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Overview of This Talk

e Diophantine complexity: definitions

e Noncryptographic result: bounded arithmetic is in PD

e Cryptographic applications:
* Diophantine HVSZK arguments

* “Outsourcing” model

This paper has too many results to even mention all of them in the presentation!
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Hilbert’'s 10th Problem

e Hilbert, 1900: find an algorithm that, given a polynomial f, returns its
integral solutions

e Solved negatively by Davis, Putnam, Robinson and Matiyasevich
(1952...1970) by showing that for any recursively enumerable set
S C Z" there exists a representing polynomial Rg € Z[ X, Y], s.t.

peS <— (GweZ™)Rg(u;w) =0] .

e Set S is called Diophantine if it has such a representing polynomial.
Thus every r.e. set is Diophantine.
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Example: Primality

Jones etc:

e Constructed a representing polynomial Rp,;mes € Z[X, Y], S.t.

1 € Primes <= (Jw € Z%°)[Rg(u; w) = 0] .

e However, some of the witnesses are either hard to compute or plainly
too long
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Diophantine Theory: Nice But Nonpractical

e Positive: there are representing polynomials for any r.e. set

* There is also a “universal” polynomial (similar to the universal TM)

e Negative: the witnesses have nonpractical length or are difficult to
compute

e A really nice area of mathematics (full of real gems)...

e ...without almost any practical applications
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Adleman-Manders’s Conjecture: Step to Practicality

e Adleman-Manders 1976: Define the complexity class D as follows:
S € D iff there exists a representing polynomial Rg € Z[ X, Y], s.t.

peS —= (BweZ)Rs(p;w) =0 A |w| = poly(ju])] .

e Clearly, a much more “applicable” (and restricted class) than r.e. (See
[AM76] for possible applications.)

e Adleman-Manders conjecture (76): D = NP

e A conjecture that is believed to be true but not much is known about
the power of D
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Let's Get Really Practical

e Assume that there is an efficient witness algorithm ‘3 ¢, so that

peS=NRg(u Ps(u)) =0,
and

pg S = (=3w)[Re(u;w) = 0 A |w| = poly(|ul)] .
Then we say that S € PD

e Interested in the case when |w| is sub-quadratic in ||
e Which languages in PD are guaranteed to have

PBs(w)| = |p[2—oD)?
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More Background: Bounded Arithmetic

e Bounded arithmetic is a first-order theory of the natural numbers with
non-logical symbols

0,0,+,-, <, =, [z/2], |z|, MSP(z, 1), 1 .

e Here, o(z) = 2+ 1,z =y = max(z — y,0), 2| = [loga(z 4 1)},
MSP(z,i) = |z/2!], zfy = 2/*[1¥]

e \We assume that the underlying domain is Z (and not N)

e Let L, be the set of terms of the quantifier-free bounded arithmetic
(over Z)
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More Background: Bounded Arithmetic

e Some predicates in bounded arithmetic: w1 > pol,

[ is a perfect square],  [uo = bit(py,2)],  [n1 = max(uz, u3)],
[111 is not a power of 2], ...

e A relatively small set of languages that contains however sufficiently
many arithmetic and number-theoretic predicates

e Pollet 2003: bounded arithmetic is in D
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Main Result: Bounded Arithmetic is in PD

Theorem. Bounded arithmetic is in PD, with |w| = |p|20(1).

Proof. By induction on length of structure of the term. For example,

(o = |p1/2]] = [(p2 = 2pu1) V (2 = 2p1 + 1)] .

The proof follows from the two nontrivial theorems that construct represent-
ing polynomials (and witness algorithms) for nonnegativity and exponential
relationship.
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Efficient Witness Algorithm for Nonnegativity

e Lagrange 1770: u > O iff u = w% -+ w% -+ w% + w% for w;, € Z
e Thus Ny € D with |w| = ©(|ul|)

e Rabin, Shallit 1986: corresponding w; can be found in probabilistic
polynomial time

e Thus Ng € PD

e This paper: slight improvement over Rabin-Shallit (a slightly faster al-
gorithm for computing w;)
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Exponential Relation is in PD

e Matiyasevich 1970: e.r. has representing polynomial

e Adleman-Manders 1976: e.r.isin PD

e Current paper: more efficient representing polynomial for the expo-
nential relation
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Theorem Assume p1 > 1, u3 > 0 and pupo > 2. The exponential relation
[uz = p’i@] belongs to PD. More precisely, let E(uq, uo, u3) be the next
equation:

[((Fw1, wo, w3, wa, ws, we) (Fpwr, wg)]

[(wo =wipy — pT — 1) A (wp — pz — 1 > 0)A (E1 - E2)
(13 — (1 —w1)wy —wg = wowz)) A (w1 —2 > 0)A (E3 — E4)
(w1 —2)% = (u1 + 2)(w1 — 2)ws — wg = 1)A (E5)

(w1 —2=pp t+we(pr +2)) A (w7 >0) A (w7 <wg)\ (E6— EB)

(w7 — wiwrwg — wg = 1) A (w7 = po +wa(wy —2)] , (B9 — £10)
where ‘dy” signifies a bounded quantifier in the following sense: if
pu3 = ph? then E(u1, po, p3) is true with [w| = ©(p3log 1) = o(|ul?).
On the other hand, if u3 # u‘fz then either E(u1, o, u3) is false, or it is

true but the intermediate witnesses w7 and wg have length Q2(u3log p3),
which is equal to Q(2I#! . |11|) in the worst case.

16 additional witnesses are hidden in 4 inequalities
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Integer commitment schemes

e Integer commitment scheme [FO97,DF02]: a function C'(u; p), p € Z,
that has the next two properties:

% Statistically hiding: for any u1, uos € 7Z, the distributions C'(u1; -)
and C'(u»o; -) are statistically close

* Computationally binding: for any 1, it is hard to find an integer
po 7 p1, p1 and po, such that C'(uq; p1) = C(u2; p2)

e A nonstandard primitive that has many applications. ..
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Diophantine SZK arguments

e Goal: show that a committed integer tuple © = (u1, ..., un) belongs
to set S, where S belongs to bounded arithmetic

e Method: Let C be an integer commitment scheme. Then
1. Apply Bg(p) to find w = (w1, ...,wm), s.t. Rg(u; w) =0
2. Commit to w;, and send the commitments to the verifier

3. Argue by using the methodology of Fujisaki and Okamoto that
Rg(p;w) =0

e Results in practical statistical ZK arguments for all languages in
bounded arithmetic
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Example: Nonnegativity

e Goal: for a committed integer 1, argue that 1 > 0
1. Find (w1,...,wg) St. Y w? =p
2. Commit to w; and send commitments to the verifier

3. Argue in SZK that p = Y w?

e This argument system is slightly shorter than Boudot's (Eurocrypt
2000), conceptually much simpler and perfectly complete

e ZK argument for nonnegativity has many cryptographic applications
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Outsourcing model

e n individuals, 1 interested third party .S, one established authority A.

e Individual 7 has input ¢;, her financial or social choice (vote, bid, ...).

e Security: S gets to know vy := final(eq, ..., en) for some destination
function final.

e Privacy: S will not get any information that cannot be computed from
y alone. Individuals will not get any new information at all. A can get
to know the vector (e1,...,en).
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Why makes sense”?

e In voting, it is better to have one tallier: in real life, very hard to have a
multiple of completely independent talliers.

e Same in auctions: there is a single seller, all servers are operated by
him; why should we trust m machines controlled by the same person
more than just one machine, controlled by him?

e OTOH: A can be an established authority who has a reputation to take
care off; often S is an occassional party.

e It is also possible to design the system so that we can avoid the limita-
tions of the two-party and multi-party computations, efficiently
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Outsourcing model: picture

1 SendE 4 (enc(e;); ;)

2 SendHi Ea(enc(er); ;)

4 Sehd acknowledgment 3 Decrypt and decode choices, sémdl(e1,...,e,) t0 S

Add SZK correctness arguments farc() andfinal
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Detalls

e There exist enc(-) in bounded arithmetic and dec(-), such that
dec(>_enc(e;)) = (eq,...,epn) for all e; from [0,V — 1] and that the
corresponding SZK argument is efficient

e Common choice: enc(e;) = V¢; dec(b) returns the vector of V-radix
positions of b

e Our proposal: use enc(e;) = Zy (e;), where Zy (e;) is an element of
a certain Lucas sequence. Results in more efficient SZK arguments
than enc(e;) = V¢

e Many cryptographic protocols (voting, auctions, voting with minimal
disclosure, ...) can be implemented by using final that belong to
bounded arithmetic
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Conclusions

e Showed that most of the necessary arguements in this model can be
obtained efficiently by using integer commitment schemes

e New algorithm for Lagrange representation, new polynomial for the
exponential relationship

e Argued for the outsourcing model for cryptographic protocols
* No threshold trust, efficient arguments of knowledge

* More efficient versions of [DJO1] voting protocol and [LANO2] auc-
tion protocol

e Proposed to use Lucas sequences in the SZK arguments
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Questions?
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