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Derandomizing encryption schemes
Trying to build injective trapdoor functions

Encpk(x , r)

CPA secure encryption of x

Encpk(x , f (x))

Randomness is a function of message

Is this one-way?

In general this is a bad idea!
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Encrypting randomness dependent messages is a bad idea
A simple example: using message as randomness

Suppose:
I Encpk(·, ·) is CPA secure
I Messages and randomness are the same length

If x = r
c = x

Else
c = Encpk(x , r)

x

r

c

If Encpk(·, ·) is CPA secure then so is this

Enc′pk(·, ·)

x 7→ Enc′pk(x , x) is not one-way



Encrypting randomness dependent messages is a bad idea
A simple example: using message as randomness

Suppose:
I Encpk(·, ·) is CPA secure
I Messages and randomness are the same length

If x = r
c = x

Else
c = Encpk(x , r)

x

r

c

If Encpk(·, ·) is CPA secure then so is this

Enc′pk(·, ·)

x 7→ Enc′pk(x , x) is not one-way



Encrypting randomness dependent messages is a bad idea
A simple example: using message as randomness

Suppose:
I Encpk(·, ·) is CPA secure
I Messages and randomness are the same length

If x = r
c = x

Else
c = Encpk(x , r)

x

r

c

If Encpk(·, ·) is CPA secure then so is this

Enc′pk(·, ·)

x 7→ Enc′pk(x , x) is not one-way



Message-dependent randomness

I x 7→ Encpk(x , x) is not one-way

I What about
x 7→ Encpk(x , h(x))?



This approach is doomed to fail

Theorem ([GMR01])

There is no black-box construction of injective trapdoor functions
from IND-CPA secure cryptosystems



Random oracles break message dependency

If Enc is IND-CPA secure, and h is a RO, then

I x 7→ Enc(x , h(x)) is a one-way trapdoor function [BHSV98]

I x 7→ Enc(x , h(pk, x)) is deterministic encryption [BBO07]



Dependencies between messages and randomness

I x 7→ Enc(x , x) may not be one-way

I x 7→ Enc(x , h(x)) is one-way when h is a RO

I What if h is a some other function?



Main result

If:

I Enc is lossy encryption

I h is a pairwise independent hash function

I Message space is larger than the randomness space

Then:
x 7→ Enc(x , h(x)) is an injective trapdoor function
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Lossy Cryptographic Primitives

I Lossy primitives have two types of public-keys
I Injective keys - these allow decryption / inversion
I Lossy keys - these statistically lose information about the

message / input

I The two types of keys are computationally indistinguishable



Lossy Encryption
[GOS06, PW08, PVW08, KN08, BHY09]

G (1λ,mode),E (pk ,m, r),D(sk, c)

Correctness:

For all m, r

D(E (pkI ,m, r)) = m

Lossiness:

For all m0,m1

{E (pkL,m0, r)} ≈s {E (pkL,m1, r)}

Indistinguishability

{pkI : pkI ← G (1λ, Injective)} ≈c {pkL : pkL ← G (1λ, Lossy)}

Notice: Indistinguishability + Lossiness =⇒ IND-CPA security
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Lossy Trapdoor Functions [PW08]

FI ≈ F`

FI

F−1I

Injective Mode Lossy Mode

F`



Lossy Trapdoor Functions in Detail

(s, t) GLTDF (1λ, inj)

(s,⊥) GLTDF (1λ, lossy)

Trapdoor:

F−1(t,F (s, x)) = x
Lossiness:

| imF (s, ·)| ≤ 2r

The first outputs of GLTDF (1λ, inj), and GLTDF (1λ, lossy) are
computationally indistinguishable
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Constructions of LTFs

I DDH,LWE [PW08]

I DCR [RS08, BFO08]

I D-Linear, QR [FGK+10]

I Φ-Hiding [KOS10]

I EDDH [HO12]



Implications of LTFs

I IND-CCA encryption (also IND-CPA,CRHFs,OT,PRGs)
[PW08]

I Deterministic Encryption [BFO08]

I Correlated Product Security [RS09, MY09]

I Replace RO in RSA-OAEP [KOS10]

I Leaky Pseudo-entropy Functions [BHK11]
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Lossy Encryption

Standard Encryption

Message Space

Ciphertext Space

x

Encryptions of x

Perfect correctness is
equivalent to
disjointness

Perfectly Lossy Encryption

If the number of messages is
larger than the number of

encryptions of zero, we have
lossiness
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Perfectly Lossy Encryption Implies LTFs
A simple warmup

I Suppose
I Enc is a perfectly lossy encryption.
I |M| > |R| (|Message Space| > |Randomness Space|)

I Define:
Fpk(x) = Encpk(x , 0)

Then Fpk(x) is a lossy trapdoor function.

I Proof:
In lossy mode, the image of F is bounded by |R| < |M|.
Injective and lossy modes are indistinguishable because Enc is
a lossy encryption.
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Lossy Encryption

Standard Encryption

Message Space

Ciphertext Space

Perfectly Lossy EncryptionStatistically Lossy Encryption

Even if Enc(x ,R) is small and the
overlap is large, the union of all the
encryption spaces will be larger than
|M|, so the previous argument fails.



Lossy Encryption

Standard Encryption

Message Space

Ciphertext Space

Perfectly Lossy Encryption

Statistically Lossy Encryption

Even if Enc(x ,R) is small and the
overlap is large, the union of all the
encryption spaces will be larger than
|M|, so the previous argument fails.



Lossy Encryption

Standard Encryption

Message Space

Ciphertext Space

Perfectly Lossy Encryption

Statistically Lossy Encryption

Even if Enc(x ,R) is small and the
overlap is large, the union of all the
encryption spaces will be larger than
|M|, so the previous argument fails.



Lossy Encryption

Standard Encryption

Message Space

Ciphertext Space

Perfectly Lossy Encryption

Statistically Lossy Encryption

Even if Enc(x ,R) is small and the
overlap is large, the union of all the
encryption spaces will be larger than
|M|, so the previous argument fails.



Lossy Trapdoor Functions from Lossy Encryption
Main result

I Suppose
I Enc is a lossy encryption.
I The plaintext space, M is larger than the randomness space
R.

I Define: Fpk(x) = Encpk(x , h(x))
where h is a pairwise independent hash function. Then Fpk(x)
is a lossy trapdoor function.



Lossy Trapdoor Functions from Lossy Encryption

I Proof Sketch:
We must show that in lossy mode, with high probability over
the choice of h, the size of

∣∣⋃
x∈M Encpk(x , h(x))

∣∣ < |M|.
Let C0 = Encpk(0,R) (the set of encryptions of 0).

I In lossy mode, with high probability over x ,
Encpk(x , h(x)) ∈ C0.

I Expected number of points Fpk(x) ∈ C0 is large.

I Pairwise independence shows variance is small.

I With high probability most of the evaluations Fpk(x) lie in the
small space C0.



Lossy Trapdoor Functions from Lossy Encryption
Consequences

I Main Result: Lossy encryption with plaintexts at least one
bit longer than the randomness implies LTFs.

I Lossy Encryption is equivalent to statistically sender private
1-2-OT, so statistically hiding OT with long messages implies
lossy trapdoor functions and hence injective trapdoor
functions.

I The primary open question is whether we can relax the
requirement on plaintext length.



Comparison to Non-Lossy Case

I [BHSV98]: when Enc is an IND-CPA secure cryptosystem,
and h is a random oracle, Fpk(x) = Encpk(x , h(x)) is an
injective trapdoor function.

I [BBO07]: when Enc is an IND-CPA secure cryptosystem, and
h is a random oracle, Fpk(x) = Encpk(x , h(x ||pk)) is
deterministic encryption.

I Our results do not require a random oracle.
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Randomness dependent message security
See also [BCPT13]

pk
$← Gen(1λ)

~r = (r1, . . . , rn)
$← coins(Enc)

(f1, . . . , fn)
$← A1(pk)

~c = (Enc(pk, f1(~r), r1), . . . ,Enc(pk, fn(~r), rn))

b ← A2(~c)

Real

Ideal

~c = (Enc(pk, 0, r1), . . . ,Enc(pk, 0, rn))

Parallels KDM security [BRS03, BHHO08, HU08, ACPS09]
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Randomness Circular Security
Definition

A cryptosystem is Randomness Circular Secure if

{pk,Enc(pk, r2, r1),Enc(pk, r3, r2), . . . ,Enc(pk, rn, rn−1),Enc(pk, r1, rn)}
≈c

{pk,Enc(pk, 0, r1), ...,Enc(pk, 0, rn)}

Similar to (key) circular security [CL01, BRS03, BHHO08]
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RCIRC One-wayness
Definition

A cryptosystem is RCIRC-one-way if the map

(r1, . . . , rn) 7→ (Enc(pk, r2, r1), . . . ,Enc(pk, r1, . . . , rn))

is one-way

Implies one-way trapdoor functions



RCIRC One-wayness
Definition

A cryptosystem is RCIRC-one-way if the map

(r1, . . . , rn) 7→ (Enc(pk, r2, r1), . . . ,Enc(pk, r1, . . . , rn))

is one-way

Implies one-way trapdoor functions



Introduction

Lossy Encryption and Lossy Trapdoor Functions

LTFs from Lossy Encryption

Randomness Dependent Message (RDM) Security

Conclusion and Open Problems



Conclusions

I Lossy Encryption with long plaintexts implies LTFs

I OT with long messages implies injective trapdoor functions



Open Problems

I Does Lossy Encryption imply LTFs?
i.e. can we drop the restriction on plaintext length?



Thanks

Thanks!
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