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Introduction

Cryptographic device

with private memory s
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x

Cs(x)

Attacking a cryptographic implementation

The adversary, having black-box access to Cs, repeatedly
supplies it with input x of her choice and receives Cs(x).
In reality though, the adversary can be much more inventive.
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Real world attacks

Physical active attacks against the implementation:
Inducing faults to the computation [BS97], [BDL97].

Exposing the device to electromagnetic radiation [GMO01],
and others.



Defending against tampering attacks

1. Build circuits using tamper-resilient hardware:

Might be quite expensive solution,
Might be secure only against known attacks.

2. Employ algorithmic techniques for protecting against
tampering attacks, i.e., modify the circuit so that it is
resilient:

It provides security against unknown attacks.
Currently, there is a gap between theoretical modeling and
real-world attacks.

This work focuses on algorithmic techniques.



Security against tampering adversaries
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1. k: security parameter, t: number of circuit components.

2. Both circuits implement the same functionality.

3. S is having black-box access to Cs,

4. At performs tampered computations on C ′

s′
,

5. The view of the adversary is simulated by S.



Related work & Motivation

There are 3 constructions which are provably secure
against tampering attacks on circuit wires:
[IPSW06], [FPV11], [DSK12].

All of them employ tamper-proof gates (the last two even
non-standard gates).

[SA03]: attacks against circuit transistors.

What happens if the adversary tampers with circuit gates?



Our contribution

A new adversarial model: the attacker against circuit gates.

An impossibility result on tamper resilience under plausible
assumptions w.r.t. both wire and gate attackers.

Gate adversaries subsume wire adversaries. We prove that
gate adversaries are strictly stronger than wire ones.

We show how to defend against gate adversaries. We state
and prove a general theorem about circuit compilers which
has as a corollary that the third compiler of [IPSW06] is
resilient against gate attacks.



Theoretical Model

Circuit Cs: A directed graph G(V,E).
Each v ∈ V (resp. e ∈ E) represents a circuit gate (resp. wire).
Input gates: x1, x2, output gates: y1, y2, y3,
private memory gates: s1, s2, s3, and boolean gates.

x1 x2 s1 s2 s3

y1 y2 y3

∧ ∨

∧

∧

A single round circuit computation is a BFS traversal on G.



Adversarial models

Previous models: Choose E′
⊆ E and/or a subset of memory gates V ′,

and for each a ∈ E′
∪ V ′: toggle it, reset it to 0, set it to 1. The attacks

may be permanent. (Example: reset to 0, toggle)

Original computation

x1 = 1 x2 = 0 s1 = 1 s2 = 1 s3 = 0

y1 = 0 y2 = 0 y3 = 1
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∧

∧
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Tampered computation

x1 = 1 x2 = 0 s1 = 1 s′2 = 1 s3 = 0

y1 = 0 y2 = 0 y3 = 1

∧ ∨

∧

∧

1 0 01

1

0

0

1

1

1

0 1



Gate attacker

Choose a subset of circuit gates V ′ ⊆ V , and for each g ∈ V ′,

substitute g with some g′, where arity(g) = arity(g′). For binary

fan-in there are 16 functions from {0, 1}2 → {0, 1}.



Impossibility

Theorem (informally)

Security is unachievable if we allow an adversary to tamper with

(k − 1)d circuit wires or d gates, where d denotes the circuit

depth and k is the circuit’s fan-in.

Any compiler that receives Cs, t, k, and produces circuit C ′

s′
of

depth no greater than t, is insecure regardless of its size.



Impossibility (proof sketch)

1. Non-triviality (assumption): For every circuit Cs and
every PPT adversary A there exists non-negligible f(m),
m = |s|, s.t.

Pr[ACs(·)(·) = s] < 1− f(m).

2. Weakly unpredictable bit: We prove that for every
non-trivial circuit there exists an index i, 1 ≤ i ≤ m, s.t.
for every A there exists a non-negligible function δ(m) such
that

Pr[ACs(·)(·) = si] < 1− δ(m).

3. We define a tampering adversary with tampering ability up
to the depth of the circiut who learns the weakly
unpredictable bit with probability equal to 1.

4. We prove that this adversary is unsimulatable.



Impossibility (proof sketch)

Let s2 be the weakly unpredictable bit.
Wire adversary: reset to 0, set to 1.
Gate adversary: f(x, y) = y.

x1 = 1 x2 = 0 s1 = 1 s2 = 0 s3 = 0

y1 y2 = s2 y3

∧ ∨

∧

∧

Wire adv.: (k− 1)d wires
Gate adv.: d gates



Relation between gate and wire adversaries

We consider boolean circuits with binary fan-in.
There are 16 functions from {0, 1}2 to {0, 1}.
Any tampering attack on wires is simulatable by
the gate attacker, e.g.,:

∧

x y

z

wire attack f(x, y)

(T, z) ¬(x ∧ y)

(T, (x, y, z)) x ∨ y

(S, x) y

(T, x) ¬x ∧ y

(R, x) 0



Gate adversaries are strictly stronger

Main observation: the wire adversary cannot produce
the XOR and NXOR tampering effects.

For all t, k ∈ N, polynomial in n ,we construct a circuit C̃
whose size depends on n, t and k, s.t.

C̃sC̃s

Ag 6≈ Aw

Ag tampers with n circuit gates.

Aw tampers with up to t circuit wires, where t can be
arbitrarily larger than n.
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Gate adversaries are strictly stronger (proof idea)

The strategy of Ag:

In one round, Ag transforms the AND gates into XOR gates
and then returns the output of the circuit, i.e., returns
((c, z,m1), σ2), where m1 = ((c, s′a, s

′

b
), σ1) and z = s′a ⊕ s′

b
,

while in the normal execution z = s′a ∧ s′
b
.

Aw needs to produce the same tampering effect while
having access to C̃ for polynomially many rounds.

Attack vectors for Aw:

Do nothing hoping that s′a ∧ s′
b
= s′a ⊕ s′

b
. This happens

with negligible probability in n.

Attack the AND gates directly and try to produce the XOR.

Attack C1 or C2 so as to retrieve the secret keys.

Forge a valid message-signature pair having the desired
structure.

Substitute m1 with m′

1 taken from a previous
computation. Then, the counter values would be different.



z1 zn. . .

s′
n

s′1 . . .s′
n+1 s′2n

∧· · ·∧

. . .

C1

Fs(c)

s′
bs′

a

Signsk′(c, s
′
a, s

′

b
)

c

c

m1 = ((c, s′
a
, s′

b
), σ1)

C2

Cr2

c
Signsk′(c, z,m1)

C̃

m2 = ((c, z,m1), σ2)

(PRF)
(counter)

Cr1

(counter)

z

(t, k)-wire secure implementation

(t, k)-wire secure implementation

∧

Gate attacker



A general compiler strategy

y

Cs

t

x

Error Detection

Mechanism

Decoder

y

x k

Compiler

Encoder Encoded

Memory

Main computation

Original Circuit

∧

x

z

C∧

Enc(z)

(t, k)-secure transformation

Enc(x)

s

Enc(s)



The encoding of [IPSW06]

A randomized additive k-secret sharing:

x: input bit, s: private memory bit.

Additive secret sharing x = r1 ⊕ . . .⊕ rk.

Then replicate each ri 2kt times (do the same for s).

Enc(x) = (r2kt1 , . . . , r2kt
k

) of length 2k2t.

k: security parameter, t: max. number of attacks.

C∧

Enc(z)

∧

x

z

Enc(x)

s

Enc(s)

Mega-gate



Security of [IPSW06] against wire attackers

Security relies on:

1. The randomization of the encoding.

2. The refreshing of the randomization after each mega-gate
operation.

In the case of wire tampering the randomization produced by
randomness gates is sufficient.

We show this is not the case for gate attackers.



The gate attack against randomness gates

If each r2kt
i

is the output of a randomness gate with fan-out 2kt
(as in the middle-stage compiler of [IPSW06]):

C∧

The simulation

the derandomization
of the encoding

breaks due to
gates of C∧

2. Set to zero k − 1 randomness

Enc(z)

Enc(s)x Encoder

gates used to encode x

Gate attacker
1. Set to zero the k − 1 randomness

3. Tamper with a gate that outputs zk

zi = 0, i ∈ [k − 1]
zk = x · s



Circuit compilers and defending against tampering
attackers

We introduce a set of characteristics w.r.t. a class of tampering
attackers and we prove:
Theorem. Any circuit compiler that satisfies this set of
characteristics against a class of tampering attackers produces
circuits that are tamper resilient against this class of attackers.

Finally, we show that substituting randomness gates with
PRNGs, the [IPSW06] compiler satisfies the set of
characteristics w.r.t. gate attackers.

Corollary. There is a circuit compiler that transforms any
circuit to a circuit that is tamper-resilient against
gate-attackers.
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