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Background



• p: prime 

• G: cyclic group of order p 

• g∈G: a generator of G 

• Given (p, G, g, h=gα), find α

Discrete logarithm 
problem



• ξ:�p→{0, 1}t : an encoding of �p 

• Injective function into some bitstrings 

• Concrete representation of group 
elements in �p

Group encoding



• ‘Somewhat’ easy: subexponential 
algorithms like index calculus, number 
field sieve, … 

• Even easier: G=(�p, +), g=1 

• For a group, there can be good DL 
solvers on the group, exploiting the 
specific structure of the encoding

DL is easy sometimes



• Some believe that DL on some carefully 
chosen elliptic curves is hard 

• Proof?

DL could be hard 
sometimes



• It is known that DL is hard for generic 
algorithms 

• An algorithm on a group is generic, if it 
works for any encoding 

• Example: Baby-Step-Giant-Step 

• O(p1/2) group operations to achieve some 
constant success probability

DL is hard for dumb 
solvers



• It is known that DL is hard for generic 
algorithms 

• An algorithm on a prime-order group is 
generic, if it works for any encoding 

• Example: Baby-Step-Giant-Step 

• This is optimal: !(p1/2) operations 
required to achieve constant success 
probability

DL is hard for dumb 
solvers



• Proposed by Nechaev (1994, for DL) and 
Shoup (EUROCRYPT 1997, in general) 

• Shoup, “Lower bounds for discrete 
logarithms and related problems”, 
EUROCRYPT 1997

Generic group model



• In GGM, a prime-order group G is given 
via a random encoding ξ:�p→{0,1}t 

• Group operations are done via oracle 

• Generic algorithms can be implemented 
in GGM

Generic group model



• Many cryptographically important 
problems have been studied in GGM 

• Very often, tight lower bounds were 
proven 

• Essentially using only one standard 
technique, also proposed by Shoup

Generic group model



• p: prime 

• G: cyclic group of order p 

• g∈G: a generator of G 

• Given (p, G, g, gα1, …, gαn), find  
α=(α1, …, αn)

Multiple discrete 
logarithm problem



• ∃ a generic algorithm which solves MDL 
in O((np)1/2) group operations 

• Kuhn and Struik, SAC 2001 

• Shoup’s technique gives only a trivial 
lower bound of !(p1/2) 

• Rare exception where the standard 
technique fails to give a tight bound

MDL in GGM



MDL in GGM



α=(α1, …, αn)

L0=1 
L1=X1 
      ⋮ 
Ln=Xn

s0=ξ(L0(α))=ξ(1)
s1=ξ(L1(α))=ξ(α1)
     ⋮
sn=ξ(Ln(α))=ξ(αn)



αs0 s1 sn, , … ,



αs0 s1 sn, , … ,

Ln+1



αs0 s1 sn, , … ,

Ln+1

sn+1=ξ(Ln+1(α))



αs0 s1 sn, , … ,

Ln+1

sn+1



αs0 s1 sn, , … ,

Ln+1

sn+1

Ln+2

sn+2

Ln+2



αs0 s1 sn, , … ,

Ln+1

sn+1

Ln+2

sn+2

Ln+2

α’



Shoup’s technique 
applied to MDL



α

Li

si=ξ(Li(α))



if Li(α)=Lj(α) for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}

α
si=ξ(Li(α))



• Game G0: the game describing the 
original problem 

• Game G1: modified game where secret 
exponents are chosen at the end 

• Proving G1 is hard is trivial 

• Difference between G0 & G1: Schwartz-
Zippel lemma

Shoup’s technique
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Ln+2
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Li

α?

si=ξ(Li(α))
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α?

si=ξ(Li(α))

if Li(α)=Lj(α) for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}



α

if   Li  =  Lj       for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}

?



• G0 and G1 differ iff  
∃i<j, Li≠Lj ∧ Li(α)=Lj(α) 

• Pr[∃i<j, Li≠Lj ∧ Li(α)=Lj(α)]  
           ≤ (q+n+1)2/2p 

• Success probability for G1: 1/pn

G0 & G1



• Success probability of a solver 
≤ p-n + (q+n+1)2/2p 

• Meaningless if q=p1/2 

• But we want q=!(n1/2p1/2)

Shoup’s technique for 
MDL



MDL with hyperplane 
queries



α?

si=ξ(Li(α))

if Li(α)=Lj(α) for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}



α

if Li(α)=Lj(α) for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}

Is Li(α)=Lj(α)?

?



α

if Li(α)=Lj(α) for ∃j<i  
           si←sj  
else  
           si←{0,1}t∖{s0, �, si-1}

Yes

?
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SHQ problem
• Search-by-Hyperplane-Queries (SHQ) 

• Correctly guess a hidden point α∈�pn 

• The solver can make up to q adaptive 
hyperplane queries 

• “Is α∈H?” for a hyperplane H⊆�pn 

• A hyperplane H can be described by an 
equation a1X1+…+anXn=b



• MDL game can be simulated perfectly,  
if the challenger has ability to decide if 
the hidden exponents α=(α1, …, αn) lie 
on a given hyperplane H or not 

• Any MDL solver A can be turned into a 
SHQ solver B with the same success 
probability 

• No. of queries: q → (q+n+1)2/2

MDL with hyperplane 
queries



• Any lower bound for SHQ yields a lower 
bound for MDL 

• Lower bound q=!(np) for SHQ → 
 lower bound q=!((np)1/2) for MDL

MDL via SHQ



Search by 
Hyperplane Queries 

(SHQ)



Twenty questions

• “Is it an animal?” 

• If each question reduces the search 
space by half, then you can find the 
hidden point within 
q = log2 pn = n log2 p queries



Twenty questions

• A hyperplane query is a terribly bad 
question to ask in a game of twenty 
questions 

• Too thin!



Brute-force solver
• A ‘brute-force’ SHQ solver 

• Makes queries of form Xi=j for i=1, …, n 
and j=1, …, p-1 

• If α is on Xi=j for some j, then the ith 
coordinate of α is j 

• Otherwise, the ith coordinate is 0 

• q=n(p-1) is enough to find α in the worst 
case



• We can show that q = Ω(np) in the 
average case 

• (Also, q≥n(p-1)  in the worst case)

Main results



• A: a SHQ solver making exactly q 
queries and deterministic 

• H=(H1, ..., Hq): queries made by A 

• b=(b1, ..., bq): answers received by A 

• Then, the success prob. is bounded by  
(no. of all possible bs)/pn 

• So far, nothing about hyperplanes

Twenty questions



• No. of possible bs would be at most 2q, 
so the prob. is bounded by 2q/pn 

• But, it would be very hard to get 1 as an 
answer: lower Hamming weight 

• No. of possible bs should be much 
smaller than 2q 

• But, is it?

Intuition



• You can get easy, useless 1s, if that’s 
what you want 

• Once you obtain a hyperplane query H 
with reply 1, then you can repeat the 
same query to get many more 1s 

• No useful info about α: meaningless 1s

Useless queries



• If so far A has asked H1, …, Hr, H’1, …, 
H’s and got 1s for H1, …, Hr, and 0s for 
H’1, …, H’s, then A knows that  
α∈∩Hi - ∪H’j 

• We say that at this point a query H of A 
is useless, if ∩Hi - ∪H’j ⊆ H 

• i.e., when A can be certain that the 
answer must be 1 without asking

Useless queries



• WLOG, we may assume that A 

• Makes exactly q queries 

• Is deterministic 

• And, never makes useless queries 

• This prevents A to obtain meaningless 1s 
as answers

Useful queries



• For such a solver A, there can be only n 
1s in the vector b=(b1, ..., bq)

Small Hamming 
weight



• Assume hyperplane queries H1, …, Hm 
with α∈∩Hi 

• Then, H1∩�∩Hi ⊈Hi+1 
(Hi+1 is not useless)

A little geometry



• Then, H1∩�∩Hi ⊈Hi+1

A little geometry
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• Then, H1∩�∩Hi ⊈Hi+1

A little geometry



• Then, H1∩�∩Hi ⊈Hi+1 

• Each additional hyperplane decrements 
the dimension of the intersection by 1 

• So, m ≤ n

A little geometry



• The success probability is bounded by 

• So, to obtain some constant success 
probability, q=!(np) is needed 

• This implies q=!((np)1/2) for MDL

Finally
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Thank you!


