Cryptanalysis of HMAC/NMAC-Whirlpool

Jian Guo, Yu Sasaki, Lei Wang, Shuang Wu

ASIACRYPT, Bangalore, India 4 December 2013

Talk Overview

Introduction

- HMAC and NMAC
- The Whirlpool Hash Function
- Motivation

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

NMAC

- Designed by Mihir Bellare, Ran Canetti and Hugo Krawczyk in Crypto 1996
- Standarized by ANSI, IETF, ISO, NIST from 1997
- The most widely deployed hash-based MAC construction.

HMAC

Whirlpool

- designed by Barreto and Rijmen in 2000 with 512-bit digest
- standarized by ISO/IEC, approved by NESSIE (New European Schemes for Signatures, Integrity, and Encryption).
- follows Merkle-Damgård strengthening, and Miyaguchi-Preneel mode, *i.e.*, *f*(*H*, *M*) = *E*_{*H*}(*M*) ⊕ *H* ⊕ *M*
- both state and key follow the AES-like process, with 10 rounds.

Whirlpool

- designed by Barreto and Rijmen in 2000 with 512-bit digest
- standarized by ISO/IEC, approved by NESSIE (New European Schemes for Signatures, Integrity, and Encryption).
- follows Merkle-Damgård strengthening, and Miyaguchi-Preneel mode, *i.e.*, *f*(*H*, *M*) = *E*_{*H*}(*M*) ⊕ *H* ⊕ *M*
- both state and key follow the AES-like process, with 10 rounds.

Key: $AC \circ MR \circ SC \circ SB$;

State: $AK \circ MR \circ SC \circ SB$

Derive many P

- Derive many P
- Our Corresponding C

- Derive many P
- Oerive corresponding C
- Recover K_{out} from known Ps and Cs

- Derive many P
- Oerive corresponding C
- Recover K_{out} from known Ps and Cs
- Recover the original key K from K_{out}

- Derive many P
- Oerive corresponding C
- Recover K_{out} from known Ps and Cs
- Recover the original key K from K_{out}
- Secover K_{in} (or K_1) for NMAC only.

Step 1: Derive P

Gaëtan just showed us how to derive $h = H(K \oplus ipad || M_a)$ for some long message M_a of around $2^{n/2}$ blocks.

Step 1: Derive P

- Gaëtan just showed us how to derive h = H(K ⊕ ipad ||M_a) for some long message M_a of around 2^{n/2} blocks.
- Unbalanced Meet-in-the-Middle attack against H(K ⊕ ipad ||M_c), with H(K ⊕ ipad ||M_a||P_a||M_b) = f(f(f(h, P_a), M_b), P_b), by repeating many one-block M_b and M_c. Then we know h' = H(K ⊕ ipad ||M_c), hence
 P = H(K ⊕ ipad ||M_c||P_c||M_d) = f(f(h', P_c), M_d), for any M_d with padding satisfied, due to length-extension property of Merkle-Damgård structure.

Step 2: Derive *C*

The Problem

With known Tag value, and fixed message block P_{out} , find input chaining value C.

With known Tag value, and fixed message block P_{out} , find input chaining value C.

The Solution

Precompute a table $T = f(C, P_{out})$ to obtain many pairs of (C, T)

Step 3: Recover Kout

Step 3: Recover Kout

$$C = f(K_{out}, P) = E_{K_{out}}(P) \oplus P \oplus K_{out}$$

Step 3: 6-Round Chosen Plaintext Attack

Given many (P, C) pairs, filter for 3-collision with strctured difference in diagonal of $V = MR^{-1}(P \oplus C)$.

With input chaining IV, output chaining K_{out} , recover K.

With input chaining IV, output chaining K_{out} , recover K.

The Solution

Preimage attack by Sasaki et al. ASIACRYPT 2012.

With known K_{out} , chosen M_1 , recover K_{in} .

With known K_{out} , chosen M_1 , recover K_{in} .

The Solution

Exactly the same procedure as recovering K_{out} .

Target	Attack Mode	#Rounds	Source
HMAC/NMAC-Whirlpool	Key Recovery	6	Ours
HMAC/NMAC-Whirlpool	Distinguishing-H	full	Ours
Whirlpool	Collision	5	Lamberger et al. AC 2009
Whirlpool	Preimage	6	Sasaki et al. AC 2012

Target	Attack Mode	#Rounds	Source
HMAC/NMAC-Whirlpool	Key Recovery	6	Ours
HMAC/NMAC-Whirlpool	Distinguishing-H	full	Ours
Whirlpool	Collision	5	Lamberger et al. AC 2009
Whirlpool	Preimage	6	Sasaki et al. AC 2012

Stay tuned for universal forgery (equivalent key recovery) attacks against HMAC with **7**-round Whirlpool.

Thank you!

Questions?