
How to Efficiently Evaluate RAM Programs with
Malicious Security

Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek

April 29, 2015

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 1 / 17



Overview

Background

Secure Two-Party Computation (2PC)

Secure evaluation of “any” function
Preserve input privacy and correctness
Majority use Boolean/arithmetic circuits

The problem

Not efficient for Random-Access Memory (RAM) programs
Accessing a portion of the RAM.

Solution [GKK+12]

Combine “Oblivious RAM” (ORAM) with 2PC

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 2 / 17



Overview

Background

Secure Two-Party Computation (2PC)

Secure evaluation of “any” function
Preserve input privacy and correctness
Majority use Boolean/arithmetic circuits

The problem

Not efficient for Random-Access Memory (RAM) programs
Accessing a portion of the RAM.

Solution [GKK+12]

Combine “Oblivious RAM” (ORAM) with 2PC

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 2 / 17



Overview

Background

Secure Two-Party Computation (2PC)

Secure evaluation of “any” function
Preserve input privacy and correctness
Majority use Boolean/arithmetic circuits

The problem

Not efficient for Random-Access Memory (RAM) programs
Accessing a portion of the RAM.

Solution [GKK+12]

Combine “Oblivious RAM” (ORAM) with 2PC

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 2 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction

Imagine the original data in
your head

Translate access to original
data

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Translate access to original
data

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Store it in a data structure
in RAM

Translate access to original
data

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Translate access to original
data

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Translate access to original
data

multiple actual memory
access

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Translate access to original
data

Re-position the original data
within the data structure

Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Overview

Oblivious RAM (ORAM)

Privacy of Alice input

ORAM: O(logN)

Privacy of Bob input

No guarantee

Construction
Imagine the original data in
your head

Translate access to original
data

Re-position the original data
within the data structure
Update state for next iteration

A RAM of size N

input: y, RAM
output: f2(x, y, RAM)

input: x
output: f1(x, y, RAM)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step

compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step

compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step

compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step
compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step
compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step
compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”

Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Combine ORAM with 2PC

ORAM is not enough for 2PC

2PC to initialize ORAM

2PC for ORAM step
compute next instruction

Given the “state” & last read “data”

perform next Instruction

Access to original array → many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 4 / 17



Semi-honest Solution

Semi-honest RAM-2PC [GKK+12]

Memory of size N

⊕

cpu
Garbled Circuits

for a Single ORAM Step.

stA stBsecret shared

data in

decrypt

st ′

st ′A st ′B

memory accesssecret shared

encrypt

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 5 / 17



Semi-honest Solution

Semi-honest RAM-2PC [GKK+12]

Memory of size N

⊕
cpu

Garbled Circuits

for a Single ORAM Step.

stA stBsecret shared

data in

decrypt

st ′

st ′A st ′B

memory accesssecret shared

encrypt

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 5 / 17



Semi-honest Solution

Semi-honest RAM-2PC [GKK+12]

Memory of size N

⊕
cpu

Garbled Circuits

for a Single ORAM Step.

stA stB

secret shared

data in

decrypt

st ′

st ′A st ′B

memory accesssecret shared

encrypt

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 5 / 17



Semi-honest Solution

Semi-honest RAM-2PC [GKK+12]

Memory of size N

⊕
cpu

Garbled Circuits

for a Single ORAM Step.

stA stB

secret shared

data in

decrypt

st ′

st ′A st ′B

memory accesssecret shared

encrypt

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 5 / 17



Semi-honest Solution

Possible attacks

Garbler may garble different circuits

Needs cut-and-choose

Parties use incorrect inputs to the circuit, i.e.

Original inputs
Shares of the state
Memory contents
Needs consistency and authenticity checks

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 6 / 17



Semi-honest Solution

Possible attacks

Garbler may garble different circuits

Needs cut-and-choose

Parties use incorrect inputs to the circuit, i.e.

Original inputs
Shares of the state
Memory contents
Needs consistency and authenticity checks

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 6 / 17



Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Integrity and consistency of state

Memory privacy/consistency

nai
ve

Memory of size N

⊕

cpu

decrypt

encrypt

verify

MAC

verify

MAC

decrypt

encrypt

stA malicious

stB

data in

co
rr

ec
t

m
alicious

data indata in

st ′

malicious

memory access

st ′
st ′A

memory access

st ′B

Augmented ORAM Step.

(AORAM Step)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 7 / 17



Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Integrity and consistency of state

Memory privacy/consistency

nai
ve

Memory of size N

⊕

cpu

decrypt

encrypt

verify

MAC

verify

MAC

decrypt

encrypt

stA

malicious

stB

data in

co
rr

ec
t

m
alicious

data in

data in

st ′

malicious

memory access

st ′
st ′A

memory access

st ′B

Augmented ORAM Step.

(AORAM Step)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 7 / 17



Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Integrity and consistency of state
Memory privacy/consistency

nai
ve

Memory of size N

⊕

cpu

decrypt

encrypt

verify

MAC

verify

MAC

decrypt

encrypt

stA

malicious

stB

data in

co
rr

ec
t

m
alicious

data in

data in

st ′

malicious

memory access

st ′
st ′A

memory access

st ′B

Augmented ORAM Step.

(AORAM Step)

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 7 / 17



Semi-honest Solution

Naive Cut-and-Choose Approach

Separate Malicious 2PCs

thread 1

thread 2AORAM

Step

st

data in

st′

mem. access

AORAM

Step

st

data in

st′

mem. access

AORAM

Step

st

data in

st′

mem. access

AORAM

Step

st

data in

st′

mem. access

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 8 / 17



Our Approach

Our Approach: Two Protocols

Batching Protocol, based on LEGO idea [FJN+13, NO09]

Streaming Cut-and-Choose Protocol

This talk

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 9 / 17



Our Approach

Stream Cut-and-Choose Protocol

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 10 / 17



Our Approach

Garbled Values

Memory and state as garbled values
No encryption
No MAC/Verification

Authenticity
Privacy

Re-use garbled values
No input consistency checks in intermediate circuits

ORAM

Step

stinputs

randomness

data in

mem. access

inst, data out

ORAM

Step

st

data in

mem. access

inst, data out

st

Step 1 Step 2 to Step T

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 11 / 17



Our Approach

Garbled Values

Memory and state as garbled values
No encryption
No MAC/Verification

Authenticity
Privacy

Re-use garbled values
No input consistency checks in intermediate circuits

ORAM

Step

stinputs

randomness

data in

mem. access

inst, data out

ORAM

Step

st

data in

mem. access

inst, data out

st

Step 1 Step 2 to Step T

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 11 / 17



Our Approach

Garbled Values

Memory and state as garbled values
No encryption
No MAC/Verification

Authenticity
Privacy

Re-use garbled values
No input consistency checks in intermediate circuits

ORAM

Step

stinputs

randomness

data in

mem. access

inst, data out

ORAM

Step

st

data in

mem. access

inst, data out

st

Step 1 Step 2 to Step T

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 11 / 17



Our Approach

Memory Privacy/Consistency

Memory items are garbled values

Bob reports the memory location
Correctness: cut-and-choose

Consistency of memory location [MR13]

loc#99

ORAM

Step

stk+1stk

data in

instk=(write, loc#99), data outk

data ink

Step k

ORAM

Step

sti+1sti

data in′

insti=(read, loc#99), data outi

Step i

ORAM

Step

sti+2

insti+1, data outi+1

Step i + 1

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 12 / 17



Our Approach

Memory Privacy/Consistency

Memory items are garbled values

Bob reports the memory location
Correctness: cut-and-choose

Consistency of memory location [MR13]

loc#99

ORAM

Step

stk+1stk

data in

instk=(write, loc#99), data outk

data ink

Step k

ORAM

Step

sti+1sti

data in′

insti=(read, loc#99), data outi

Step i

ORAM

Step

sti+2

insti+1, data outi+1

Step i + 1

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 12 / 17



Our Approach

Memory Privacy/Consistency

Memory items are garbled values

Bob reports the memory location
Correctness: cut-and-choose

Consistency of memory location [MR13]

loc#99

ORAM

Step

stk+1stk

data in

instk=(write, loc#99), data outk

data ink

Step k

ORAM

Step

sti+1sti

data in′

insti=(read, loc#99), data outi

Step i

ORAM

Step

sti+2

insti+1, data outi+1

Step i + 1

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 12 / 17



Our Approach

Step Generation

... hence:

Given insti
Step i + 1 is generated after Step i is evaluated

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 13 / 17



Our Approach

A Single Cut-and-Choose

One 2PC vs. many 2PCs
Input consistency check: Once at the beginning

Cut-and-Choose rely on one correct circuit
Also known as cheating recovery
Once at the end vs. after each step

thread 1

thread 2

op
en

evalu
ate

ORAM

Step

st′i+1st′i

data in′

inst′i , data out′i

ORAM

Step

st′i+2

data in′

inst′i+1, data out′i+1

ORAM

Step

sti+1sti

data in

insti , data outi

ORAM

Step

sti+2

data in

insti+1, data outi+1

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 14 / 17



Our Approach

A Single Cut-and-Choose

One 2PC vs. many 2PCs
Input consistency check: Once at the beginning
Cut-and-Choose rely on one correct circuit

Also known as cheating recovery
Once at the end vs. after each step

thread 1

thread 2

op
en

evalu
ate

ORAM

Step

st′i+1st′i

data in′

inst′i , data out′i

ORAM

Step

st′i+2

data in′

inst′i+1, data out′i+1

ORAM

Step

sti+1sti

data in

insti , data outi

ORAM

Step

sti+2

data in

insti+1, data outi+1

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 14 / 17



Our Approach

Comparison

Table : Overhead

Naive implementation Streaming cut-and-choose

Circuit Size (non-XOR gates) T × 154.36 × 220 120

Alice Storage 0 5MB + logT × 40KB

Input Consistency Checks O(T × IC × ND) 0

Where

T is the running time of the RAM

IC is the overhead of input consistency check for one bit of data on “s” garbled circuits.

s is statistical security parameter

N is the length of memory

D is the length of ORAM metadata

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 15 / 17



Our Approach

References

Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi.

MiniLEGO: Efficient secure two-party computation from general assumptions.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 537–556. Springer, May 2013.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis.

Secure two-party computation in sublinear (amortized) time.
In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Conference on Computer and
Communications Security, pages 513–524. ACM Press, October 2012.

Payman Mohassel and Ben Riva.

Garbled circuits checking garbled circuits: More efficient and secure two-party computation.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 36–53. Springer, August 2013.

Jesper Buus Nielsen and Claudio Orlandi.

LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes in
Computer Science, pages 368–386. Springer, March 2009.

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 16 / 17



Our Approach

Thank You!

Afshar, Hu, Mohassel, and Rosulek How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 17 / 17


	Overview
	Semi-honest Solution
	Our Approach

