

Limited-Birthday Distinguishers for Hash Functions

Collisions Beyond the Birthday Bound can be Meaningful

Mitsugu Iwamoto¹, Thomas Peyrin² and Yu Sasaki³

The University of Electro-Communications, Japan
 Nanyang Technological University, Singapore
 NTT Secure Platform Laboratories, Japan
 Asiacrypt 2013 (5/Dec/2013@Bengaluru)

Research Summary

- Prove the generic attack cost of the LBD — the known generic attack [GP10] is optimal.
- LBD is useful
 - LBD for hash functions \rightarrow breaking the dTCR notion.
- Constructing LBD on hash functions
 - Converting semi-free-start collisions (on the comp. func.) even with complexity beyond $2^{n/2}$.
- Find LBD for concrete designs
 - Some achieve the best attack for the hash setting: eg. RIPEMD128, Whirlpool

Hash Functions

- Hash Functions provide a fixed-size message fingerprint for arbitrary length message.
- Merkle-Damgård Construction

Many schemes are proven to be secure by assuming the ideality of the underlying primitive.
 → Showing a non-ideality is important.

NTT

Limited Birthday Distinguishers (LBD)

- Recently, especially in the SHA-3 competition, many distinguishing attacks have been proposed.
 e.g. q-multi-coll., Rotational dist., subspace dist.
- Limited-Birthday Distinguisher [GP10] finds paired values satisfying the set of pre-specified input diffs Δ^{IN} and output diffs Δ^{OUT} .

$$\Delta^{IN} \xrightarrow{\rightarrow} \underbrace{\mathsf{target}}_{CF} \Delta^{OUT} \bigoplus \Delta^{IN} \xrightarrow{\rightarrow} \underbrace{\mathsf{ideal}}_{CF} \Delta^{OUT}$$

compare
the costs
What's the cost?

NTT Known Generic Attack for LBD [GP10]

- Previous method conjectured to be the best
 - Fix 2^{n-I} inactive input bits
 - Choose all 2^{I} active input bits and make all (2^{2I-1}) pairs.
 - Repeat the above, by changing inactive input bits.

Theorem 1. The limited-birthday attack complexity in [15]

$$\max\left\{2^{\frac{n-O+1}{2}}, 2^{n-I-O+1}\right\}$$

Oescribing LBD with Bigraph Describing LBD with Bigraph

- Classify 2ⁿ input values into 2^{n-I} groups indexed by non-active n-I bits values. (Do the same for output.)
- Represent each input/output group by a nodes
- Represent the map from input to output by edges.
 Each input node can have 2¹ edges in maximum.

Up to 2⁷ edges from each node

1 query to obtain 1 edge

Oescribing LBD with Bigraph Describing LBD with Bigraph

- Achieving LBD is equivalent to find multiedges.
- Valid pair: a pair of edges sharing the same input node.
- If 2^{*n*-0} valid pairs are generated, multiedges will be found.

Up to 2⁷ edges from each node

1 query to obtain 1 edge

- How many valid pairs can be generated with X queries?
- Suppose $d_i (1 \le i \le 2^{n-I})$ is the number of edges coming from the input node *i*.
- The number of valid pairs (#V) is:

$$\#V = d_1^2/2 + d_2^2/2 + \dots + d_{2^{n-I}}^2/2$$

• Constraint equations are: $\begin{bmatrix} d_1 + d_2 + \dots + d_{2^{n-I}} = X \\ 2^I \ge d_1 \ge d_2 \ge \dots \ge d_{2^{n-I}} \ge 0. \text{ (Descendent order)} \end{bmatrix}$

Proof Approach

• Use the theory of majorization

• Proof is available in the paper.

- Interesting corollary: The proof can be extended to
 - limited-birthday multi-collisions
 - limited-birthday k-sums.

LBD for Hash Functions

- So far, LBD is mainly discussed only for a part of the hash function *i.e.*
 - underlying compression function
 - internal permutation
- We discuss LBD for the hash function *i.e.*
 - Fixed initial value
 - $\Delta^{\rm IN}$ only exists in the input message before padding
 - $-\,\Delta^{\rm OUT}$ is defined on the hash digest

NTT Applications of LBD for Hash Function

• Target collision resistance is a security notion for hash function with tweak value *T*.

Definition. (Target Collision Resistance) The following attack must take 2^n cost.

- The adversary chooses an input value I_1 .
- -T is chosen without a control of the adversary.
- The adversary finds an input I_2 s.t. $H(I_1) = H(I_2)$.

Definition. (differential Target Collision Resistance)

The following attack must take $2^n \cos t$.

- The adversary chooses an input difference Δ .
- -T is chosen without a control of the adversary.
- The adversary finds an input I s.t. $H(I) = H(I \oplus \Delta)$.

• A limited birthday distinguisher with $|\Delta^{IN}|=1$ and $\Delta^{OUT}=\{0\}$ immediately breaks the *dTCR* notion.

• Semi-free-start collisions (on *CF*):

Find $(H_{i-1}, M_{i-1}, M'_{i-1})$ s.t. $CF(H_{i-1}, M_{i-1}) = CF(H_{i-1}, M'_{i-1})$

$$\Delta = 0 \quad H_{i-1} \xrightarrow{\Lambda} D \quad H_i \quad \Delta = 0$$

- In many cases, the input message difference *∆*^{IN} is fixed in advance.
- This property is stronger than the collision attack with the birthday paradox.

Converting Semi-Free-Start Collisions

- 3-block LBD with Input difference $(0||\Delta^{IN}||0)$
- Suppose the cost for semi-free-start coll is 2^x.

3. Collision is preserved for padding block.

Converting Semi-Free-Start Collisions

- 3-block LBD with Input difference $(0||\Delta^{IN}||0)$
- Suppose the cost for semi-free-start coll is 2^x.

3. Collision is preserved for padding block.

Converting Semi-Free-Start Collisions

- 3-block LBD with Input difference $(0||\Delta^{IN}||0)$
- Suppose the cost for semi-free-start coll is 2^x.

3. Collision is preserved for padding block.

Remarks for Conversion Method

- The attack complexity is $2^{(n+x)/2+1}$. Semi-free-start collisions with comp. beyond $2^{n/2}$ can be a valid LBD.
- Can be extended to (not too) wide-pipe, e.g. SHA224
- Be careful for the freedom degrees of the semi-freestart collision attack. Sometimes, generating 2^{(n-x)/2} of them is impossible.
- Can be extended to limited-birthday near-collisions $(\Delta^{OUT} \text{ can be other than } \{0\}).$
 - Differential path construction becomes easier.
 - Padding must be satisfied within the second block.

ОТ ПОВ 10 ОТ

· · ·				
target	\mathbf{rounds}	time	\mathbf{memory}	\mathbf{type}
AES-DM hash func.	7/10	2^{125}	2^{8}	preimage attack
AES-DM hash func.	6/10	2^{113}	2^{32}	limited-birthday dist.
AES-MP hash func.	7/10	2^{120}	2^{8}	2nd preimage attack
AES-MP hash func.	6/10	2^{89}	2^{32}	limited-birthday dist.
HAS-160 hash func.	68/80	$2^{156.3}$	2^{15}	preimage attack
HAS-160 hash func.	65/80	2^{81}	2^{80}	limited-birthday dist.
●LANE-256 hash func.	full	2^{169}	2^{88}	limited-birthday dist.
•LANE-512 hash func.	full	2^{369}	2^{144}	limited-birthday dist.
RIPEMD-128 hash func.	full	$2^{105.4}$	negl.	limited-birthday dist.
•RIPEMD-128 hash func.	full	$2^{95.8}$	$2^{33.2}$	limited-birthday dist.
SHA-256 hash func.	42/64	$2^{251.7}$	negl.	preimage attack
SHA -256 hash func.	38/64	2^{129}	2^{128}	limited-birthday dist.
Whirlpool hash func.	6/10	2^{481}	2^{256}	preimage attack
•Whirlpool hash func.	7/10	2^{440}	2^{128}	limited-birthday dist.
	1 • • • •			· · · ·

• : best attack in the hash function setting

Concluding Remarks

- Prove the optimality of the generic attack for LBD.
- LBD on hash functions can be used to attack the new security notion "differential-TCR".
- LBD on hash functions can be constructed from semi-free-start collisions even with complexity beyond $2^{n/2}$.
- Apply the above conversion for several hash functions. Some achieved the best attack.

Thank for your attention !!

Concluding Remarks

- Prove the optimality of the generic attack for LBD.
- LBD on hash functions can be used to attack the new security notion "differential-TCR".
- LBD on hash functions can be constructed from semi-free-start collisions even with complexity beyond 2^{n/2}.
- Apply the above conversion for several hash functions. Some achieved the best attack.

Thank for your attention !!