
Index Calculus Attack

for Hyperelliptic Curves

of Small Genus

Nicolas Thériault
nicolast@exp-math.uni-essen.de

University of Toronto /

IEM – Universität Duisburg–Essen

Slide index

Discrete Log Problem

Hyperelliptic Jacobians

Generic Attacks

Attacks for
Hyperelliptic Curves

Index Calculus

Factor Base

Large primes

Algorithms

Running time
analysis

Optimizations

Comparison

Memory

Nicolas Thériault – The index calculus attack – p.1

The Discrete Log Problem

Let C be a nonsingular hyperelliptic curve of genus g with
a single point at infinity defined over the finite field Fq.

Let D1, D2 be two elements of Jac(C)(Fq) such that
D2 ∈ 〈D1〉.

The discrete log problem for the pair (D1, D2) on
Jac(C)(Fq) consist in computing the smallest integer λ ∈ N

such that
D2 = λD1 .

[⇐] Nicolas Thériault – The index calculus attack – p.2

Hyperelliptic Jacobians

C is of the form

C : Y 2 + h(X)Y = f(X)

with deg(h) ≤ g and deg(f) = 2g + 1.

Jac(C)(Fq) is the divisor class group, which is
isomorphic to the ideal class group.

(√
q − 1

)2g ≤ |Jac(C)(Fq)| ≤
(√

q + 1
)2g, i.e.

|Jac(C)(Fq)| = qg + O
(

gqg−1/2
)

.

Reduced divisors in Jac(C)(Fq) can be added in
O (g2(log q)2) bit operations (Cantor).

[⇐] Nicolas Thériault – The index calculus attack – p.3

Hyperelliptic Jacobians

To a point P ∈ C(Fq) we associate the divisor

D(P) = P −∞.

Every reduced divisor D ∈ Jac(C)(Fq),

D =
∑k

i=1
D(Pi) ,

can be represented uniquely by a pair of polynomials
[a(x), b(x)], a(x), b(x) ∈ Fq[x], with

a(x) =
∏k

i=1
(x − xi) and b(xi) = yi

such that deg(b) < deg(a) and a(x) divides
b(x)2 + h(x)b(x) − f(x).

[⇐] Nicolas Thériault – The index calculus attack – p.3

Hyperelliptic Jacobians

A reduced divisor D = [a(x), b(x)] is in Jac(C)(Fq)
if and only if a(x), b(x) ∈ Fq[x].

To know if the points Pi associated to a reduced
divisor are in C(Fq), we can check if a(x) splits
completely in Fq[x].

To find the points Pi associated to a reduced divisor,
we need to completely factor a(x).

D(−P) = −D(P).

[⇐] Nicolas Thériault – The index calculus attack – p.3

Hyperelliptic Jacobians

A reduced divisor D = [a(x), b(x)] is in Jac(C)(Fq)
if and only if a(x), b(x) ∈ Fq[x].

To know if the points Pi associated to a reduced
divisor are in C(Fq), we can check if a(x) splits
completely in Fq[x].

To find the points Pi associated to a reduced divisor,
we need to completely factor a(x).

D(−P) = −D(P).

[⇐] Nicolas Thériault – The index calculus attack – p.3

Hyperelliptic Jacobians

A reduced divisor D = [a(x), b(x)] is in Jac(C)(Fq)
if and only if a(x), b(x) ∈ Fq[x].

To know if the points Pi associated to a reduced
divisor are in C(Fq), we can check if a(x) splits
completely in Fq[x].

To find the points Pi associated to a reduced divisor,
we need to completely factor a(x).

D(−P) = −D(P).

[⇐] Nicolas Thériault – The index calculus attack – p.3

Generic attacks

Three main types of attack:
Shank’s Baby Step - Giant Step algorithm;
Pollard’s ρ method;
Pollard’s λ (kangaroo) method.

They work for every abelian group.

They require

O
(

√

group order
)

group operations to solve the discrete log.

[⇐] Nicolas Thériault – The index calculus attack – p.4

Attacks for hyperelliptic curves

Weil descent attack:
Frey / Gaudry, Hess and Smart,
for some curves defined over field extensions.

Index calculus attack for large genus:
Adleman, DeMarrais and Huang

Index calculus attack for small genus:
Gaudry,
for curves of genus > 4,
variation (Harley) for curves of genus > 3,
can be improved for curves of genus > 2.

[⇐] Nicolas Thériault – The index calculus attack – p.5

Attacks for hyperelliptic curves

Weil descent attack:
Frey / Gaudry, Hess and Smart,
for some curves defined over field extensions.

Index calculus attack for large genus:
Adleman, DeMarrais and Huang

Index calculus attack for small genus:
Gaudry,
for curves of genus > 4,
variation (Harley) for curves of genus > 3,

can be improved for curves of genus > 2.

[⇐] Nicolas Thériault – The index calculus attack – p.5

Attacks for hyperelliptic curves

Weil descent attack:
Frey / Gaudry, Hess and Smart,
for some curves defined over field extensions.

Index calculus attack for large genus:
Adleman, DeMarrais and Huang

Index calculus attack for small genus:
Gaudry,
for curves of genus > 4,
variation (Harley) for curves of genus > 3,
can be improved for curves of genus > 2.

[⇐] Nicolas Thériault – The index calculus attack – p.5

Index calculus

We want to find a good set of “points” (the factor base)

P1, P2, . . . , Pt

and “random” linear combinations

αiD1 + βiD2 =
t
∑

j=1

cijPj .

We then find γi’s such that for every j

s
∑

i=1

γicij = 0.

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

We want to find a good set of “points” (the factor base)

P1, P2, . . . , Pt

and “random” linear combinations

αiD1 + βiD2 =
t
∑

j=1

cijPj .

We then find γi’s such that for every j

s
∑

i=1

γicij = 0.

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

This gives us

0 =

t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

(

t
∑

j=1

cijPj

)

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

This gives us

0 =

t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

(

t
∑

j=1

cijPj

)

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

This gives us

0 =

t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

(

t
∑

j=1

cijPj

)

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

This gives us

0 =

t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

(

t
∑

j=1

cijPj

)

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

This gives us

0 =

t
∑

j=1

(

s
∑

i=1

γicij

)

Pj

=
s
∑

i=1

γi

(

t
∑

j=1

cijPj

)

=
s
∑

i=1

γi (αiD1 + βiD2)

=

(

s
∑

i=1

γiαi

)

D1 +

(

s
∑

i=1

γiβi

)

D2

= αD1 + βD2

[⇐] Nicolas Thériault – The index calculus attack – p.6

Index calculus

If β 6= 0, we can solve for D2 :

D2 =
−α

β
D1 ,

i.e.

λ =
−α

β

=

−
s
∑

i=1

γiαi

s
∑

i=1

γiβi

.

[⇐] Nicolas Thériault – The index calculus attack – p.6

Smooth divisors

Let P = C(Fq), i.e. P is the set of points of C over Fq. Let B
be a subset of P .

A divisor is smooth relative to B if it is reduced and it can
be written in the form

k
∑

i=1

D(Pi)

with the Pi’s in B and k ≤ g.

In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P .

[⇐] Nicolas Thériault – The index calculus attack – p.7

Smooth divisors

Let P = C(Fq), i.e. P is the set of points of C over Fq. Let B
be a subset of P .

A divisor is smooth relative to B if it is reduced and it can
be written in the form

k
∑

i=1

D(Pi)

with the Pi’s in B and k ≤ g.

In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P .

[⇐] Nicolas Thériault – The index calculus attack – p.7

Smooth divisors

Let P = C(Fq), i.e. P is the set of points of C over Fq. Let B
be a subset of P .

A divisor is smooth relative to B if it is reduced and it can
be written in the form

k
∑

i=1

D(Pi)

with the Pi’s in B and k ≤ g.

In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P .

[⇐] Nicolas Thériault – The index calculus attack – p.7

Smooth divisors

Let P = C(Fq), i.e. P is the set of points of C over Fq. Let B
be a subset of P .

A divisor is smooth relative to B if it is reduced and it can
be written in the form

k
∑

i=1

D(Pi)

with the Pi’s in B and k ≤ g.

In this case, B is called the factor base.

A potentially smooth divisor is smooth relative to P .

[⇐] Nicolas Thériault – The index calculus attack – p.7

Working with the factor base

Make use of the equality D(−P) = −D(P).

If P is in the factor base, −P is also in the factor base,
but we use only P for the factorization.

Example of representation:

D(P1)+D(−P29)+D(−P103) = D(P1)−D(P29)−D(P103)

The “size” of the factor base is |B|/2 for the linear
algebra.

This decreases the running time for the search by 50%
and time for the linear algebra by 75%.

[⇐] Nicolas Thériault – The index calculus attack – p.8

Working with the factor base

Make use of the equality D(−P) = −D(P).

If P is in the factor base, −P is also in the factor base,
but we use only P for the factorization.

Example of representation:

D(P1)+D(−P29)+D(−P103) = D(P1)−D(P29)−D(P103)

The “size” of the factor base is |B|/2 for the linear
algebra.

This decreases the running time for the search by 50%
and time for the linear algebra by 75%.

[⇐] Nicolas Thériault – The index calculus attack – p.8

Working with the factor base

Make use of the equality D(−P) = −D(P).

If P is in the factor base, −P is also in the factor base,
but we use only P for the factorization.

Example of representation:

D(P1)+D(−P29)+D(−P103) = D(P1)−D(P29)−D(P103)

The “size” of the factor base is |B|/2 for the linear
algebra.

This decreases the running time for the search by 50%
and time for the linear algebra by 75%.

[⇐] Nicolas Thériault – The index calculus attack – p.8

Large primes

Given a factor base B ⊂ P , a point P ∈ P is called a large
prime if P /∈ B.

A reduced divisor

D =

k
∑

i=1

D(Pi)

is said to be almost-smooth if:
all but one of the Pi’s are in B;
the remaining Pi is a large prime.

[⇐] Nicolas Thériault – The index calculus attack – p.9

Large primes

Given a factor base B ⊂ P , a point P ∈ P is called a large
prime if P /∈ B.

A reduced divisor

D =

k
∑

i=1

D(Pi)

is said to be almost-smooth if:
all but one of the Pi’s are in B;
the remaining Pi is a large prime.

[⇐] Nicolas Thériault – The index calculus attack – p.9

Intersections

Let Ti be an almost-smooth divisor with the large
prime P .

Ti is called an intersection if one of the previous
almost-smooth divisor (Tj) has large prime ±P .

We use the intersection of Ti with Tj to build a
(non-reduced) divisor that factors over the factor base.

Intersections are used to decrease the time required to
build the linear algebra system.

Ti is an intersection with at most one of the previous
almost-smooth Tj’s.

[⇐] Nicolas Thériault – The index calculus attack – p.10

Intersections

Let Ti be an almost-smooth divisor with the large
prime P .

Ti is called an intersection if one of the previous
almost-smooth divisor (Tj) has large prime ±P .

We use the intersection of Ti with Tj to build a
(non-reduced) divisor that factors over the factor base.

Intersections are used to decrease the time required to
build the linear algebra system.

Ti is an intersection with at most one of the previous
almost-smooth Tj’s.

[⇐] Nicolas Thériault – The index calculus attack – p.10

Intersections

Let Ti be an almost-smooth divisor with the large
prime P .

Ti is called an intersection if one of the previous
almost-smooth divisor (Tj) has large prime ±P .

We use the intersection of Ti with Tj to build a
(non-reduced) divisor that factors over the factor base.

Intersections are used to decrease the time required to
build the linear algebra system.

Ti is an intersection with at most one of the previous
almost-smooth Tj’s.

[⇐] Nicolas Thériault – The index calculus attack – p.10

Intersections

Let Ti be an almost-smooth divisor with the large
prime P .

Ti is called an intersection if one of the previous
almost-smooth divisor (Tj) has large prime ±P .

We use the intersection of Ti with Tj to build a
(non-reduced) divisor that factors over the factor base.

Intersections are used to decrease the time required to
build the linear algebra system.

Ti is an intersection with at most one of the previous
almost-smooth Tj’s.

[⇐] Nicolas Thériault – The index calculus attack – p.10

Cancelling large primes

If T1, T2 are two almost-smooth divisors who share the
same large prime P ,
i.e. T1, T2 can be represented in the form

T1 = D(P)+

k1−1
∑

i=1

D(P1,i) and T2 =

−

D(P)+

k2−1
∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B, then we use the divisor

T ′ = T1 − T2 =

k1−1
∑

i=1

D(P1,i) −
k2−1
∑

i=1

D(P2,i).

[⇐] Nicolas Thériault – The index calculus attack – p.11

Cancelling large primes

If T1, T2 are two almost-smooth divisors such that T1 has
large prime P and T2 has large prime −P ,
i.e. T1, T2 can be represented in the form

T1 = D(P)+

k1−1
∑

i=1

D(P1,i) and T2 = −D(P)+

k2−1
∑

i=1

D(P2,i)

with P1,i, P2,i ∈ B, then we use the divisor

T ′ = T1 + T2 =

k1−1
∑

i=1

D(P1,i) +

k2−1
∑

i=1

D(P2,i).

[⇐] Nicolas Thériault – The index calculus attack – p.11

Algorithms

Using a smaller factor base:

1. Search for the elements of the factor base
2. Initialization of the random walk
3. Search (random walk)

Search for potentially smooth divisors
Factorization of the potentially smooth divisors
Construction of the linear algebra system

4. Solution of the linear algebra system

5. Final solution

[⇐] Nicolas Thériault – The index calculus attack – p.12

Algorithms

Using a smaller factor base:

1. Search for the elements of the factor base
2. Initialization of the random walk
3. Search (random walk)

Search for potentially smooth divisors
Factorization of the potentially smooth divisors

Construction of the linear algebra system

4. Solution of the linear algebra system

5. Final solution

[⇐] Nicolas Thériault – The index calculus attack – p.12

Algorithms

Using large primes:

1. Search for the elements of the factor base
2. Initialization of the random walk
3. Search (random walk)

Search for potentially smooth divisors
Factorization of the potentially smooth divisors
Cancellation of the large primes (for intersections)
Construction of the linear algebra system

4. Solution of the linear algebra system

5. Final solution

[⇐] Nicolas Thériault – The index calculus attack – p.12

Running time analysis

Assume classical arithmetic.

Assume q > g!.

Assume the size of the factor base is qr, 2
3

< r < 1.

Find the expected running time with a factor base of
that size.

Choose r to “minimize” the running time.

When using large primes, also assume qr < |C(Fq)|
2

.

[⇐] Nicolas Thériault – The index calculus attack – p.13

Running time analysis

Assume classical arithmetic.

Assume q > g!.

Assume the size of the factor base is qr, 2
3

< r < 1.

Find the expected running time with a factor base of
that size.

Choose r to “minimize” the running time.

When using large primes, also assume qr < |C(Fq)|
2

.

[⇐] Nicolas Thériault – The index calculus attack – p.13

Running time analysis

Assume classical arithmetic.

Assume q > g!.

Assume the size of the factor base is qr, 2
3

< r < 1.

Find the expected running time with a factor base of
that size.

Choose r to “minimize” the running time.

When using large primes, also assume qr < |C(Fq)|
2

.

[⇐] Nicolas Thériault – The index calculus attack – p.13

Factor base

We try values of xi ∈ Fq to see if they correspond to
x-coordinates of points of C(Fq).

We add points of C(Fq) in B until the factor base has the
desired size.

This can be done in O (g2q(log q)2) bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.14

Initialization

We choose the state function

R : Jac(C)(Fq) × {1, 2, . . . , n} → Jac(C)(Fq)

(D, i) 7→ D + T (i).

We take n = O (log(|Jac(C)(Fq)|)).

We choose n random α(i)’s and β(i)’s and compute

T (i) = α(i)D1 + β(i)D2.

This can be done in O (g4(log q)4) bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.15

Linear algebra

We need a nonzero vector in the kernel of the matrix M .

The matrix is sparse with weigth O (gqr).

Operations are done modulo |Jac(C)(Fq)|.

Using algorithms by Lanczos or Wiedemann, this can be
done in

O
(

g3q2r(log q)2
)

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.16

Final solution

We compute

α =
∑

i

γiαi,

β =
∑

i

γiβi

and
λ = −α

β
.

The computations are done modulo |Jq|.

This can be done in O (g2qr(log q)2) bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.17

Potentially smooth divisors

Proposition: There are qg

g!
+ O

(

gqg−
1
2

g!

)

potentially smooth

divisors in Jac(C)(Fq).

We expect to have a potentially smooth divisor for every

O(g!)

divisors computed in the search.

[⇐] Nicolas Thériault – The index calculus attack – p.18

Smooth divisors

Proposition: For 2
3

< r < 1, there are qrg

g!
+ O

(

g2qr(g−1)

g!

)

smooth divisors in Jac(C)(Fq).

We expect to have to look at

O
(

g!q(1−r)g
)

divisors for each smooth divisor found in the search.

[⇐] Nicolas Thériault – The index calculus attack – p.19

Search

We need O(qr) smooth divisors.

We expect to look at O
(

g!q(1−r)g+r
)

divisors, each
taking (in bit operations):

O(g2(log q)2) to compute the reduced divisor;
O(g log q) to compute αi and βi;
O(g2(log q)2) to check if a(x) splits completely.

Of these, we expect O
(

q(1−r)g+r
)

to be potentially
smooth (and must be factorized);

factorization take O(g2(log q)2) bit operations.

Total of O
(

g2g!qg−(g−1)r(log q)2
)

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.20

Almost-smooth divisors

Proposition: For 2
3

< r < 1, there are qrg+1−r

(g−1)!
+ O

(

qrg

(g−1)!

)

almost-smooth divisors in Jac(C)(Fq).

For each almost-smooth divisors found during the search,
we can expect to look at

O
(

(g − 1)!q(1−r)(g−1)
)

divisors.

[⇐] Nicolas Thériault – The index calculus attack – p.21

Intersections

Let Qn(s, i) be the probability of having i intersections out
of a sample of size s drawn with replacement from a set of
n elements.

Let En,s be the expected number of intersections after s
draws from a set of n elements, i.e.

En,s =
∑s−1

i=0
iQn(s, i).

Theorem: If 3 ≤ s < n/2, then En,s is between 2s2

3n
and s2

n
.

[⇐] Nicolas Thériault – The index calculus attack – p.22

Intersections

In our case, n is the number of large primes (i.e.
n = q − qr + O(

√
q)) and

En,s = O

(

s2

q

)

.

We want En,s ≈ qr, so we take s = O
(

q(r+1)/2
)

.

It will then take

O
(

s(g − 1)!q(g−1)(1−r)
)

= O
(

(g − 1)!q(g−1)(1−r)+ r+1
2

)

steps of random walk to build the linear algebra system.

[⇐] Nicolas Thériault – The index calculus attack – p.22

Search

We expect to look at O
(

(g − 1)!q(g−1)(1−r)+ r+1
2

)

divisors;
each divisor takes O(g2(log q)2) bit operations.

Of these, we expect O
(

q(g−1)(1−r)+ r+1
2 /g

)

to be

potentially smooth each taking an extra O(g2(log q)2)
bit operations.

We also expect to get O
(

qr− 1−r

2 /g
)

smooth divisors.

Total of O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.23

Running times

Using a smaller factor base:

1. O (g2q(log q)2)

2. O (g4(log q)4)

3. O
(

g2g!qg−(g−1)r(log q)2
)

4. O (g3q2r(log q)2)

5. O (g2qr(log q)2)

The total running time is then

O
(

g2g!qg−(g−1)r(log(q))2
)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.24

Running times

Using a smaller factor base:

1. O (g2q(log q)2)

2. O (g4(log q)4)

3. O
(

g2g!qg−(g−1)r(log q)2
)

4. O (g3q2r(log q)2)

5. O (g2qr(log q)2)

The total running time is then

O
(

g2g!qg−(g−1)r(log(q))2
)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.24

Running times

For the original index calculus attack by Gaudry,
qr = |C(Fq)|, which gives a running time of

O
(

g3q2+ε
)

+ O
(

g2g!q1+ε
)

bit operations.

To optimize the running time, we choose

r =
g + logq((g − 1)!)

g + 1
,

which gives us
O
(

g5q2− 2
g+1

+ε
)

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.24

Running times

Using large primes:

1. O (g2q(log q)2)

2. O (g4(log q)4)

3. O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

4. O (g3q2r(log q)2)

5. O (g2qr(log q)2)

The total running time is then

O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.25

Running times

Using large primes:

1. O (g2q(log q)2)

2. O (g4(log q)4)

3. O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

4. O (g3q2r(log q)2)

5. O (g2qr(log q)2)

The total running time is then

O
(

gg!q(g−1)(1−r)+ r+1
2 (log(q))2

)

+ O
(

g3q2r(log(q))2
)

.

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.25

Running times

To optimize the running time, we choose

r =
g − 1

2
+ logq((g − 1)!/g)

g + 1
2

,

which gives us

O
(

g5q2− 4
2g+1

+ε
)

bit operations.

[⇐] Nicolas Thériault – The index calculus attack – p.25

Comparison

For small genus, we have:
square

original smaller with

g root

index factor large

attacks

calculus base primes

3 q3/2

q2 q3/2 q10/7

4 q2

q2 q8/5 q14/9

5 q5/2

q2 q5/3 q18/11

6 q3

q2 q12/7 q22/13

[⇐] Nicolas Thériault – The index calculus attack – p.26

Comparison

For small genus, we have:
square original

smaller with

g root index

factor large

attacks calculus

base primes

3 q3/2 q2

q3/2 q10/7

4 q2 q2

q8/5 q14/9

5 q5/2 q2

q5/3 q18/11

6 q3 q2

q12/7 q22/13

[⇐] Nicolas Thériault – The index calculus attack – p.26

Comparison

For small genus, we have:
square original smaller

with

g root index factor

large

attacks calculus base

primes

3 q3/2 q2 q3/2

q10/7

4 q2 q2 q8/5

q14/9

5 q5/2 q2 q5/3

q18/11

6 q3 q2 q12/7

q22/13

[⇐] Nicolas Thériault – The index calculus attack – p.26

Comparison

For small genus, we have:
square original smaller with

g root index factor large
attacks calculus base primes

3 q3/2 q2 q3/2 q10/7

4 q2 q2 q8/5 q14/9

5 q5/2 q2 q5/3 q18/11

6 q3 q2 q12/7 q22/13

[⇐] Nicolas Thériault – The index calculus attack – p.26

Memory

One of the biggest problems of the index calculus attack is
the memory requirement.

For the original index calculus: O (gq1+ε) bits.
For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

[⇐] Nicolas Thériault – The index calculus attack – p.27

Memory

One of the biggest problems of the index calculus attack is
the memory requirement.

For the original index calculus: O (gq1+ε) bits.
For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

[⇐] Nicolas Thériault – The index calculus attack – p.27

Memory

One of the biggest problems of the index calculus attack is
the memory requirement.

For the original index calculus: O (gq1+ε) bits.
For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

[⇐] Nicolas Thériault – The index calculus attack – p.27

Memory

One of the biggest problems of the index calculus attack is
the memory requirement.

For the original index calculus: O (gq1+ε) bits.
For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

[⇐] Nicolas Thériault – The index calculus attack – p.27

Memory

One of the biggest problems of the index calculus attack is
the memory requirement.

For the original index calculus: O (gq1+ε) bits.
For the linear algebra.

Using a smaller factor base: O
(

g2q
g

g+1
+ε
)

bits.

For the linear algebra.

Using large primes: O
(

g2q
2g

2g+1
+ε
)

bits.

For the storage of the almost-smooth divisors.

The linear algebra requires O
(

g2q
2g−1
2g+1

+ε
)

bits.

[⇐] Nicolas Thériault – The index calculus attack – p.27

	Slide index
	The Discrete Log Problem
	Hyperelliptic Jacobians
	Hyperelliptic Jacobians
	Hyperelliptic Jacobians
	Hyperelliptic Jacobians
	Hyperelliptic Jacobians

	Generic attacks
	Attacks for hyperelliptic curves
	Attacks for hyperelliptic curves
	Attacks for hyperelliptic curves

	Index calculus
	Index calculus

	Index calculus
	Index calculus
	Index calculus
	Index calculus
	Index calculus

	Index calculus
	Smooth divisors
	Smooth divisors
	Smooth divisors
	Smooth divisors

	Working with the factor base
	Working with the factor base
	Working with the factor base

	Large primes
	Large primes

	Intersections
	Intersections
	Intersections
	Intersections

	Cancelling large primes
	Cancelling large primes

	Algorithms
	Algorithms
	Algorithms

	Running time analysis
	Running time analysis
	Running time analysis

	Factor base
	Initialization
	Linear algebra
	Final solution
	Potentially smooth divisors
	Smooth divisors
	Search
	Almost-smooth divisors
	Intersections
	Intersections
	Search
	Running times
	Running times

	Running times
	Running times
	Running times

	Running times
	Comparison
	Comparison
	Comparison
	Comparison

	Memory
	Memory
	Memory
	Memory
	Memory

