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Discrete logarithm
problem

® p: prime
e G: cyclic group of order p
e g<=G: a generator of G

e Given (p, G, g, h=g?), find a



Group encoding

o &:/7,—10, 1} : an encoding of 7
e Injective function into some bitstrings

e Concrete representation of group
elements in 7,



DL 1s easy sometimes

e ‘Somewhat’ easy: subexponential
algorithms like index calculus, number
field sieve, ...

e Even easier: G=(Zp, +), g=1

e For a group, there can be good DL
solvers on the group, exploiting the
specific structure of the encoding



DL could be hard
sometimes

e Some believe that DL on some carefully
chosen elliptic curves is hard

e Proof?



DL i1s hard for dumb
solvers

e It is known that DL is hard for generic
algorithms

e An algorithm on a group is generic, if it
works for any encoding

e Example: Baby-Step-Giant-Step

e O(p'/2) group operations to achieve some
constant success probability



DL i1s hard for dumb
solvers

e It is known that DL is hard for generic
algorithms

e An algorithm on a prime-order group is
generic, if it works for any encoding

e Example: Baby-Step-Giant-Step

e This is optimal: Q(p'/2) operations
required to achieve constant success
probability



Generic group model

e Proposed by Nechaev (1994, for DL) and
Shoup (EUROCRYPT 1997, in general)

e Shoup, “Lower bounds for discrete

logarithms and related problems”,
EUROCRYPT 1997



Generic group model

e In GGM, a prime-order group G is given
via a random encoding &:7,—>10,1}!
e Group operations are done via oracle

e Generic algorithms can be implemented
in GGM



Generic group model

e Many cryptographically important
problems have been studied in GGM

e Very often, tight lower bounds were
proven

e Essentially using only one standard
technique, also proposed by Shoup



Multiple discrete
logarithm problem

® p: prime
e G: cyclic group of order p
e g=G: a generator of G

e Given (p, G, g, g%, ..., g%*n), find
f=(ai ... a)



MDL in GGM

e 1 a generic algorithm which solves MDL
in O((np)¥/2) group operations

e Kuhn and Struik, SAC 2001

e Shoup’s technique gives only a trivial
lower bound of Q(p/2)

e Rare exception where the standard
technique fails to give a tight bound






a=((11, coes an)

L()=1
L1=X1

Ln :Xn

So=&(Lo(a))=£&(1)
s1=E&(La(a))=&(aq)

Sn=E(Ln(e))=E(ta)



>N

DO O, v




>N

DO O, v




=
S./
% v
: -
: =
S
7
)
7




>N

DO O, v

Sn+1




>N

DO O, v

Sn+1

Sn+o




>N

DO O, v

Sn+1

Sn+o




Shoup’s technique
applied to MDL






if L{a)=Lj(a) for Jj<1
Si<—S;

else

si<—{0,1}\{so, ***, Si-1}




Shoup’s technique

e Game GO: the game describing the
original problem

e Game G1: modified game where secret
exponents are chosen at the end

e Proving G1 is hard is trivial

e Difference between Go & G1: Schwartz-
Zippel lemma
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si=&(Li(a))




if L{a)=Lj(a) for Jj<1
Si<—S;

else

si<—{0,1}\{so, ***, Si-1}

si=&(Li(a))




if Li=L; fordji«i
Si<—S;j
else

sie{O,l}t\{So, T Si‘l}




GO & 51

e GO and G1 differ ift
Jdi<j, Li#L; A Li(a)=Lj(a)
8 Frldig Li=l; A Li{a)=L(a)]
< (g+n+1)%/2p
e Success probability for G1: 1/p™



Shoup’s technique for
MDL

e Success probability of a solver
< p™+(g+n+1)%/2p

e Meaningless if g=p'/2
e But we want g=Q(n'/2p'/2)



MDL with hyperplane
queries



if L{a)=Lj(a) for Jj<1
Si<—S;

else

si<—{0,1}\{so, ***, Si-1}

si=&(Li(a))




Is Li(a)=Li(a)?

if
Si<—S;
else
si<—{0,1}'\{so, ‘-, Si-1}




1f

else




Li




Li(a) :Lo(a)?

No

Li(a)=L(a)?

No

Li{a)=L-(a)?

No

Wwiyv




SHQ problem

e Search-by-Hyperplane-Queries (SHQ)
e Correctly guess a hidden point a&Z,"

e The solver can make up to g adaptive
hyperplane queries

e “Is acH?” for a hyperplane HCZ "

e A hyperplane H can be described by an
equation a. X;+...+anXn=>b



MDL with hyperplane
queries

e MDL game can be simulated pertectly,
if the challenger has ability to decide if
the hidden exponents a=(aj, ..., an) lie
on a given hyperplane H or not

e Any MDL solver A can be turned into a
SHQ solver B with the same success
probability

e No. of queries: g — (g+n+1)2/2



MDL via SHQ)

e Any lower bound for SHQ yields a lower
bound for MDL

e Lower bound g=Q(np) for SHQ —
lower bound g=Q((np)*/2) for MDL



Search by
Hyperplane Queries

Ci:(0)



Twenty questions

e “Isitan animal?”

e If each question reduces the search
space by half, then you can find the
hidden point within
g = log> p" = n log> p queries



Twenty questions

e A hyperplane query is a terribly bad
question to ask in a game of twenty
questions

e Too thin!



Brute-force solver

e A ‘brute-force’ SHQ solver

e Makes queries of form X;=j for i=1, ..., n
amd 1=1, ..., p-1

e If ais on Xi=j for some j, then the ith
coordinate of a is )

e Otherwise, the ith coordinate is 0

e g=n(p-1) is enough to find a in the worst
case



Main results

e We can show that g = Q(np) in the
average case

e (Also, g=n(p-1) in the worst case)



Twenty questions

e A: a SHQ solver making exactly g
queries and deterministic

e H=(H,, ..., H;): queries made by A
® b=(b,, ..., by): answers received by A

® Then, the success prob. is bounded by
(no. of all possible bs)/p™

® So far, nothing about hyperplanes



Intuition

e No. of possible bs would be at most 29,
so the prob. 1s bounded by 27/p™

e But, it would be very hard to get 1 as an
answer: lower Hamming weight

e No. of possible bs should be much
smaller than 29

e But, is1t?



Useless queries

e You can get easy, useless 1s, if that’s
what you want

e Once you obtain a hyperplane query H
with reply 1, then you can repeat the

same query to get many more 1S

e No useful info about a: meaningless 1s



Useless queries

e If sofar A has asked Hy, ..., H,, H'4, ...,
H’s and got 1s for Hy, ..., Hr, and 0s for
H, ..., Hs, then A knows that
acNH; - UH;

e We say that at this point a query H of A
is useless, if "H; - UH;C H

e 1.e., when A can be certain that the
answer must be 1 without asking



Useful queries

e WLOG, we may assume that A
e Makes exactly g queries
e Is deterministic
e And, never makes useless queries

e This prevents A to obtain meaningless 1s
as answers



Small Hamming
welight

e For such a solver A, there can be only n
1s in the vector b=(b,, ..., by)



A little geometry

e Assume hyperplane queries Hy, ..., Hn
with aENH;

O Then, HN---NH; £Hi1
(Hi+1 1S not useless)



A little geometry

O Then, HN---NH; £Hi1



A little geometry

O Then, HN---NH; £Hi1




A little geometry

O Then, HN---NH; £Hi1




A little geometry

O Then, HN---NH; £Hi1




A little geometry

O Then, HN---NH; £Hi1

e Each additional hyperplane decrements
the dimension of the intersection by 1

® Soom=<n



Finally

e The success probability is bounded by

720 =52 (5)

gy pt o 2

e So, to obtain some constant success
probability, g=Q(np) is needed

e This implies g=Q((np)*/2) for MDL
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