Time Memory Tradeoff Attacks on Streamciphers

– Variations –

Jin Hong and Palash Sarkar
Time Memory Tradeoffs on Streamciphers

- Biryukov & Shamir (Asiacrypt 2000)
- \( f: \text{state} \rightarrow \text{key stream of state size} \)

\[
\begin{array}{c}
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \\
\rightarrow \rightarrow
\end{array}
\]

- random start pts
- (start pt, end pt) pairs are stored in a table.

- \( T M^2 D^2 = N^2 \) and \( P = N/D \)
- \( N: \text{search sp size}, \ P: \text{pre–comp time} \)
State vs key

- $f: \text{key} \rightarrow \text{key stream of key size}$

- If $f$ is bijective, a key of appropriate property will be found. This may not be what we want.

- But the situation is different if you know where your key stream started.
State vs key+IV

- Suppose we are given a key stream that we know to be at the beginning (IP packets, disk encryption).
- Using the first block of key stream, we may apply the previous argument with
  \[ f: \text{key+IV} \rightarrow \text{key stream of same length} \]
- Always succeeds if IV is XOR’ed into key.
- Reduction in pre-comp time possible, if more than one beginning stream is given.
Short IVs

• Let us write $K$ for key space size.
• Suppose IV size is $1/3$ of key size and we have one block of data, so that
  $$N = K^{4/3} \text{ and } D = 1$$
• Then $T = M = K^{8/9}$ satisfies
  $$T M^2 D^2 = N^2.$$  
But, pre-comp time $P = N/D = K^{4/3}$ is greater than $K$.
• With more data, such (theoretic) attack is possible if IV size is less than key size.
• In particular, this is applicable to SNOW.
Conclusion

• If you believe pre-comp time larger than key exhaustive search time may be allowed in an attack:

• **Claims to TMTO resistance should mention key+IV space size, not internal state size.**
• IV should be at least the key size. (State should be twice the size of key.)
• When combining key and IV into a state, take care so as not to decrease its entropy.
• **Do not use IV in a predictable way**, or use only a subset. This is equal to using small IV.