The Growth and Development of Public Key Cryptography

By Clifford Cocks

Old Style Cryptography

Key Management in the 60s
Explosion in the need for secure comms
Key management very labour intensive
Real concerns of security as net sizes get bigger

Solution: Do some research into more efficient methods

James Ellis

It is generally regarded as self-evident that....

Init is necessary to have some initial information....

....kept SECRET from the interceptor

Non-Secret Encryption

Secure messages sent even though

- the method of encipherment and

-all transmissions

are known to the interceptor

Clue from the Past

1944Bell Labs Technical report

For a short wire connection: Recipient adds Random noise to the line which (since he knows it) he can subtract again

Rx

Noisy Line

Noise

Signal

Model NSE System

Existence Proof

M1, M2 and M3 are huge look-up tables

Say -M1 is a 2**100 long 1 dimensional table

M2 is a 2**100 x 2**100 2 dimensional table

M3 is the appropriate 2 dimensional table to make the whole thing work

Table Construction

M3[M2[P,M1[K]],K] = P

The Search is on!

It is easy to see that such machines can be represented as look-up tables

The question is, can we find realisable machines with the required functionality (ie computable functions with the right properties)

Early Reactions

1969 Chief Mathematician comments

- -No reason in principle against the scheme
- but can't think of implementation
- impressed by James' ingenuity
- -but uncertain how to take advantage of it

1970 - 1973 Several studies by mathematicians and engineers

But no useful results!

Breakthrough

Tunnel vision

Ellis Model

Nov 1973 1st practical solution

Solution

Cocks Implementation

Malcolm Williamson

Used as components of many cryptologics of the time

Distance Problem: Find number of steps between fills

Natural representation as Finite Fields

Williamson's 1st Method

January 1974

Message a: Fill of shift register of cycle length p

Williamson's 2nd Method

Autumn 1974, written up August 1976

Recipient

X**b

Both can calculate X**ab

same as Diffie Hellman

Sender

X**a

Reactions to Real NSE

- CESG investigates implementation
 - -Williamson preferred for engineering reasons
 - Concern about authentication
- 1970's technology not up to the job
- Debate on 'To patent or Not to patent'

Rediscovery I (Diffie-Hellman)

Jan 1976 'Multiuser Cryptographic techniques' -introduces PKC but no example or existence proof -Ellis: 'They are where I started in 1969' - shows Ellis solution to Authentication problem Nov 1976 'New Directions in Cryptography' – Williamson 2nd Method

Rediscovery II (RSA)

Apr 1977 'A method for obtaining Digital Signatures and Public-key Cryptosystems'

What Then?

Developing Theory -New Attacks -Mathematical Rigour -New Primitives Practical Uses -Cryptographic Products -Technology needed to catch up -Standards Emerge

Developing Theory

A hard mathematical problem does not guarantee a secure cryptosytem

$\begin{tabular}{l} KNAPSACKS I \\ Merkle & Hellman (1978): the subset sum problem \\ Given S, \{M_i\} \\ finding b_i \in \{0,1\} \mbox{ such that } \Sigma b_i M_i = S \\ is hard \end{tabular}$

if $M_k > \Sigma M_i$ (superincreasing) it is easy

but

KNAPSACKS II

Hide the superincreasing sequence N, L, {M_i} is the secret key {K_i = L M_i mod N } is the public key

To encrypt {b_i} compute S = Σb_iK_i (so finding b_i is hard) To decrypt L⁻¹S mod N = Σb_iM_i mod N (so finding b_i is easy)

KNAPSACKS III

Shamir Crypto'82:

 $M_1, M_2 \dots$ are very small,

 $K_i = L M_i \mod N$ and so for many i,

(L⁻¹ mod N) K_i is close to a multiple of N

 K_i ((L⁻¹ mod N)/N) is close to an integer

Can use Lenstra's smallest vector in lattice methods to get approximation to (L⁻¹ mod N)/

Adi Shamir, Ron Rivest, Len Adleman, Ralph Merkle, Martin Hellman, and Whit Diffie receive an award from IEEE at Crypto 2000

Provable Security

Goldwasser & Micali 1984 Security provably equivalent to quadratic residuosity.

Alice: N=PQ c s.t. (c/P)=(c/Q)=-1Bob: To send m $\in \{0,1\}$ Choose random y Send y² c^m (mod N)

Security Proofs

Theory now well developed -Fundamental part of subject Allows for clarity -What security properties are claimed -What mathematical/algorithmic primitives underly security? Needed for cryptosystem to be accepted

Developing Theory

Neal Koblitz, Victor Miller 1985 $Y^2 = X^3 + AX + B$

Defines group structure on points

Elliptic Curves

Neal Koblitz, Victor Miller 1985 $Y^2 = X^3 + AX + B$ on Finite Field Defines finite group structure on points **Alternative group for Diffie-Hellman** N bits of security require only 2N bits of key much shorter transmissions than other methods

Products

Experimental Hardware ~1980
Sandia, MIT
Commercial Products from ~1985
Cylink CY1024
Racal Datacryptor
STU III

CATAPAN & THAMER

Software Era – Internet Growth

Software Era - PGP

PGP

- Published 1991 by Phil Zimmerman
- Email encryption and signatures
- Introduces "web of trust" to manage public keys

Standards & Protocols

X.509 Certificates ISO 1988 PKCS RSA Data Security 1991 on 1991 DSA Signature Algorithm **SSL** Netscape 1994 **IPSec** 1995 **SMIME RSA Data Security 1995** Now IETF lead on standards

Public Key Attacks

Low exponent

encrypt Hastad 1985
 decrypt Wiener 1990
 non-random padding Coppersmith 1995

Moral: Beware of small exponents

Public Key AttacksLow exponent Coppersmith 1995

Polynomial of degree k:p(x)=0 mod N has root x_0 where $|x_0| < N^{(1/k)}$ Then short vector in lattice methods find x_0 quickly

Fixed padding and low exponent: $y = [****** r_1, r_2, ..., r_m, ******] = ar+b$ See $y^e = (ar+b)^e \mod N$

Public Key AttacksTiming attacksKocher 1996

To compute $y^x \mod N$: set R < --1 z < --y then iterate: If bit i of x = 1: $R < --(R z) \mod N$ $z < --z^2 \mod N$

Time to do modular multiplication may depend on z , R Lots of samples: recover x bit by bit

Moral: Blind the calculation

Public Key Attacks

Quantum Computation

- Shor's Algorithm 1994

- unitary operation on 2ⁿ states with n qbits
- Fourier Transform is a unitary operation
- at end of calculation sample one state by amplitude
- Can use this to break RSA and Diffie Hellman

Public Key Attacks

Quantum Computation– Shor's Algorithm 1994

Calculate $x^a \mod N$ for a = 1,...,M and $M \sim N^2$ Observe x^a , now have set of values $a=a_0 \mod Phi(N)$ Perform Fourier transform on a values to recover Phi(N)

Continuing Developments

PairingsIdentifier Based Cryptography

Identifier Based Cryptography

Shamir 1984

Bob's Public Key derived from his identity

Alice encrypts with no need for directory

Bob gets his Private Key from a Trusted Authority

Identifier Based Cryptography

History

- -Concept Proposed by Shamir 1984
- False starts: e.g. Tanaka 1987
- Expensive Scheme: Maurer 1991
- -QR proposals : Cocks 1998, published 2001
- -Pairings method: Boneh & Franklin 2001
- Improved QR method: Boneh Gentry & Hamburg 2007

Weil Pairing

Elliptic curve over F_q

– e maps E x E --> F_qk
– e(A+B,C) = e(A,C) e(B,C)
– e(A,B+C) = e(A,B) e(A,C)

Originally used to attack proposed curvesLimited sets of "Pairing Friendly" curves

IDPKC from the Weil Pairing

Boneh & Franklin '01

Trusted secret: x global : elliptic curve E /F Authority bilinear map e: $E \times E \longrightarrow F_{n^2}$

Maps identities to points in E

Next Chapter

Implementation Challenge: Make PKI work (better)

Next Chapter

Research Challenge

Find a Convincing & Elegant Quantum Resistant Public Key Algorithm