

Leakage-Resilient Chosen-Ciphertext Secure Public-Key Encryption from Hash Proof System and One-Time Lossy Filter

Baodong Qin and Shengli Liu

Shanghai Jiao Tong University

ASIACRYPT 2013 Dec 5, Bangalore, India

Why We Consider Secrets Leak?

THEORY

REAL LIFE

Why We Consider Secrets Leak?

THEORY

REAL LIFE

Why We Consider Secrets Leak?

THEORY

REAL LIFE

Bounded Leakage Model

Inspired by "cold-boot" attack/memory attack [Halderman et al.08]

➢Not only computation leaks information

➢ Model: leakage oracle

 $\mathcal{O}_{SK}^{\lambda,\kappa}$:

- $f_i: \{0,1\}^* \to \{0,1\}^{\lambda_i}$
- $\sum_i \lambda_i \leq \lambda$
- Leakage rate: $\lambda / |SK|$

Public-Key Encryption

Semantic security against key leakage and CCA [NS09] $\mathsf{PKE}.\mathsf{Enc}(PK, M_0) \stackrel{c}{\approx} \mathsf{PKE}.\mathsf{Enc}(PK, M_1)$ PKAdversary $(PK, SK) \leftarrow \mathsf{PKE}.\mathsf{Gen}(1^{\kappa})$ CT $M \leftarrow \mathsf{PKE}.\mathsf{Dec}(SK, CT)$ Decryption queries f(SK)Leakage M_0, M_1 $b \leftarrow \{0, 1\}$ queries CT^* $CT^* \leftarrow \mathsf{PKE}.\mathsf{Enc}(PK, M_b)$ $CT \neq CT^*$ $M \leftarrow \mathsf{PKE}.\mathsf{Dec}(SK, CT)$ output b'

Public-Key Encryption

Previous Works

High leakage-rate (e.g. 1-o(1), using NIZK) but
 either no efficient instantiations [NS09] or
 over a pairing-friendly group (efficient, but the ciphertext size is a little bit large) [Dodis et al.10, Galindo et al.12]

Previous Works

- High leakage-rate (e.g. 1-o(1), using NIZK) but
 either no efficient instantiations [NS09] or
 - ➢over a pairing-friendly group (efficient, but the ciphertext size is a little bit large) [Dodis et al.10, Galindo et al.12]
- \succ Low leakage rate (e.g. 1/4-o(1)), but
 - very practical construction via hash proof system [NS09,Li et al.12, Liu et al.13]
 - > has short ciphertext size (for reasonable leakage rate)
 - ► Instantiations under DDH, DCR etc. (without pairing)

Question

From [Dodis et al. Asiacrypt 2010]

..., it seems that the hash proof system approach to building CCA encryption is inherently limited to leakage-rates below 1/2: this is because the secret-key consists of two components (one for verifying that the ciphertext is well-formed and one for decrypting it) and the proofs break down if either of the components is individually leaked in its entirety.

However, no HPS-based PKEs are known achieving leakagerate 1/2-o(1), especially under DDH or DCR assumptions.

Question: can we find a new way to construct LR-CCA secure PKEs which are as practical as HPS with reasonable high leakage-rates, like 1/2-o(1)?

Family of projective hash functions C

Subset membership problem: $v \stackrel{c}{\approx} c \setminus v$ (valid/invalid)

B. Qin and S. Liu | LR-CCA Secure PKE from HPS and OT-LF

 \mathcal{V}

Family of projective hash functions C

Subset membership problem: $v \stackrel{\scriptscriptstyle \diamond}{\approx} c \setminus v$ (valid/invalid)

B. Qin and S. Liu | LR-CCA Secure PKE from HPS and OT-LF

 \mathcal{V}

Family of projective hash functions C

Subset membership problem: $v \stackrel{\scriptscriptstyle \sim}{\approx} c \setminus v$ (valid/invalid)

 \mathcal{V}

Part I: One-Time Lossy Filter

Part II: The Construction and Security Proof

Part III: Instantiation and Comparison

Part I: One-Time Lossy Filter

Part II: The Construction and Security Proof

Part III: Instantiation and Comparison

One-Time Lossy Filter

Similar to (chameleon) all-but-one lossy trapdoor functions [PW08,LDL11]

 \succ not require efficient inversion.

- Simplified version of lossy algebraic filter (for CIRC-CCA security) [Hof13]
 - > not require any algebraic property,
 - but require that lossy function reveals constant information of its input even for larger domain (by adapting some public parameters).

$$\begin{array}{c} \blacktriangleright \text{Tag space: } \mathcal{T} = \{0,1\}^* \times \mathcal{T}_c = \mathcal{T}_{loss} \cup \mathcal{T}_{inj} \\ \hline \\ \text{ ore tag part } & \text{ lossy tags } \end{array}$$

Properties

Properties

Lossy tag is generated via a trapdoor Ftd.
 For any auxiliary input t_a, it is easy to compute a core tag t_c, such that (t_a,t_c) is a lossy tag via the trapdoor.
 Without the trapdoor, it is hard to generate a new non-injective tag even seen one lossy tag.

Part I: One-Time Lossy Filter

Part II: The Construction and Security Proof

Part III: Instantiation and Comparison

Construction Idea

One entropy source used in two purposes.
 Mask the plaintext (applying an extractor)
 Verify the well-formedness of the ciphertext (applying a special injective function: one-time lossy filter)

The PKE Scheme

Ciphertext: $CT = (C, s, \Psi, \Pi, t_c)$

The PKE Scheme

Ciphertext: $CT = (C, s, \Psi, \Pi, t_c)$

Proof Idea: decryption query

Proof Idea: decryption query

Proof Summary

Encryption query

Decryption queries

HPS OT-LF	valid	invalid
injective	\checkmark	×
lossy	X	X

Part I: One-Time Lossy Filter

Part II: The Construction and Security Proof

Part III: Instantiation and Comparison

Instantiation: <q, G, g>

 $F(x, t^*)$

➢ n-fold parallelization of [CS02] construction.

 $\begin{cases} |\mathcal{K}| = q^n \\ |\mathcal{S}\mathcal{K}| = q^{2n} \implies \text{leakage-rate is } 1/2 - o(1) \\ & \mathbf{\mathcal{O}}\mathsf{T}\mathsf{-}\mathsf{L}\mathsf{F}\mathsf{, similar to DDH-based lossy trapdoor} \\ & \text{function: Domain: } \mathbb{Z}_q^n \ \text{, image values: } |q| \end{cases}$

Chameleon hash

 $\mathsf{CH}(t_a, t_c)$ B. Qin and S. Liu LR-CCA Secure PKE from HPS and OT-LF

Efficiency Comparison

Table 1: Relations between leakage-rate and ciphertext overhead (# 80-bit)

Leakage-rate Schemes	1/8	1/6	1/4	1/3	3/8	2/5	1/2	1
DHLW10 [11]	94	95.2	98	101.5	103.6	105	112	-
GHV12 [16]	32	32	36	36	40	40	44	-
NS12 [28]	36	-	_	-	-	-	-	-
LZSS12 [25]	18	27	_	-	-	-	-	-
Ours	12	12	14	20	24	30	-	-

> Advantages:

≻Achieve 1/2-o(1) under DDH/DCR

> shorter ciphertext overhead (when leakage rate $\leq 2/5$)

➢ better than HPS-based construction [28,25]

Disadvantages: below 1/2.

Conclusion and Further Work

- > A new primitive: one-time lossy filter
- > A generic construction of LR-CCA-secure PKE
- Efficient instantiations under DDH and DCR assumptions (with better leakage-rate 1/2-o(1))
- Further work:
- Improve the leakage-rate to [1/2, 1) without loss the practicality.
- Leakage-flexible CCA-secure PKE without pairing.

Thank You!