
Generic Hardness  
of the Multiple

Discrete Logarithm
Problem

Aaram Yun

Ulsan National Institute of Science and
Technology, South Korea

EUROCRYPT 2015

Background

• p: prime

• G: cyclic group of order p

• g∈G: a generator of G

• Given (p, G, g, h=gα), find α

Discrete logarithm
problem

• ξ:�p→{0, 1}t : an encoding of �p

• Injective function into some bitstrings

• Concrete representation of group
elements in �p

Group encoding

• ‘Somewhat’ easy: subexponential
algorithms like index calculus, number
field sieve, …

• Even easier: G=(�p, +), g=1

• For a group, there can be good DL
solvers on the group, exploiting the
specific structure of the encoding

DL is easy sometimes

• Some believe that DL on some carefully
chosen elliptic curves is hard

• Proof?

DL could be hard
sometimes

• It is known that DL is hard for generic
algorithms

• An algorithm on a group is generic, if it
works for any encoding

• Example: Baby-Step-Giant-Step

• O(p1/2) group operations to achieve some
constant success probability

DL is hard for dumb
solvers

• It is known that DL is hard for generic
algorithms

• An algorithm on a prime-order group is
generic, if it works for any encoding

• Example: Baby-Step-Giant-Step

• This is optimal: !(p1/2) operations
required to achieve constant success
probability

DL is hard for dumb
solvers

• Proposed by Nechaev (1994, for DL) and
Shoup (EUROCRYPT 1997, in general)

• Shoup, “Lower bounds for discrete
logarithms and related problems”,
EUROCRYPT 1997

Generic group model

• In GGM, a prime-order group G is given
via a random encoding ξ:�p→{0,1}t

• Group operations are done via oracle

• Generic algorithms can be implemented
in GGM

Generic group model

• Many cryptographically important
problems have been studied in GGM

• Very often, tight lower bounds were
proven

• Essentially using only one standard
technique, also proposed by Shoup

Generic group model

• p: prime

• G: cyclic group of order p

• g∈G: a generator of G

• Given (p, G, g, gα1, …, gαn), find  
α=(α1, …, αn)

Multiple discrete
logarithm problem

• ∃ a generic algorithm which solves MDL
in O((np)1/2) group operations

• Kuhn and Struik, SAC 2001

• Shoup’s technique gives only a trivial
lower bound of !(p1/2)

• Rare exception where the standard
technique fails to give a tight bound

MDL in GGM

MDL in GGM

α=(α1, …, αn)

L0=1 
L1=X1 
 ⋮ 
Ln=Xn

s0=ξ(L0(α))=ξ(1)
s1=ξ(L1(α))=ξ(α1)
 ⋮
sn=ξ(Ln(α))=ξ(αn)

αs0 s1 sn, , … ,

αs0 s1 sn, , … ,

Ln+1

αs0 s1 sn, , … ,

Ln+1

sn+1=ξ(Ln+1(α))

αs0 s1 sn, , … ,

Ln+1

sn+1

αs0 s1 sn, , … ,

Ln+1

sn+1

Ln+2

sn+2

Ln+2

αs0 s1 sn, , … ,

Ln+1

sn+1

Ln+2

sn+2

Ln+2

α’

Shoup’s technique
applied to MDL

α

Li

si=ξ(Li(α))

if Li(α)=Lj(α) for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

α
si=ξ(Li(α))

• Game G0: the game describing the
original problem

• Game G1: modified game where secret
exponents are chosen at the end

• Proving G1 is hard is trivial

• Difference between G0 & G1: Schwartz-
Zippel lemma

Shoup’s technique

Ln+2

s0, s1, �, sn

Ln+1

sn+1

sn+2

α

Ln+2

s0, s1, �, sn

Ln+1

sn+1

sn+2

α?

α?

Li

α?

si=ξ(Li(α))

α?

si=ξ(Li(α))

α?

si=ξ(Li(α))

if Li(α)=Lj(α) for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

α

if Li = Lj for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

?

• G0 and G1 differ iff  
∃i<j, Li≠Lj ∧ Li(α)=Lj(α)

• Pr[∃i<j, Li≠Lj ∧ Li(α)=Lj(α)]  
 ≤ (q+n+1)2/2p

• Success probability for G1: 1/pn

G0 & G1

• Success probability of a solver 
≤ p-n + (q+n+1)2/2p

• Meaningless if q=p1/2

• But we want q=!(n1/2p1/2)

Shoup’s technique for
MDL

MDL with hyperplane
queries

α?

si=ξ(Li(α))

if Li(α)=Lj(α) for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

α

if Li(α)=Lj(α) for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

Is Li(α)=Lj(α)?

?

α

if Li(α)=Lj(α) for ∃j<i  
 si←sj  
else  
 si←{0,1}t∖{s0, �, si-1}

Yes

?

Li

α?

Li

α?

Li(α)=L0(α)?

No

Li(α)=L1(α)?

No

Li(α)=L2(α)?

No

si

SHQ problem
• Search-by-Hyperplane-Queries (SHQ)

• Correctly guess a hidden point α∈�pn

• The solver can make up to q adaptive
hyperplane queries

• “Is α∈H?” for a hyperplane H⊆�pn

• A hyperplane H can be described by an
equation a1X1+…+anXn=b

• MDL game can be simulated perfectly,  
if the challenger has ability to decide if
the hidden exponents α=(α1, …, αn) lie
on a given hyperplane H or not

• Any MDL solver A can be turned into a
SHQ solver B with the same success
probability

• No. of queries: q → (q+n+1)2/2

MDL with hyperplane
queries

• Any lower bound for SHQ yields a lower
bound for MDL

• Lower bound q=!(np) for SHQ → 
 lower bound q=!((np)1/2) for MDL

MDL via SHQ

Search by
Hyperplane Queries

(SHQ)

Twenty questions

• “Is it an animal?”

• If each question reduces the search
space by half, then you can find the
hidden point within 
q = log2 pn = n log2 p queries

Twenty questions

• A hyperplane query is a terribly bad
question to ask in a game of twenty
questions

• Too thin!

Brute-force solver
• A ‘brute-force’ SHQ solver

• Makes queries of form Xi=j for i=1, …, n
and j=1, …, p-1

• If α is on Xi=j for some j, then the ith
coordinate of α is j

• Otherwise, the ith coordinate is 0

• q=n(p-1) is enough to find α in the worst
case

• We can show that q = Ω(np) in the
average case

• (Also, q≥n(p-1) in the worst case)

Main results

• A: a SHQ solver making exactly q
queries and deterministic

• H=(H1, ..., Hq): queries made by A

• b=(b1, ..., bq): answers received by A

• Then, the success prob. is bounded by  
(no. of all possible bs)/pn

• So far, nothing about hyperplanes

Twenty questions

• No. of possible bs would be at most 2q,
so the prob. is bounded by 2q/pn

• But, it would be very hard to get 1 as an
answer: lower Hamming weight

• No. of possible bs should be much
smaller than 2q

• But, is it?

Intuition

• You can get easy, useless 1s, if that’s
what you want

• Once you obtain a hyperplane query H
with reply 1, then you can repeat the
same query to get many more 1s

• No useful info about α: meaningless 1s

Useless queries

• If so far A has asked H1, …, Hr, H’1, …,
H’s and got 1s for H1, …, Hr, and 0s for
H’1, …, H’s, then A knows that  
α∈∩Hi - ∪H’j

• We say that at this point a query H of A
is useless, if ∩Hi - ∪H’j ⊆ H

• i.e., when A can be certain that the
answer must be 1 without asking

Useless queries

• WLOG, we may assume that A

• Makes exactly q queries

• Is deterministic

• And, never makes useless queries

• This prevents A to obtain meaningless 1s
as answers

Useful queries

• For such a solver A, there can be only n
1s in the vector b=(b1, ..., bq)

Small Hamming
weight

• Assume hyperplane queries H1, …, Hm
with α∈∩Hi

• Then, H1∩�∩Hi ⊈Hi+1 
(Hi+1 is not useless)

A little geometry

• Then, H1∩�∩Hi ⊈Hi+1

A little geometry

• Then, H1∩�∩Hi ⊈Hi+1

A little geometry

• Then, H1∩�∩Hi ⊈Hi+1

A little geometry

• Then, H1∩�∩Hi ⊈Hi+1

A little geometry

• Then, H1∩�∩Hi ⊈Hi+1

• Each additional hyperplane decrements
the dimension of the intersection by 1

• So, m ≤ n

A little geometry

• The success probability is bounded by

• So, to obtain some constant success
probability, q=!(np) is needed

• This implies q=!((np)1/2) for MDL

Finally

1

pn

nX

i=0

✓
q

i

◆
 1

pn
+

1

2

✓
eq

np

◆n

Thank you!

