Behind the Scene of Side Channel Attacks ASIACRYPT 2013

Victor LOMNE, Emmanuel PROUFF and Thomas ROCHE

ANSSI (French Network and Information Security Agency) Thursday, December 3rd, 2013

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results
- 4 Conclusion

Background C

Contributions

Side Channel Attacks (SCA)

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results

4 Conclusion

Context

■ Since the 90's, increasing use of Embedded Systems

▶ 7G smartcards sold in 2012 (SIM, banking, pay-TV, ID, ...)

Embedded Systems integrating Cryptography are susceptible to Side Channel Cryptanalysis

Side Channel Cryptanalysis [Kocher et al - Crypto99]

- A CMOS device leaks info. about its state during a computation through side-channels e.g.: time, power consumption, EM radiations, ...
- SCA exploit these physical leakages to guess a secret

Side Channel Attacks (SCA)

Background

Generic SCA Flow

Side Channel Attacks (SCA)

Background

- 1. Collect N side channel traces w. known inputs $t_1 \rightarrow Enc(p_1, k), \ldots, t_N \rightarrow Enc(p_N, k)$
- 2. Choose sensitive variable depend. on input & secret e.g. AES Sbox output $\to v_i^{\hat k} = S(p_i \oplus \hat k)$
- 3. Choose a Leakage Model
 - e.g. Hamming Weight (H)
- 4. Compute predictions for each key hypothesis $\hat{k} = 0 \quad \rightarrow H(v_1^{\hat{k}=0}), \dots, H(v_N^{\hat{k}=0})$

$$\hat{k} = 255
ightarrow H(v_1^{\hat{k}=255}), \dots, H(v_N^{\hat{k}=255})$$

5. Use a distinguisher to discriminate the correct key by comparing the N traces and the predictions

SCA flow and Leakage Model: 3 cases

1. Select a priori a Leakage Model

Background Contributions

- Hamming Weight, Hamming Distance
- ▶ Used in classical SCA (DPA, CPA, MIA, ...)
- 2. Select a priori a space of Leakage Models
 - ▶ Attack will *guess* the correct model in selected space
 - Used in Linear Regression Attack (LRA)
- 3. Infer a Leakage Model through profiling before attack
 - A preliminary step is performed on an open copy of the device to build a leakage model for each key value
 - Used in Template Attack (TA)

Background| Contributions

Side Channel Attacks (SCA)

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results

4 Conclusion

Background| Contributions

Side Channel Attacks (SCA)

Microelectronics & Side Channel Cryptanalysis

Moore's law:

- ▶ Nb. of transistors on ICs doubles approx. every two years
- \blacktriangleright CMOS processes decrease 1995 \rightarrow CMOS process 350nm / 2013 \rightarrow CMOS process 22nm

Consequence:

- ► intra-chip variability increases ⇒ bits leak differently ones from others
- ► inter-chip variability increases ⇒ two identical ICs behave differently

\Rightarrow New challenges for Side Channel Attacks ?!

Background| Contributions

Side Channel Attacks (SCA)

Our Contributions

Propose a study on the practicality of:

- Linear Regression Attack (LRA)
- Template Attack (TA)

Perform experiments on 3 different microcontrollers:

- Device A CMOS process 350nm AES128 enc. 51600 points per trace - highest SNR¹: 0.3
- Device B CMOS process 130nm AES128 enc. 16800 points per trace - highest SNR¹: 0.6
- Device C CMOS process 90nm AES128 enc. 12800 points per trace - highest SNR¹: 0.09

■ Use of 3 copies of each device for cross-tests

¹SNR: Signal-to-Noise Ratio

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results

4 Conclusion

Linear Regression Attack [Doget et al - Cosade11]

- Leakage function \mathfrak{L} : models the handling of sens. var. v handling of $v \to \mathfrak{L}(v) + \mathfrak{B}$, with \mathfrak{B} a gaussian noise
- In LRA, \mathfrak{L} assumed unknown and viewed as a multivariate polynomial in the bit-coordinates v_i of v w. coefs. in \mathbb{R} $\mathfrak{L}(v) = \underbrace{\epsilon_0 v_0 + \epsilon_1 v_1 + \ldots}_{\text{linear part}} + \underbrace{\epsilon_{0,1} v_0 v_1 + \epsilon_{0,2} v_0 v_2 + \ldots}_{\text{quadratic part}} + \underbrace{\cdots}_{\text{etc}}$
- In LRA, guessing £ is hence equivalent to solve a polynomial interpolation in a noisy context ⇒ use of linear regression techniques

LRA Issues

- Previous works reporting experiments on LRA consider side channel traces composed of one unique point
- In practice, side channel traces are never composed of one unique point, but rather several thousands
- Classical strategy consists in applying SCA on each time sample and to keep the key candidate maximizing the score over all time samples

■ In our experiments, such a strategy did not work for LRA

Our Solution

- From our experiments, we observed that correct key k is ranked first at time samples where:
 - ▶ the distance $score(k) \mathbb{E}[score(k)]$ is large
 - Var[score(k)] is small
- We hence deduced a normalization step:
 - center the scores
 - divide by their variance
 - normalized_score(k) = $\frac{score(k) \mathbb{E}[score(k)]}{Var[score(k)]}$

Basics| Experimental Results

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results

4 Conclusion

cs Experimental Results

LRA vs. Normalized LRA (device A - 350nm)

Figure: Correct key rank evolution vs. nb. of traces

cs Experimental Results

LRA vs. Normalized LRA (device B - 130nm)

Figure: Correct key rank evolution vs. nb. of traces

cs Experimental Results

LRA vs. Normalized LRA (device C - 90nm)

Figure: Correct key rank evolution vs. nb. of traces

cs Experimental Results

Normalized LRA vs. CPA (device C - 90nm)

Figure: Correct key rank evolution vs. nb. of traces

Template Attack Basics

Conclusion

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results
- 4 Conclusion

Template Attack Basics

Conclusion

Template Attack (TA) [Chari et al - CHES02]

- 1. **Profiling Phase** (performed on an open device copy)
 - 1.1 Collect M side channel traces w. known inputs & keys $t_1 \rightarrow Enc(p_1, k_1), \ldots, t_N \rightarrow Enc(p_M, k_M)$
 - 1.2 Choose sensitive variable depend. on input & secret e.g. AES Sbox output $\rightarrow v_i^{\hat{k}} = S(p_i \oplus \hat{k})$
 - 1.3 Compute the pdf of the leakage for each key value $pdf_{\hat{k}=0},\ldots,pdf_{\hat{k}=255}$
- 2. Attack Phase (performed on a device copy set at an unknown secret)
 - 2.1 Collect N side channel traces w. diff. inputs $t_1 \rightarrow Enc(p_1, k), \ldots, t_N \rightarrow Enc(p_N, k)$
 - 2.2 Use a maximum likelihood test to discriminate the correct key by comparing the N traces and the pdfs

Conclusion|

Template Attack Basics| Experimental Results

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results
- 4 Conclusion

Conclusion

Template Attack Basics| Experimental Results

TA on device A (350nm) - copy $1 \rightarrow \text{copy } 1$

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Conclusion

Template Attack Basics| Experimental Results

TA on device A (350nm) - copy $1 \rightarrow \text{copy } 2$

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Conclusion

Template Attack Basics| Experimental Results

TA on device B (130nm) - copy $1 \rightarrow copy 1$

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Conclusion

Template Attack Basics| Experimental Results

TA on device B (130nm) - copy $1 \rightarrow copy 2$

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Conclusion

Template Attack Basics| Experimental Results

TA on device C (90nm) - copy $1 \rightarrow \text{copy } 1$

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Conclusion|

Experimental Results

TA on device C (90nm) - copy $1 \rightarrow$ copy 3

Figure: Correct key rank evolution vs. nb. of traces for the profiling phase (y-axis) and the attack phase (x-axis)

Agenda

- 1 Side Channel Attacks (SCA)
 - a. Background
 - b. Contributions

2 Linear Regression Attack (LRA)

- a. LRA Basics
- b. Experimental Results

3 Template Attack (TA)

- a. Template Attack Basics
- b. Experimental Results

4 Conclusion

Our Results

- 1. Improvement to apply LRA in a practical setup
- 2. Experiments show that LRA is more effective than classical SCA as CMOS process tends to nanometer scale
- 3. Experiments show that TA work well:
 - ▶ even if both phases are performed on diff. device copies
 - TA effectiveness outperforms unprofiled SCA
- 4. Partition method allowing to implement efficiently all SCA
 - algo. complexity does not depend from nb. of traces (not described in this presentation)

Some Numbers

uC	CPA	LRA	TA ²	TA ³
350nm	250	1000	80	10
130nm	350	800	100	10
90nm	7500	2000	700	100

Table: average nb. of traces to retrieve the correct key

²Template Attack inter-chip ³Template Attack intra-chip

Talk Finished !

Thanks for your attention !

Questions ?

full version: http://eprint.iacr.org/2013/794

