHVZK and NI-SSS properties guaranteed by a straight-line compiler (SLC) are
strictly necessary to create GUC NIZKPoK in the global ROM.

18 A. Lysyanskaya and L.N. Rosenbloom

As we show briefly in Appendix B.1 [37], any ordinary Σ-protocol that is
regular SHVZK is also multi-SHVZK. The more interesting result is the necessity
of special simulation-soundness, since that is not a property guaranteed by all Σ-
protocols—it will be up to the SLC to create a special simulation-sound NISLE
proof system even when the underlying Σ-protocol is only regular special-sound.
In the proof of Theorem 3 in the full version of his paper [30], Fischlin shows
that the NISLE proof systems resulting from his transform satisfy both NIM-
SHVZK and NI-SSS. A key element in Fischlin’s proof that will surface again in
the proof of Theorem 1 below, as well as in the proofs of Theorems 3 and 4, is the
observation that an Extract algorithm based on the adversary’s query history
functionally decouples the extraction process from the rest of the experiment—
interacting with the extractor does not influence the adversary’s view in any way.
Intuitively, this is because Extract works solely using inputs that the adversary
already knows.

Since the following result is independent of the choice of global RO, we recall
the strict global RO GsRO outlined by Canetti et al. [22] and formalized by Ca-
menisch et al. [10] described in the introduction. GsRO has the same parameters as
GrpoRO and GroRO but only one interface, Query, which acts as globally accessible
random function. The functionality of GsRO is the minimal-most assumption of
an RO in the GUC model, creating a direct correspondence to the standard RO
H in the NIM-SHVZK and NI-SSS experiments. Because the point of using GsRO
here is to convey the minimal assumption needed (and not to prove the result
only for GsRO), we use the generic notation GRO, which represents any global RO
with a minimum of GsRO’s Query interface. The GUC security definition in the
GRO-hybrid model is the same as in Definition 10, except that GrpoRO is replaced
with GRO in the notation.

Theorem 1. Let Π be a protocol that GUC-realizes FNIZK in the GRO-hybrid
model (Definition 10 where GrpoRO is replaced with GRO). Then Π must be over-
whelmingly complete (Definition 3), NIM-SHVZK (Definition 4) and NI-SSS
(Definition 5).

Proof Sketch. We proceed by cases and show that if Π is not overwhelmingly
complete and NIM-SHVZK then it does not GUC-realize FNIZK, and similarly
that if Π is not NI-SSS then it does not GUC-realize FNIZK. The full proof is
available in Appendix B.2 of the full version of the paper [37].

In the first half of the proof, we construct a reduction that uses an adversary
A that can win the NIM-SHVZK experiment from Figure 2 with non-negligible
advantage to determine whether it is living in the real- or ideal-world GUC
experiment. The reduction forwards A ’s oracle queries to and from GRO and
Prove queries to the GUC challenger, returning the proofs it receives back to A .
We note that since the reduction has no control over GRO, its view of GRO is exactly
the same as A ’s, so anything A can learn about the proofs from interacting with
GRO, the reduction can also learn. Furthermore if the GUC challenger is running
the ideal-world experiment and FNIZK outputs Fail (indicating that Simulate

failed to compute a valid proof for a statement-witness pair (x,w) ∈ R), the

UC Σ-protocols in the Global ROM 19

reduction can immediately tell it is living in the ideal world. As long as FNIZK

does not produce Fail, the reduction simulates A ’s exact view of the challenger
in the NIM-SHVZK game and succeeds in distinguishing the real- from ideal-
world GUC experiments with the same probability as A .

The second reduction uses an A that can win the NI-SSS game from Fig-
ure 3 with non-negligible advantage in order to distinguish between the GUC
experiments. This reduction proceeds similarly to the last, forwarding all of A ’s
queries to the relevant parties. The argument regarding the reduction’s view of
GRO is identical to the argument above. In this case, however, there is a nuance
to A ’s view: the regular NI–SSS challenger always produces simulated proofs,
while the reduction will only produce simulated proofs if the GUC challenger is
running the ideal-world experiment. We argue that in the case that the GUC
challenger is running the real-world experiment, A ’s view from the reduction
reduces to the regular non-interactive special soundness property given in Ap-
pendix A.6 [37], in which A can only run the regular Prove algorithm itself (and
does not have oracle access to the simulator). The reduction therefore runs two
copies of A , returning proofs from the GUC challenger to the first copy A and
generating proofs for the second copy A ′ itself using Π.Prove. If the GUC chal-
lenger is running the ideal-world experiment, the reduction is able to simulate
A ’s exact view of the NI-SSS game, and the reduction will be able to determine
that it is living in the ideal-world experiment with the same probability that
A is able to output a proof that causes FNIZK’s Extract algorithm to output
Fail. If the GUC challenger is running the real-world experiment and A ′ can
output a valid proof such that Π.Extract fails but the GUC challenger does not
fail, the reduction knows it is playing against the real-world GUC challenger,
and can therefore distinguish the experiments with the same probability that
A ′ succeeds in winning the NI-SS game.

Note that in order to check the result of Π.Extract against the GUC chal-
lenger’s verification, the reduction must be able to be able to computeΠ.Extract
itself, which it can only do because it operates using QA ,A ′ . It is the subject
of future work to attempt the reduction in the case that the Extract algorithm
requires a secret decryption key, as discussed in Section 2.2. Finally, note the
reduction would not work if Π were only SS, since the adversary in the NI-SS
game does not have well-defined behavior with respect to simulated proofs. ⊓⊔

4 GUC NIZKPoK in the Programmable Global ROM

We will now prove that any straight-line compiler (SLC) is sufficient to transform
any Σ-protocol into a GUC NIZKPoK in the the GrpoRO-hybrid model.

Theorem 2. Let ΣR be any Σ-protocol for relation R (Definition 1), GrpoRO be
the restricted programmable observable global random oracle (Definition 6), and
SLC be any straight-line compiler (Definition 2). Then the NISLE proof system
ΠSLC

R ← SLC(ΣR) GUC-realizes FNIZK in the GrpoRO-hybrid model (Definition 10).

Proof Sketch. In the ideal-world experiment, our simulator S hands the ideal
functionality FNIZK the tuple of algorithms ΠSLC

R , returns false to the corrupted

20 A. Lysyanskaya and L.N. Rosenbloom

parties’ IsProgrammed queries, and otherwise functions as a dummy adversary,
forwarding communications between the environment and the protocol.

We proceed by creating a hybrid reduction starting in the real-world exper-
iment that replaces each piece of the real-world protocol ΠSLC

R with the func-
tionality of FNIZK. First, we replace all of the environment’s and adversary’s
connections to the real-world protocol participants with the “challenger” of our
reduction, C. This difference is syntactic, so the first two hybrids are identical.

In the next hybrid, we replace C’s Prove functionality with the Prove in-
terface of FNIZK, and show the environment’s views are indistinguishable be-
tween these experiments as long as ΠSLC

R has the non-interactive multiple special
honest-verifier zero-knowledge (NIM-SHVZK) property. The reduction proceeds
as follows. First, C always returns false to any of the adversary’s IsProgrammed
queries. As long as 1) ΠSLC

R .SimProve produces valid proofs for statements x ∈
LR with overwhelming probability (which follows from overwhelming complete-
ness), and 2) the environment’s view of GrpoRO remains statistically indistinguish-
able between the hybrids (which follows from the NIM-SHVZK property and the
restriction of the IsProgrammed interface), it remains to show that the outputs
of ΠSLC

R .Prove and ΠSLC
R .SimProve are similarly indistinguishable. If the outputs

are statistically indistinguishable—i.e. if ΣR is statistical SHVZK and SLC pre-
serves this property such that ΠSLC

R is statistical NIM-SHVZK—we are done.
In the event that ΠSLC

R is only computationally NIM-SHVZK, we construct a
(tight) reduction that uses an environment that can distinguish the two hybrids
to win the NIM-SHVZK game from Figure 2. The reduction simply proceeds
by forwarding all of the environment’s RO queries to GrpoRO, all Prove queries
to the NIM-SHVZK challenger, and answering Verify queries itself by running
ΠSLC

R .Verify. If the NIM-SHVZK challenger is playing with bit b = 0 and the
proofs are according to ΠSLC

R .Prove, the reduction produces the environment’s
exact view of the first hybrid; otherwise if b = 1 and the proofs are according to
ΠSLC

R .SimProve, it produces a view of the second hybrid. Therefore, our reduc-
tion succeeds with the same probability as the hybrid-distinguisher environment,
contradicting the NIM-SHVZK property of ΠSLC

R .

In the penultimate hybrid, we replace C’s Verify functionality with the
Verify interface of FNIZK, and show the environment’s views are computationally
indistinguishable between these hybrids as long as ΠSLC

R has the non-interactive
special simulation-soundness (NI-SSS) property. Recall that theVerify function-
ality of FNIZK uses the ΠSLC

R .Extract algorithm, and fails whenever the witness
extracted from a valid (non-simulated) proof is such that R(x,w) = 0. Our re-
duction uses an environment that can distinguish the simulate-only hybrid from
the simulate-and-extract hybrid as a black-box to produce a proof that wins the
NI-SSS game from Figure 3 as follows.

For Prove queries, the reduction simulates proofs according to either hy-
brid (both use ΠSLC

R .SimProve). Any time the environment wants to verify a
proof that the reduction did not create itself, it gathers the environment’s
queries (which are freely available—recall that all of the environment’s wires
pass through C) and sends the proof along with the environment’s queries to the

UC Σ-protocols in the Global ROM 21

NI-SSS challenger. Note that since the only difference between the hybrids is
that the second hybrid can output Fail while the first never does, the only way
for the environment to distinguish between them is to produce such a failure by
outputting a valid (non-simulated) proof that causes ΠSLC

R .Extract to fail. Since
the challenger in the NI-SSS game also uses the ΠSLC

R .Extract algorithm, the
reduction succeeds with the same probability as the environment, contradict-
ing the NI-SSS property and proving that the hybrids must be computationally
indistinguishable.

The final step is to replace C with FNIZK and S. Note that since C already runs
the algorithms of FNIZK and returns false to corrupted parties’ IsProgrammed
queries, this is again only a syntactic difference, and the last two hybrids are
identical. The full proof is available in Appendix B.3 of the full version of the
paper [37]. ⊓⊔

5 GUC NIZKPoK in the Observable Global ROM

Recall from Section 1 that in order to avoid the session-localized IsProgrammed

interface, we pursue GUC NIZKPoK in the GroRO-FCRS-hybrid model, where FCRS

is the ideal CRS functionality from Section 3.3. We begin by discussing the
specific properties of FCRS’s CRS generation mechanism GenCRS, then introduce
a compiler that creates GUC NIZKPoK from any Σ-protocol and any SLC in
the GroRO-FCRS-hybrid model.

5.1 Generating a CRS that Plays Nice with Σ-protocols

In our construction, the prover convinces the verifier that either it knows a “real”
witness, or else it knows the trapdoor to the CRS. In the real world, nobody
knows the trapdoor (as long as the CRS is generated securely, for instance using
Canetti et al.’s NISC protocol and only GroRO [22]). Therefore, all proofs executed
by the regular Prove algorithm will be using real witnesses. In the ideal world,
the simulator gets to generate the CRS for each session s with a trapdoor as part
of the SimProve algorithm. SimProve is otherwise the same as Prove, except the
witness is always the trapdoor for the CRS.

In order for this OR-proof to work, Prove and SimProve must be able to
interpret the CRS as a statement x = CRSs with a corresponding trapdoor
witness w = traps, such that the pair (CRSs, traps) satisfies some binary NP
relation S. For efficiency purposes (since the simulator must run in polynomial-
time) the CRS must be efficiently computable, and for security purposes, the
trapdoor must be difficult to compute from the CRS. We call a relation that
satisfies the efficiency property samplable and a relation that satisfies the security
property hard. The intuition is similar to that of Fischlin’s one-way instance
generator [31].

Definition 12 (Samplable-Hard Relation). A binary NP relation S is samp-
lable-hard with respect to a security parameter λ if it has the following properties.

22 A. Lysyanskaya and L.N. Rosenbloom

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w)← κS(1

λ) the probability that an efficient
adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w)← κS(1
λ), w′ ← A (1λ, x, κS) : (x,w

′) ∈ R] ≤ negl(λ).

Finally, we require that the relation S underlying the CRS has an efficient
corresponding Σ-protocol ΣS . Our construction will instantiate an OR-protocol
ΣR∨S based on ΣR and ΣS for the relation R ∨ S.

Putting the pieces together, the CRS generation mechanism GenCRS for FCRS

in our construction fixes S as a samplable-hard relation with corresponding
efficient Σ-protocol ΣS , and consists of running (CRSs, traps) ← κS(1

λ). We
combine this FCRS with the restricted observable global RO GroRO to instantiate
the GroRO-FCRS-hybrid model, and are now ready to introduce our GUC compiler.

5.2 GUC Compiler

We propose a compiler that uses any SLC in conjunction with the OR-protocol
discussed in Sections 2.3 and 5.1 to transform any Σ-protocol into a GUC
NIZKPoK in the GroRO-FCRS-hybrid model. The compiler works as follows.

First, FCRS is fixed as described in Section 5.1. The real-world Setup function-
ality runs the OR-protocol ΣR∨S for relation R ∨ S through any SLC to obtain
ΠSLC

R∨S, and returns the same setup parameters as ΠSLC
R∨S.

For each session s, provers in the real world query the CRS ideal functionality
Fs
CRS to obtain CRSs. Each time a real prover with SID s needs to create a proof of

a statement x using witness w, it obtains CRSs and sets the compound statement
X = (x, CRSs). It then generates a proof Π using ΠSLC

R∨S.Prove(X,W), where
W = (w, 0) to indicate it knows a witness for the first statement x. In order to
verify the proof, a verifier first obtains CRSs from Fs

CRS, then checks whether it is
the correct CRS for session s. If it is, it the verifier outputs the result of running
ΠSLC

R∨S.Verify(X,Π).
In the ideal world, the SimSetup algorithm begins by generating an empty

list in which to store the simulated CRS for each session, denoted simcrs. When
it is time to prove a statement on behalf of an honest (dummy) party in session
s, the compiler’s SimProve algorithm generates (CRSs, traps) ← κS(1

λ) (if one
has not been generated already), and computes the proof using ΠSLC

R∨S.Prove, this
time using traps as the witness.

Given a non-simulated proof and a list Qs
P∗ of adversarial provers’ queries for

session s, the compiler’s Extract algorithm runs ΠSLC
R∨S.Extract using Qs

P∗ and
tests the compound witnessW = (w0, w1). If RR∨S(X,W) = 1 but R(x0, w0) = 0,
Extract outputs Fail. Otherwise, it outputs W .

Note that this formulation diverges from the general intuition of an OR-
protocol extractor (see Appendix A.8 of the full version of the paper [37]) in

UC Σ-protocols in the Global ROM 23

that we require any valid witness W to imply that R(x0, w0) = 1, not that
either R(x0, w0) = 1 or S(x1, w1) = 1. This is because we need to account for
the fact that FNIZK will never invoke the Extract algorithm on proofs it has
generated using SimProve, and nobody else should ever have access to the CRS
trapdoor. If FNIZK gets a proof that verifies because S(CRSs, w1) = 1, it must be
the case that an adversarial prover has acquired the trapdoor, and Extract forms
its output in such a way that FNIZK will output Fail. In our proof of security,
we will bound the probability of this failure by constructing a reduction to the
hardness property of S.

We give a formal construction of the candidate compiler below, and prove in
Section 5.3 that it creates GUC NIZKPoK in the GroRO-FCRS-hybrid model.

Definition 13 (Candidate Compiler). Let ΣR be any Σ-protocol for relation
R (Definition 1), GroRO be the restricted observable global random oracle (Defi-
nition 6), ΣS be an efficient Σ-protocol for samplable-hard relation S (Defini-
tion 12), FCRS be the ideal CRS functionality (Definition 9) where GenCRS := κS,
and SLC be any straight-line compiler (Definition 2). Then our candidate com-
piler guc is an algorithm that, on input ΣR and SLC, produces a tuple of algo-
rithms Πguc

R∨S = (SetupGroRO , ProveGroRO,FCRS , VerifyGroRO,FCRS , SimSetup, SimProve,
Extract), defined in Figure 4.

5.3 Realizing FNIZK in the GRO-FCRS-hybrid Model

We now prove that the algorithm guc from Definition 13 compiles anyΣ-protocol
into a GUC NIZKPoK in the GRO-FCRS-hybrid model.

Theorem 3. Let ΣR be any Σ-protocol for relation R (Definition 1), GroRO be
the restricted observable global random oracle (Definition 6), ΣS be an efficient
Σ-protocol for samplable-hard relation S (Definition 12), FCRS be the ideal CRS
functionality (Definition 9) where GenCRS := κS, SLC be any straight-line com-
piler (Definition 2), and guc be our candidate compiler (Definition 13). Then
Πguc

R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK in the GroRO-FCRS-hybrid model (Defi-
nition 11).

Proof Sketch. The proof proceeds similarly to that of Theorem 2 in Section 4,
where we construct a sequence of hybrids that transition between the real- and
ideal-world GUC experiments. In the ideal-world experiment, our simulator S
hands the ideal functionality FNIZK the tuple of algorithms Π

guc
R∨S and otherwise

functions as a dummy adversary, forwarding communications between the en-
vironment and the protocol. Throughout the proof when we say an argument
is identical to an argument from the proof of Theorem 2, we mean identical
up to the handling of the IsProgrammed interface, which does not exist in the
GroRO-FCRS-hybrid model.

The first hybrid is identical to the first hybrid in the proof of Theorem 2: we
replace all of the real-world protocol participants, GroRO, and now FCRS with a
challenger C who controls all of the wires in and out of the environment and the

24 A. Lysyanskaya and L.N. Rosenbloom

guc Compiler Parameters

1λ, R,ΣR, S,ΣS , SLC,GroRO,FCRS with GenCRS := (x,w)← κS(1λ)

Πguc
R∨S.Setup

GRO(1λ)

1 : ppm← ΠSLC
R∨S.Setup

GRO(1λ)

2 : return ppm

Πguc
R∨S.SimSetup(1λ)

1 : ppm← ΠSLC
R∨S.SimSetup(1λ)

2 : simcrs← ⊥
3 : return (ppm, simcrs)

Πguc
R∨S.Prove

GRO,FCRS(s, x, w)

1 : if R(x,w) ̸= 1 :

2 : return ⊥
3 : CRSs ← Fs

CRS.Query(s)

4 : X ← (x, CRSs)

5 : W ← (w, 0)

6 : Φ← ΠSLC
R∨S.Prove

GRO(X,W)

7 : return (s,X, Φ)

Πguc
R∨S.SimProve(simcrs, s, x, w)

1 : if R(x,w) ̸= 1 :

2 : return ⊥
3 : if ∄(CRSs, traps) s.t.

4 : (s, CRSs, traps) ∈ simcrs :

5 : (CRSs, traps)← κS(1λ)

6 : simcrs.append(s, CRSs, traps)

7 : X ← (x, CRSs)

8 : W ← (traps, 1)

9 : Φ← ΠSLC
R∨S.Prove

GRO(X,W)

10 : return (s,X, Φ, simcrs)

Πguc
R∨S.Verify

GRO,FCRS(s,X, Φ)

1 : parse X = (x, CRSs)

2 : CRS
′
s ← FCRS.Query(s)

3 : if CRSs = CRS
′
s∧

4 : ΠSLC
R∨S.Verify

GRO(X,Φ) = 1 :

5 : return 1

6 : else :

7 : return 0

Πguc
R∨S.Extract(X,Φ,QP∗)

1 : W ← ΠSLC
R∨S.Extract(X,Φ,QP∗)

2 : parse X = (x, CRS)

3 : parse W = (w, trap)

4 : if RR∨S(X,W) = 1 ∧R(x,w) = 0 :

5 : return Fail

6 : else :

7 : return W

Fig. 4. Compiler Πguc
R∨S ← guc(ΣR, SLC) for ΣR in the GroRO-FCRS-hybrid Model

UC Σ-protocols in the Global ROM 25

adversary, noting this step permits C to program GroRO.2 The second hybrid is also
identical to the one in the proof of Theorem 2 above, except instead of jumping
straight to replacing C’s real-world Prove algorithm with the Prove interface
of the ideal functionality, which will use Πguc

R∨S.SimSetup and Πguc
R∨S.SimProve, we

instead replace Prove with ΠSLC
R∨S.SimSetup and ΠSLC

R∨S.SimProve. This step allows
us to postpone giving the reduction access to the CRS trapdoors, since we will
need to ensure that any adversarially-created proofs in the next hybrid will
only avoid extraction if the adversary is somehow able to generate the trapdoor
itself. By the arguments used in the proof of Theorem 2, we can reduce the
indistinguishability of the first two hybrids to the NIM-SHVZK property ofΠSLC

R∨S.

The third hybrid is identical to the third hybrid in the proof of Theorem 2 in
that we replace C’s Verify procedure with FNIZK’s Verify interface, which uses
Πguc

R∨S.Extract. The proof of indistinguishability of the second and third hybrids
will differ slightly due to the new failure condition in the Πguc

R∨S.Extract algo-
rithm: namely, the clause that says if the overall witness W = (w, traps) is a
valid witness for the statement X = (x, CRSs) but w is not a valid witness for x,
output Fail. We can limit the probability of this failure by constructing a reduc-
tion to the hardness property of the samplable-hard relation: if the environment
is able to produce a proof that meets the failure condition, the reduction can
produce a tuple (CRSs, traps) given only CRSs ← κS(1

λ). Since the probability
of generating such a tuple is negligible by the hardness property of S, the proba-
bility of such a failure is similarly negligible. The only other way for the environ-
ment to distinguish the hybrids is to produce a valid, non-extractable proof of a
statement X—i.e. such that RR∨S(X,W) = 0 for W ← ΠSLC

R∨S.Extract(X,W). In
this case, C can use this proof to contradict the NI-SSS (or NI-SS) property of
ΠSLC

R∨S in the exact same way as the parallel reduction in the proof of Theorem 2.

Finally, the penultimate hybrid replaces ΠSLC
R∨S.SimSetup and ΠSLC

R∨S.SimProve
with the candidate compiler’s algorithms Πguc

R∨S.SimSetup and Πguc
R∨S.SimProve.

This step effectively reverts the proofs back to the real-world Prove mechanism,
except C is using trapdoors rather than real witnesses. If ΠSLC

R∨S is statistical
NIM-SHVZK, then there is automatically negligible difference in view between
the third and penultimate hybrids. If, however, there is computational wiggle
room between the proofs in the two experiments, and the distinguisher envi-
ronment now has access to the extractor, we must ensure that the only way
the environment can distinguish the hybrids is by the contents of the proofs
(as opposed to somehow using its view of the new proofs, which use the CRS
trapdoor, to cause the extractor to fail). We argue here that because the straight-
line extractor works exclusively based on statements, proofs, and oracle queries
that the environment made itself, anything the environment can learn from the
extractor it could have learned on its own. Therefore, it cannot have possibly
learned anything new about the hybrids from the extractor, and the reduction
to computational NIM-SHVZK proceeds the same as before.

2 As discussed by Camenish et al. [10], the challenger in such a hybrid experiment can
make use of techniques like programming and rewinding that are otherwise “illegal”
for the simulator to employ in the GUC model.

26 A. Lysyanskaya and L.N. Rosenbloom

The last hybrid replaces C with FNIZK and S—this is again a syntactic rear-
rangement, and is functionally identical to the ideal-world experiment. The full
version of this proof is available in Appendix B.4 of the full version [37]. ⊓⊔

6 Constructions via the Randomized Fischlin Transform

We demonstrated in the last two sections that any straight-line compiler (SLC)
that satisfies Definition 2 is sufficient to transform any Σ-protocol ΣR into a
GUC NIZKPoK in the GrpoRO-hybrid model, and sufficient in conjunction with
our OR-protocol compiler to complete the transformation in the GroRO-FCRS-
hybrid model. In this section, we will show that the randomized Fischlin trans-
form [31,35] meets our definition of an SLC for a broad class of Σ-protocols, and
therefore enables us to practically instantiate both sets of GUC NIZKPoK. The
efficiency of the resulting proof systems reduce to the efficiency of the random-
ized Fischlin transform, which requires only a linear increase in the size of the
proofs for small multiplicative and additive constants.

In this section, we review the randomized Fischlin transform rFis and show
that it meets our definition of an SLC. We then apply rFis to efficiently realize
GUC NIZKPoK in the GrpoRO- and GroRO-FCRS-hybrid models, respectively.

6.1 The Randomized Fischlin Transform, Revisited

Recall from Section 1 that the randomized Fischlin transform due to Kondi and
shelat [35] is a version of the Fischlin transform [31,30] in which the challenges
are selected uniformly at random from the challenge space. In Fischlin’s origi-
nal construction, the Σ-protocols under transformation need a property called
quasi-unique responses, which Kondi and shelat demonstrate precludes the trans-
formation of OR-protocols. In order to use the randomized Fischlin transform on
our OR-protocol construction in a way that preserves security, the OR-protocol
must have the (more general) strong special soundness property. We consolidate
the two properties below, and a brief discussion of the necessity of strong special
soundness in Appendix A.10 of the full version of the paper [37].

Definition 14 (Required Properties for rFis). A Σ-protocol ΣR for rela-
tion R (Definition 1) has required properties for the randomized Fischlin trans-
form rFis if it has the quasi-unique responses property (Definition 25 in Ap-
pendix A.10 [37]) or the strong special soundness property (Definition 26 in
Appendix A.10 [37]).

In the full version of his paper, Fischlin proves that his transform over
Σ-protocols with quasi-unique responses creates a protocol that is both NIM-
SHVZK and NI-SSS in the standard ROM [30]. Kondi and shelat show that the
randomized Fischlin transform over a Σ-protocol with the more general strong
special soundness property creates a protocol that is standard (non-multi) NI-
SHVZK and standard (non-simulation) strong NI-SS [35]. Therefore, it remains
to show that the NI multi -SHVZK and strong special simulation soundness

UC Σ-protocols in the Global ROM 27

properties are similarly preserved under the randomized transform for strong
special-sound Σ-protocols. Our proof of the theorem below draws heavily on
arguments from Fischlin [30] and Kondi and shelat [35]; the only novelty is in
the (nearly verbatim) application of Fischlin’s arguments for NIM-SHVZK and
NI-SSS to the randomized transform. We therefore defer the technical details of
the randomized Fischlin transform to Definition 29 in Appendix A.12, and the
full proof to Appendix B.5 of the full version of the paper [37].

Theorem 4. Let ΣR be any Σ-protocol for relation R (Definition 1) with the
required properties for rFis (Definition 14). Then the randomized Fischlin trans-
form rFis (Definition 29 in Appendix A.12 [37]) is a straight-line compiler for
ΣR (Definition 2).

Proof sketch. Recall that a straight-line compiler according to our definition
must create protocols that are NIM-SHVZK and NIM-SSS. Kondi and shelat
prove in Theorem 6.4 [35] that the tuple of algorithms ΠrFis

R (denoted πF−rand
NIZK

in their paper) produced by running the randomized Fischlin transform on any
strong special sound Σ-protocol ΣR for relation R is a NISLE ZKPoK for LR

in the standard random-oracle model. Since Kondi and shelat use the standard
definitions of SHVZK and strong special soundness (Definitions 19 and 14 in
the full version, respectively [37]), it remains to show that ΠrFis

R satisfies NIM-
SHVZK and NIM-SSS.

Fischlin shows in the proof of Theorem 3 [30] that his original transform sat-
isfies the NIM-SHVZK and NI-SSS properties. Since the strong special soundness
property replaces the quasi-unique responses property and the challenges in the
randomized version are identically distributed to those in the original version,
the proof of NIM-SHVZK and NI-SSS for the randomized Fischlin transform is
almost identical to Fischlin’s proof of Theorem 3. We discuss the minor differ-
ences in the full proof (Appendix B.5 [37]). ⊓⊔

6.2 Efficient, GUC NIZKPoK in the GrpoRO-hybrid Model

We demonstrated in Section 4 that any SLC is sufficient to compile any Σ-
protocol into a GUC NIZKPoK in the GrpoRO-hybrid model, and argued in Sec-
tion 6.1 above that the transform rFis is an SLC. Therefore, given any Σ-
protocol ΣR that meets the requirements for rFis, ΠrFis

R ← rFis(ΣR) is suffi-
cient to create GUC NIZKPoK in the GrpoRO-hybrid model.

Corollary 1. Let ΣR be any Σ-protocol for a relation R (Definition 1) with the
required properties for rFis (Definition 14) and rFis be the randomized Fischlin
transform (Definition 29 in Appendix A.12 [37]). Then ΠSLC

R ← rFis(ΣR) GUC-
realizes FNIZK in the GrpoRO-hybrid model (Definition 10).

Proof. The corollary follows directly from Theorems 2 and 4. ⊓⊔

28 A. Lysyanskaya and L.N. Rosenbloom

6.3 Efficient, GUC NIZKPoK in the GroRO-FCRS-hybrid Model

Our construction for the GroRO-FCRS-hybrid model requires two layered com-
pilers: any SLC, and our OR-protocol compiler guc from Definition 13. We
proved in Theorem 3 that Πguc

R∨S ← guc(ΣR, SLC) GUC-realizes FNIZK for any Σ-
protocol ΣR, and again in Section 6.1 that rFis is an SLC. Therefore, Πguc

R∨S ←
guc(ΣR, rFis) creates GUC NIZKPoK in the GroRO-FCRS-hybrid model.

Corollary 2. Let ΣR be any Σ-protocol for a relation R (Definitions 1) with
the required properties for rFis (Definition 14), rFis be the randomized Fis-
chlin transform (Definition 29 in Appendix A.12 [37]), and guc be the candidate
compiler from Definition 13. Then Πguc

R∨S ← guc(ΣR, rFis) GUC-realizes FNIZK

in the GroRO-FCRS-hybrid model (Definition 11).

Proof. The corollary follows directly from Theorems 3 and 4. ⊓⊔

Acknowledgements

Many thanks to Yashvanth Kondi and abhi shelat for crucial security analysis
of our original OR-protocol construction, and to Jack Doerner for insightful
discussions about FNIZK that inspired our results in Section 3.5. This research
was supported by NSF grant 2154170, and by grants from Meta.

References

1. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot, editor,
Proceedings of the 17th USENIX Security Symposium, pages 335–348, 2008.

2. Giuseppe Ateniese, Jan Camenisch, Marc Joye, and Gene Tsudik. A practical
and provably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, CRYPTO 2000, volume 1880, pages 255–270, 2000.

3. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73, 1993.

4. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana
Raykova. On the (in) security of ros. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 33–53. Springer, 2021.

5. Manuel Blum, Alfredo De Santis, Silvio Micali, and Guiseppe Persiano. Non-
interactive zero-knowledge. SIAM Journal of Computing, 20(6):1084–1118, 1991.

6. Fabrice Boudot. Efficient proofs that a committed number lies in an interval. In
EUROCRYPT ’00, pages 431–444, 2000.

7. Sean Bowe, Ariel Gabizon, and Ian Miers. Scalable multi-party computation for
zk-snark parameters in the random beacon model. ePrint Archive, 2017.

8. Stefan Brands. Rethinking Public Key Infrastructure and Digital Certificates—
Building in Privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands, 1999.

9. Jan Camenisch and Ivan Damg̊ard. Verifiable encryption, group encryption, and
their applications to separable group signatures and signature sharing schemes. In
International Conference on the Theory and Application of Cryptology and Infor-
mation Security, pages 331–345. Springer, 2000.

UC Σ-protocols in the Global ROM 29

10. Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gre-
gory Neven. The wonderful world of global random oracles. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
pages 280–312. Springer, 2018.

11. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyanskaya, and
Mira Meyerovich. How to win the clonewars: efficient periodic n-times anonymous
authentication. pages 201–210. ACM, 2006.

12. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact E-cash. In
Ronald Cramer, editor, Advances in Cryptology — Eurocrypt 2005, volume 3494,
pages 302–321. Springer, 2005.

13. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, EUROCRYPT 2001, volume 2045, pages 93–118. Springer Verlag, 2001.

14. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols.
In SCN 2002, volume 2576, pages 268–289, 2003.

15. Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number n
is the product of two safe primes. In EUROCRYPT ’99, pages 107–122, 1999.

16. Jan Camenisch and Markus Michels. Separability and efficiency for generic group
signature schemes. In CRYPTO ’99, volume 1666, pages 413–430, 1999.

17. Jan Camenisch and Victor Shoup. Practical verifiable encryption and decryption
of discrete logarithms. In CRYPTO ’03, volume 2729, pages 126–144, 2003.

18. Jan Camenisch and Markus Stadler. Efficient group signature schemes for large
groups. In CRYPTO ’97, pages 410–424. Springer Verlag, 1997.

19. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

20. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Theory of Cryptography Conference, pages
61–85. Springer, 2007.

21. Ran Canetti and Marc Fischlin. Universally composable commitments. In Annual
International Cryptology Conference, pages 19–40. Springer, 2001.

22. Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Practical uc security with
a global random oracle. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 597–608, 2014.

23. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In Birgit Pfitzmann, editor, EURO-
CRYPT 2001, volume 2045, pages 280–300. Springer Verlag, 2001.

24. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Annual International
Cryptology Conference, pages 174–187. Springer, 1994.

25. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized com-
plexity of zero-knowledge proofs revisited: Achieving linear soundness slack. In
Advances in Cryptology - EUROCRYPT 2017, volume 10210 of Lecture Notes in
Computer Science, pages 479–500, 2017.

26. Ivan Damg̊ard. On σ-protocols. University of Aarhus, Department of Computer
Science, 2002.

27. Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gregory
Neven, and Igors Stepanovs. On the security of two-round multi-signatures. In
2019 IEEE Symposium on Security and Privacy, pages 1084–1101. IEEE, 2019.

28. Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple noninteractive zero knowledge
proofs under general assumptions. 29(1):1–28, 1999.

30 A. Lysyanskaya and L.N. Rosenbloom

29. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identi-
fication and signature problems. In Conference on the theory and application of
cryptographic techniques, pages 186–194. Springer, 1986.

30. Marc Fischlin. Communication-efficient non-interactive proofs of knowl-
edge with online extractors. 2005. Manuscript. Available from
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/

publications_1/fischlinonline-extractor2005.pdf.
31. Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with

online extractors. In Annual International Cryptology Conference, pages 152–168.
Springer, 2005.

32. Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical zero knowledge protocols to
prove modular polynomial relations. In CRYPTO ’97, pages 16–30, 1997.

33. Eu-Jin Goh and Stanis law Jarecki. A signature scheme as secure as the diffie-
hellman problem. In International Conference on the Theory and Applications of
Cryptographic Techniques, pages 401–415. Springer, 2003.

34. Shuichi Katsumata. A new simple technique to bootstrap various lattice zero-
knowledge proofs to qrom secure nizks. In Annual International Cryptology Con-
ference, pages 580–610. Springer, 2021.

35. Yashvanth Kondi and abhi shelat. Improved straight-line extraction in the random
oracle model with applications to signature aggregation. Cryptology ePrint Archive,
2022.

36. Helger Lipmaa. Statistical zero-knowledge proofs from diophantine equations.
Manuscript. Available from http://eprint.iacr.org/2001/086, 2001.

37. Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable sigma-
protocols in the global random-oracle model. Cryptology ePrint Archive, 2022.

38. Vadim Lyubashevsky. Lattice signatures without trapdoors. In Advances in Cryp-
tology - EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science,
pages 738–755. Springer, 2012.

39. Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: simple two-round schnorr
multi-signatures. In Annual International Cryptology Conference, pages 189–221.
Springer, 2021.

40. Rafael Pass. On deniability in the common reference string and random oracle
model. In Annual International Cryptology Conference, pages 316–337, 2003.

41. Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable
secret sharing. In CRYPTO ’92, volume 576, pages 129–140, 1992.

42. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano,
and Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO, volume
2139 of Lecture Notes in Computer Science, pages 566–598. Springer, 2001.

43. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum random
oracle model. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 755–784. Springer, 2015.

44. David Wagner. A generalized birthday problem. In Annual International Cryptol-
ogy Conference, pages 288–304. Springer, 2002.

45. John Watrous. Zero-knowledge against quantum attacks. SIAM Journal on Com-
puting, 39(1):25–58, 2009.

46. Douglas Wikström. A commitment-consistent proof of a shuffle. In Colin Boyd
and Juan Manuel González Nieto, editors, ACISP, pages 407–421. Springer, 2009.

http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinonline-extractor2005.pdf
http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinonline-extractor2005.pdf
http://eprint.iacr.org/2001/086

	Universally Composable -protocols in the Global Random-Oracle Model

