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This Paper in One Slide

Random Projections (JL transform)
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Differential Privacy: The Mathematical Formulation

• The idea is that absence or presence of an individual entry
should not change the output “by much"

• A sanitization algorithm, K, gives ε-differential privacy if, for
all “neighboring data," D1 and D2, and for all range S,

Pr [K(D1) ∈ S]

Pr [K(D2) ∈ S]
≤ exp(ε)

• A sanitization algorithm, K, gives (ε, δ)-differential privacy
if, for all “neighboring data," D1 and D2, and for all range S,

Pr [K(D1) ∈ S] ≤ exp(ε)Pr [K(D2) ∈ S] + δ.
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Differential Privacy: The Pretty (Common) Picture
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Why Should We Care About Cut Queries?

• A natural question in social networking
• How many people have friends outside their circle?

• The answer is the number of edges crossing the border of
the set of the vertices corresponding to those people

• This number is called cut corresponding to the set of
vertices

Question: Why would you really care about the privacy?
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Friendships or "What You May Call" Between People

Suppose Facebook decides to reveal the friendship graph

There might be some people who might end up in trouble
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But Spare a Thought for a Few Celebrities
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Disclaimer

The speaker does not support any of the above infidelity

None of this work should be used in any of the above cited or
related scenarios

Mr. Kennedy, Mr. Clinton, or NSA did not fund this research
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Scenarios Where You Can Use This Work...
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The Starting Point of This Work

• Blocki et al. (BBDS) showed that Johnson-Lindenstrauss
(JL) transform preserves DP

• The idea of BBDS is to use random projection of the
column entries of the representative matrix

• For a graph G, a reasonable choice is Laplacian,
LG := DG −AG

• For a set of vertices, S, Φ(S, S̄) = χT
SLGχS = ‖

√
LGχS‖
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BBDS Mechanism Step by Step

The utility guarantee comes from JL-lemma

If we apply JL transform on
√
LG, then

Φ(S, S̄) = ‖M
√
LGχS‖ = (1± ε)‖

√
LGχS‖

BBDS showed that it also preserves differential
privacy when M is Gaussian
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What about DP?

Just multiplying
√
LG by M does not give DP guarantee

S = {3, 6, 10} gives
answer 0

S = {3, 6, 10} gives a
non-zero answer
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The Elegant Idea Used in BBDS

is reweighted
and
transformed to

This makes the graph connected and increases its second
smallest eigenvalue
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The Two Faces of Complete Graph
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Algorithmic Disadvantage of a Complete Graph

On the negative side, overlaying a complete graph destroys any
structural property of the graph

Why do we care about this?
• Most of the graphs are sparse or have some structure
• Sparsity and structure helps a lot in algorithmic design

Question: Can we instead use a sparse graph?
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Differential Privacy on Sparse Graphs

Crucial observations
• Second smallest eigenvalue gives an estimate of

connectivity (Cheeger’s theorem and Fielder’s result)
• Eigenvalue of a graph is at least the eigenvalue of any of its

subgraph (Fielder’s result)

An expander graph is a sparse graph with high second
smallest eigenvalue
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Basic Construction

Input: An n-vertices sparse graph G
• Pick a sparse expander graph, E

• Set LG̃ = w
dLE +

(
1− w

d

)
LG

• Pick a random projection matrix M with Gaussian noise,
and multiply with LG̃

Utility follows by comparing the spectral property of
expander with complete graph

20 /25



Basic Construction

Input: An n-vertices sparse graph G
• Pick a sparse expander graph, E
• Set LG̃ = w

dLE +
(
1− w

d

)
LG

• Pick a random projection matrix M with Gaussian noise,
and multiply with LG̃

Utility follows by comparing the spectral property of
expander with complete graph

20 /25



Basic Construction

Input: An n-vertices sparse graph G
• Pick a sparse expander graph, E
• Set LG̃ = w

dLE +
(
1− w

d

)
LG

• Pick a random projection matrix M with Gaussian noise,
and multiply with LG̃

Utility follows by comparing the spectral property of
expander with complete graph

20 /25



Pictorial View of the Difference in Approaches

Original Graph BBDS This Work
(Not complete picture)
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What About Dense Graphs?

When graph has high conductance, then apply
sparsification techniques followed by random
projection

Can use local sparsification techniques or Global Sparsification
Techniques

Main Lemma: The above sparsification techniques
followed by JL transform that uses Gaussian matrix
also preserves differential privacy
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Run Time of Sanitization Algorithms

• Sparsification techniques uses time Õ(m), where m is the
number of edges

• For dense weighted graphs, m = O(n2), so sparsification
requires time Õ(n2)

• Number of entries in the Laplacian of a sparse graph is
Õ(n)

• Multiplying the Laplacian of the graph by a Gaussian matrix
takes Õ(n2)

• Total run time of sanitization is Õ(n2)
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A Comparative Study

Abbreviations: k : total number of queries, ε : privacy
parameter, n : number of vertices, δ : spectral approximation
parameter, s: set of vertices in a query

Method Noise for any k Run Time
Randomized Response O(

√
sn log k/ε) O(n2)

Exponential Sanitizer O(n log n/ε) Intractable
Multiplicative Weight Õ(

√
|E| log k/ε) O(n2)

JL transform O(s
√

log k/ε) O(rn2.38)

Basic Scheme O(s
√

log k/ε) O(n2+o(1))

Using δ-Sparsifier O(sδ
√

log k/ε) O(n2+o(1))
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Conclusion

• In this talk, we showed an algorithmic improvement over
the sanitization techniques

• We achieve the best of both the world: efficient sanitization
and almost the same privacy and utility guarantee

We also do the following in the paper:
• A combinatorial analysis to answer (S, T )-cut queries
• Further optimization: Fast-JL transform of Ailon-Chazelle

preserves differential privacy
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