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Our goal

• Power analysis techniques (SPA) are very 

useful tools to detect some « events »

• Lattice reduction algorithm (LLL) is a very 

useful tool for « classical cryptanalysts »

• this paper : an example of a combination 

of these techniques applied on Esign
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Esign

• Private key: p and q two primes of k-bit 
length

• Public key: N = p2q and e > 4
• Signature scheme based on the Approximate 

e-th Root problem: given a modulus N=p2q, 
an exponent e larger than 4 and y ∈ Z*N, find 
x ∈ Z*N such that xe ∈ [ y,y + 22k-1 ]
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Esign description

Signature of a message M
– H(M) hash of M on k-1 bits, y = 0 || H(M) || 02k

– r randomly chosen in Z*pq

– z = y – r e mod N
– w0 = z / pq
– w1 = w0 pq-z, if w1 > 22k-1 then choose another r
– u = w0 ( er e-1 )-1 mod p
– s = r + upq
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Lattice definition

Lattice = set of all the linear combinations, with 
integer coefficients, of basis vectors V1,…Vd

L = ∑i=1
d ciVi  s.t. (c1,c2,…ci,…,cd) ∈ Zd
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Lattice reduction
• Lattice reduction = computation of a basis 

that generates the same lattice and such that
– the vectors of the basis are « short »

– the vectors of the basis are « almost 
orthogonal »

• similar to Gram-Schmidt reduction but using 
integer coefficients
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LLL
Lattice reduction algorithm : LLL

(Lenstra, Lenstra, Lovasz, 1982)

→ Use of LLL to find a short vector in a 
lattice

→ If we know that a lattice has an 
« abnormally short vector », we can use 
LLL as a « short vector oracle » 
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Basic idea

• Suppose we have access to an oracle Opq 
s.t.:
– input : s ∈ ZN, for N = p2q
– output : MSBb ( s mod pq )

• Such oracle allows to get numbers of the 
form s = r + u pq where |r| < pq / 2b

• Lattice reduction allows to recover p
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First Attack
• Let d integers si = ri + ui pq for 1 ≤ i ≤ d

where ri < pq / 2b and ri and ui are unknown
• Let L be the lattice spanned by the rows of 

the following matrix : N
0

0

s1

0
N

0

s2

0
0

0

N
sd

0
0

N

si

Each vector is of 
norm N, except the 
(d+1)th of norm 
approximatively 
√ d × N
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First Attack
For 1 ≤ i ≤ d, p × si  = p × ri + ui × N. Thus:

(-u1,-u2,…,-ui,…,-ud,-p) ×

= (p × r1,p × r2,…,p × ri,…,p × rd) = V

N
0

0

s1

0
N

0

s2

0
0

0

N
sd

0
0

N

si

Thus V is a vector of the lattice
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First attack

V = (p × r1, p × r2 ,…, p × ri ,…, p × rd )
• If b is large enough, the vector V is of small 

norm compared to the original vectors of the 
matrix. Indeed,
– p × ri < N / 2b

– ||v|| < √ d × N / 2b

⇒ we hope LLL will return V

• We can get the factor p with a simple gcd of 
the coefficients of V
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Efficiency of the attack

• This basic attack requires the knowledge 
of about the 24 MSBs for each random 
value used for 64 Esign signatures and a 
1152-bit modulus

• We improve the efficiency of the attack by 
using another lattice. Only 8 bits for 57 
signatures are needed
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Improvement of the attack

Basic idea: recovering the value u of a 
signature s = r + upq

From this value, we get
s / u = r / u + pq = pq + α

where α is a k-bit value
Thus, the bits of s / u and pq collide except on 

their k LSBs
Computing N / ( pq + α ) gives p
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Improvement of the attack

Finding small linear combinations of the si
using the LLL algorithm on the lattice 
spanned by the rows of the following 
matrix, for K of about N2/3/ε
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Improvement of the attack
How to recover the uis ?

• Each new vector basis can be written as 
(∑ ci si , Kc1, ... , Kcd)

• Due to the properties of the LLL algorithm, 
∑cisi is about Kci which is “small”

• Thus ∑ci si = ∑ci ri + ∑ci ui pq is also “small”
and ∑ci ui = 0

• Finally LLL gives us a system of equations 
in the ui variables
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Results on Esign

• Given an oracle that on input s returns the 
b MSB of (s mod pq), where 

b ≥ n / (3 × (d-1)) + log d + 1
then we can factor N = p2q from d 
independent numbers s ∈ ZN

• For Esign, if the b MSBs of the random r 
are known, we get an integer s’ = r’ + upq
where r’ < pq / 2b and s’ can be used to 
build the lattice
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Practical experiments

• For a 1152-bit modulus ( n = 1152 ) and 
57 signatures ( d = 57 ), b = 11 bits are 
needed

• Experimentally, b = 8 bits are enough and 
the LLL algorithm requires 3 minutes
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Remarks

• The attacks can also be mounted if the 
LSBs of the random are known

• The attack can be transformed for RSA 
modulus: cf [FMP03] at CHES ’03 against 
the RSA-CRT with unbalanced modulus
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Relation to the security proof

This results are not in contradiction with the 
security proofs given at Crypto ’02 or at 

this conference 

Here, the attack uses a stronger attacker 
model where the adversary is able to 

obtain the LSBs or MSBs of the randoms
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Practical consequences
• In Esign implementations, it is important 

that the PRBG is cryptographically secure
– Neither SPA attack allowing to recover some 

bits of the randoms generated
– Nor design weakneasses allowing to predict 

these bits
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