How to Efficiently Evaluate RAM Programs with
Malicious Security

Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek

April 29, 2015

AN BT o [T VI PSS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 1/17

Background

m Secure Two-Party Computation (2PC)

m Secure evaluation of “any” function
m Preserve input privacy and correctness
m Majority use Boolean/arithmetic circuits

AN BT o [T VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 2/17

Background

m Secure Two-Party Computation (2PC)

m Secure evaluation of “any” function
m Preserve input privacy and correctness
m Majority use Boolean/arithmetic circuits

m The problem

m Not efficient for Random-Access Memory () programs
m Accessing a portion of the RAM.

AN BT o [T VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 2/17

Background

m Secure Two-Party Computation (2PC)

m Secure evaluation of “any” function
m Preserve input privacy and correctness
m Majority use Boolean/arithmetic circuits

m The problem

m Not efficient for Random-Access Memory () programs
m Accessing a portion of the RAM.

m Solution [GKKT12]
m Combine “Oblivious RAM” (ORAM) with 2PC

AN BT o [T VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 2/17

Oblivious RAM (ORAM)

A RAM of size N

N I A A

m Privacy of Alice input

= ORAM: O(log N) 2. S
. . output: fa(x,y, RAM)
m Privacy of Bob input Wﬁ

m No guarantee

input: x
output: fi(x,y, RAM)

AN BT o TR VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N

N I A A

= ORAM: O(log N) 2. S
. . output: fa(x,y, RAM)
m Privacy of Bob input W@

m Privacy of Alice input

m No guarantee

m Construction

m Imagine the original data in
your head

input: x
output: fi(x,y, RAM)

AN BT o TR VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N
_ o L[] [[1]
m Privacy of Alice input
m ORAM: O(log N) @input: y, RAM
m Privacy of Bob input jﬁﬁmm: 20y, RAM)

m No guarantee

m Construction

m Imagine the original data in
your head

m Store it in a data structure
in RAM

h;:
¢ input: x
output: fi(x,y, RAM)
]
B

AN BT o TR VI PSS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N
_ o L[] [[1]
m Privacy of Alice input
m ORAM: O(log N) @input: y, RAM
m Privacy of Bob input jﬁﬁmm: 20, RAM)

m No guarantee

m Construction

m Imagine the original data in
your head

m Translate access to original
data

h;:
X input: x
output: fi(x,y, RAM)
]
B

AN BT o TR VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N
_ o L[] [[1]
m Privacy of Alice input
m ORAM: O(log N) @input: y, RAM
m Privacy of Bob input jﬁﬁmm: 200, RAM)

m No guarantee

m Construction
m Imagine the original data in

your head
m Translate access to original
data
m multiple actual memory &
access $ input: x
output: f1(x,y, RAM)
]

AN BT o [T VI EESS RET T W SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N

llllllll

m Privacy of Alice input
m ORAM: O(Iog N) input: y, RAM

\m/ fa RAM
. . output: X,
m Privacy of Bob input jﬁﬁ Pt faloy, RAWD

m No guarantee
m Construction
m Imagine the original data in
your head
m Translate access to original
data
m Re-position the original data

1 H \ input: x
within the data structure oot £106,y, RAM)

AN BT o TR VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3/17

Oblivious RAM (ORAM)

A RAM of size N

llllllll

m Privacy of Alice input
m ORAM: O(Iog N) input: y, RAM

\m/ fa RAM
. . output: X,
m Privacy of Bob input jﬁﬁ Pt faloy, RAWD

m No guarantee
m Construction

m Imagine the original data in
your head

m Translate access to original
data

m Re-position the original data
within the data structure

m Update for next iteration *

input: x
output: fi(x,y, RAM)

AN BT o TR VI EESS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 3/17

Combine ORAM with 2PC

m ORAM is not enough for 2PC

AN BT o TR VI PRSI RET T W SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM

AN BT o TR VI PRSI RET T W SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM
m 2PC for ORAM step

AN ETO o TR VI PSS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM
m 2PC for

®m compute next instruction
m Given the “state” & last read “data”

AN ETO o TR VI PSS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM
m 2PC for

®m compute next instruction
m Given the “state” & last read “data”
m perform next Instruction
m Access to original array — many actual instructions

AN ETO o TR VI PSS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM
m 2PC for

®m compute next instruction

m Given the “state” & last read “data”
m perform next Instruction

m Access to original array — many actual instructions
m Secret share “state” & last read “data”

AN ETO o TR VI PSS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Combine ORAM with 2PC

m ORAM is not enough for 2PC
m 2PC to initialize ORAM
m 2PC for

®m compute next instruction
m Given the “state” & last read “data”
perform next Instruction
m Access to original array — many actual instructions

Secret share “state” & last read “data”
Compute until “state” equals “halt”

AN ETO o TR VI PSS RET T W AT How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 4 /17

Semi-honest RAM-2PC [GKK™"12]

Garbled Circuits
« cpu
for a Single ORAM Step. l l l l l ‘

Memory of size N

AN BT o TR VI EESS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 5/17

Semi-honest Solution

Semi-honest RAM-2PC [GKK™12]

£,
(

Sta

secret shared

. B

T [[]

Memory of size N

AN BT o TR VI EESS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 5/17

Semi-honest RAM-2PC [GKK™12]

4

o vzt
L Sta stg iﬁi
~

data in
éé' decrypt
h a4
cpu
L[] | []

Memory of size N

AN BT o TR VI EESS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 5/17

Semi-honest RAM-2PC [GKK™12]

¢

o vzt
‘ Sta stg ﬁﬁi
)

data in
D
cpu
T T T 1]
kstl Memory of size N
 Sth // \ st

secret shared
memory access

encrypt

AN BT o TR VI EESS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 5/17

Semi-honest Solution

Possible attacks

m Garbler may garble different circuits

m Needs cut-and-choose

AN BT o TR VI PSS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 6 /17

Semi-honest Solution

Possible attacks

m Garbler may garble different circuits
m Needs

m Parties use incorrect inputs to the circuit, i.e.
m Original inputs

Shares of the state

Memory contents

Needs and checks

AN BT o TR VI EESS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 6 /17

Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Sta

i' malicious W

\

17 data in jﬁi
S,

L[| |
\ b Memory of size N

st .
cmaliciors N[
I 4

memory, acCcess
AN ETO o [TRR VI PRSI RET T WS How to Efficiently Evaluate RAM Programs with Malicious Security

April 29, 2015 7 /17

Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Sta

stg p—
& v
17 data in jﬁi
D a
7’ AY
7’ AY
J // \\4(;.
decrypt ,/ \\/oo
’I \\\S\
’ \
4 A}
- I I I
’A—‘ b Memory of size N .
MAC encrypt
/

!/ st /
(LJK StB
|

memory, acCess
AN ETO o [TRR VI PRSI RET T WS How to Efficiently Evaluate RAM Programs with Malicious Security

April 29, 2015 7 /17

Semi-honest Solution

Naive Solution for Malicious RAM-2PC

Sta Stg

TZET

=
17 data in jﬁi
S,

v
52 o
Augmented ORAM Step.

cpu
(AORAM Step)

L]

e—‘ b Memory of size N .
MAC encrypt A
/ St/ /
AN |
/-_)

memory, acCess
AN ETO o [TRR VI PRSI RET T WS How to Efficiently Evaluate RAM Programs with Malicious Security

April 29, 2015 7 /17

Naive Cut-and-Choose Approach

m Separate Malicious 2PCs

data in data in
st st
AORAM thread 1 AORAM
JE A JES A N A
Step Step
= l st’ j — l st’ j
mem. access mem. access
data in data in
st st
AORAM thread 2 AORAMY
JE A FES A N S >
Step Step
= l st/ j — l st’ j
mem. access mem. access

AN BT o [T VI PSS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 8 /17

Our Approach: Two Protocols

m Batching Protocol, based on LEGO idea [FJN+13, NOO09]
m Streaming Cut-and-Choose Protocol
m This talk

AN BT o [T VI PSS RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security — April 29, 2015 9 /17

Our Approach

Stream Cut-and-Choose Protocol

AN BT o [T VI PRSI RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 10 / 17

Our Approach

Garbled Values

m Memory and state as garbled values

m No encryption

m No MAC/Verification

data in

inputs | & ORAM

st

randomness | Step

data in
ORAM st
s
Step

!

mem. access

inst, data out

!

mem. access

inst, data out

Step 1

AN BT o [T VI PSS RET T WG] How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

Step 2 to Step T

11 /17

Our Approach

Garbled Values

m Memory and state as garbled values

m No encryption

m No MAC/Verification

m Authenticity
m Privacy

data in

inputs | & ORAM

st

randomness | Step

data in
ORAM st
s
Step

!

mem. access

inst, data out

!

mem. access

inst, data out

Step 1

AN BT o [T VI PSS RET T WG] How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

Step 2 to Step T

11 /17

Our Approach

Garbled Values

m Memory and state as garbled values

m No encryption

m No MAC/Verification

m Re-use garbled values

m No input consistency checks in intermediate circuits

data in
ORAM St ORAM
Step Step

!

mem. access

inst, data out

!

mem. access

inst, data out

st

Step 1

Step 2 to Step T

AN BT o [T VI PSS RET T WG] How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

11 /17

Our Approach

Memory Privacy/Consistency

m Memory items are garbled values

m Bob reports the memory location
m Correctness:

m Consistency of memory location [MR13]

l [[Toc#99 | [

data in

sty| ORAM |stii1

Step

inst,=(write, loc#99), data outy
Step k

AN BT o [T VI PSS RET T MG How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

12 /17

Our Approach

Memory Privacy/Consistency

m Memory items are garbled values

m Bob reports the memory location
m Correctness:

m Consistency of memory location [MR13]

l [[Toc#99 | [

data in data in’
sty| ORAM |stii1 st;| ORAM Stitq
— — — —
Step Step
insty = (write, loc#99), data outy inst;= , data out;
Step k Step i

AN BT o [T VI PSS RET T MG How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

12 /17

Our Approach

Memory Privacy/Consistency

m Memory items are garbled values

m Bob reports the memory location
m Correctness:

m Consistency of memory location [MR13]

l [[Toc#99 | [

data in data in’
st,| ORAM |stx i st;| ORAM stiz1 ORAM | stjio
— — —
Step Step Step
insty = (write, loc#99), data outy inst;= , data out; inst; 1, data out;
Step k Step i Step i+ 1

AN BT o [T VI PSS RET T MG How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

12 /17

Our Approach

Step Generation

m ... hence:

m Given inst;
m Step i + 1 is generated after Step i is evaluated

AN BT o [T VI PRSI RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 13 /17

A Single Cut-and-Choose

m One 2PC vs. many 2PCs
® Input consistency check: Once at the beginning

data in’ data in
’
st/| ORAM stiq ORAM | sti >
S —
D4 —— -4 _Step _ | ___ ______] _ Step_ |
S thread 1
inst,{, data out,{ inst,{+1, data out,{Jr1
data in data in
(9]
n<) stj| ORAM sti1 ORAM |stiip
= —
o A-—--4-Step_| _________| —Step_ L
=3 thread 2
inst;, data out; inst;y 1, data out; g

AN BT o [T VI PRSI RET T MY How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 14 /17

Our Approach

A Single Cut-and-Choose

m One 2PC vs. many 2PCs
® Input consistency check: Once at the beginning
m Cut-and-Choose rely on one correct circuit
m Also known as
m Once at the end vs. after each step

data in’ data in
’
st/| ORAM stiq ORAM | sti >
S —
D4 —— -4 _Step _ | ___ ______] _Step_ | I
S thread 1
inst,{, data out,{ inst,{+1, data out,{Jr1
data in data in
(9]
n<) stj| ORAM sti1 ORAM |stiip
= —
o A-—--4-Step_| _________| —Step_ L
=3 thread 2
inst;, data out; inst;y 1, data out; g

AN BT o [T VI PRSI RET T MY How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

14 /17

Comparison

Table : Overhead

Naive implementation Streaming cut-and-choose

Circuit Size (non-XOR gates) T X 15436 X 220 120
Alice Storage 0 5MB + |0g T X 40KB
Input Consistency Checks O(T X IC X ND) 0

m Where

B T is the running time of the RAM
IC is the overhead of input consistency check for one bit of data on “s" garbled circuits.
S is statistical security parameter

N is the length of memory

D is the length of ORAM metadata

AN BT o [T VI PRSI RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 15 / 17

Our Approach

References

) & & W

AN BT o [T VI PRSI RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015

Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Sebastian Nordholt, and Claudio Orlandi.
MiniLEGO: Efficient secure two-party computation from general assumptions.

In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology — EUROCRYPT 2013, volume 7881 of
Lecture Notes in Computer Science, pages 537-556. Springer, May 2013.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin, Mariana Raykova, and Yevgeniy Vahlis.
Secure two-party computation in sublinear (amortized) time.

In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Conference on Computer and
Communications Security, pages 513-524. ACM Press, October 2012

Payman Mohassel and Ben Riva.

Garbled circuits checking garbled circuits: More efficient and secure two-party computation.

In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology — CRYPTO 2013, Part Il, volume 8043 of Lecture
Notes in Computer Science, pages 36—-53. Springer, August 2013.

Jesper Buus Nielsen and Claudio Orlandi.

LEGO for two-party secure computation.

In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes in
Computer Science, pages 368-386. Springer, March 2009.

16 / 17

Our Approach

Thank You!

AN BT o [T VI PRSI RET T M SIS How to Efficiently Evaluate RAM Programs with Malicious Security April 29, 2015 17 /17

	Overview
	Semi-honest Solution
	Our Approach

