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Privacy Homomorphism

“Encryption functions which permit encrypted data to be operated on
without preliminary decryption of the operands, for many sets of
interesting operations” [RAD78]

In 2009, Gentry proposed the first construction based on ideal
lattices, which supports both of addition and multiplication.

Any circuit can be evaluated over encrypted data.
Keyword search, Statistical computations, Secure cloud computing

[RAD78] Rivest, Adleman, and Dertouzos, On data banks and privacy homomorphism,” FOSC’78
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Fully Homomorphic Encryption

Over the Integers. AGCD-based:

• [DGHV10] van Dijk, Gentry, Halevi, Vaikuntanathan: Fully
Homomorphic Encryption over the Integers. Eurocrypt 2010.
CMNT11, CNT12, CCKLLTY13, CLT14, etc.

Over Zq-modules. LWE-based:

• [BV11a] Brakerski, Vaikuntanathan: Efficient Fully Homomorphic
Encryption from (Standard) LWE. FOCS 2011.
Bra12, BGV12, GSW13

Over Polynomials over Zq.

Ideal lattice: SV10
Ring-LWE: BV11b, GHS13, BLLN13, etc.
NTRU: LTV12
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Two Issues of AGCD-based FHE schemes
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Issue 1: Hardness assumptions

(Decisional) Approximate GCD problem (AGCD)

Parameters: γ, η and ρ
Secret: random η-bit integer p

Goal: distinguish between the distributions U(Z ∩ [0, 2γ)) and

AAGCD
γ,φ (p) = {pq + r : q ← Z ∩ [0, 2γ/p), r ← U(Z ∩ (−2ρ, 2ρ))}

No known reduction from classical lattice problems to AGCD.

An additional hardness assumption is required for bootstrapping.

The Sparse Subset Sum Problem is hard.
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Issue 2: Ciphertext size (and Performance)

Known Attacks (λ: security parameter)

Brute force attack: ρ = Ω(λ) and η = Ω(λ)

Orthogonal lattice attack: γ = Ω

(
λ

log λ
η2

)
Integer Factorization: η = log p = Ω(λ2) if a multiple of p is given.

To resist the attacks, the ciphertext size is set to be

Θ(λ5) for Partial AGCD [CMNT11,CNT12,CCKLLTY13]

Θ(λ3) for General AGCD [DGHV10,CLT14]
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Our contributions

1 LWE can be reduced to (general) AGCD.

AGCD is no easier than standard worst-case lattice problems.

2 The cost estimate of the orthogonal lattice attack is over-pessimistic:

γ = Ω

(
λ

log λ
(η − ρ)2

)
suffices.

η = ρ+ L log λ, γ = Θ(L2λ log λ) for multiplicative depth L.

3 We present a scale-invariant FHE based on the integers which:

is as secure as LWE,
has ciphertexts of bit-size Õ(λ), and
is bootstrappable without SSSP assumption.
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Hardness of the AGCD problem
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Learning with Errors

(Decisional) Learning with Errors problem

Secret vector s← DZn,αq ⊂ Zn
q [ACPS09] (e.g. n ≈ λ)

T = R/Z = [0, 1), Tq =
1

q
Zq = {0, 1

q , · · · ,
q−1
q } ⊆ T

Distinguish between the distributions U(Tn
q × Tq) and

ALWE
q,φ (s) = {(a, 〈a, s〉+ e) : a← Tn

q, e ← φ}

There are reductions from worst-case SIVPγ and GapSVPγ to n-dim
LWE [Reg05, Pei09, BLPRS13]

Is 1-dimensional LWE insecure?

No, but the modulus q′ should be exponentially large (q′ ≈ qn).

There is a reduction from n-LWE to 1-LWE [BLPRS13].
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Reduction to AGCD, in several steps

1-dim LWE problem: 1-LWEq,φ(D)

{(a, [as + e]1) : a← Tq, e ← φ} versus U(Tq × T)

1-dim Scale-Invariant LWE: SILWEφ(D)

{(a, [as + e]1) : a← T, e ← φ} versus U(T× T)

0-dim LWE: ZDLWEφ(D) Studied in [Regev03]

AZDLWE
φ (s) = {(k + e)/s : k ← Z ∩ [0, s), e ← φ} versus U(T)

Approximate GCD: AGCDK,φ(D)

{qp + r : q ← Z ∩ [0,K/p), r ← φ} versus U(Z ∩ [0,K ))
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1-LWE to SILWE

Dα is the Gaussian Distribution of param α. An element from Dα is
in [−α, α] with good prob. (e.g. α = 1/poly(n) or 2O(− log2 n))

Consider two distributions:

A1-LWE
q,Dα

(s) = {(a, [as + e]1) : a← Tq, e ← Dα}

ASILWE
D′

α
(s) = {(a, [as + e]1) : a← T, e ← Dα′}

Idea: Add a noise to a and make it uniform over T
Given a 1-LWE sample (a, b), output (a + f , b) by sampling f ← D.1/q

since |(as + e)− (a + f )s| ≤ |e|+ |fs| is small as s is small.

Similar to Modulus Switching technique used in LWE-based FHE.
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SILWE to ZDLWE

ASILWE
φ (s) = {(a, [as + e]1) : a← T, e ← Dα}

AZDLWE
φ (s) = {(k + e)/s : k ← Z ∩ [0, s), e ← Dα′}

Given SILWE (a, b) with b = as + e − k for k ∈ Z, output(
a− b

s

)
= a− as + e − k

s
=

k − e

s
.

Idea: Guess log(1/α) ≈ log n bits of s: s ′ = s + δ (see [Regev10]).∣∣∣∣bs − b

s ′

∣∣∣∣ =
b|δ|
ss ′

.
|δ|
s2
≤ α

s
.

This discrepancy is swallowed up in e/s.
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ZDLWE to AGCD

AZDLWE
φ (s) = {(k + e)/s : k ← Z ∩ [0, s), e ← Dα}

AAGCD
K ,φ (p) = {qp + r : q ← Z ∩ [0,K/p), r ← bDβe}

Idea: Rescale a sample in T to an integer

Given a ZDLWE sample y , output x = bKye mod K .

Ky =
K

s
· k +

ke

s
= pk + r ,

where p = bK/se, r ≤ ke/s + k is small as 0 ≤ k < s and s is small.
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A new FHE scheme over the integers
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Additive homomorphic encryption scheme

KeyGen(λ)

Secret key p of bit size ≈ η
Sample xi ← AAGCD

K ,bDαe(p) for 0 ≤ i ≤ τ
Relabel so that x0 is largest and bx1/pe is odd

Encpk(m) of a given message m ∈ {0, 1}
Sample a subset S ⊆ {1, 2, . . . , τ}

Output c =
[∑

i∈S xi + bx1

2
em
]
x0

This is of the form c = pq +
p

2
m + r for some small r ∈ 1

2Z

Addx0(c1, c2) = [c1 + c2]x0

Decsk(c) = [b2c/pe]2 = m because

2

p

(
pq +

p

2
m + r

)
= 2p + m +

2r

p

b·e→ 2p + m
[·]2→ m.
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Multiplication

Idea

c1c2 has two large noise > r1r2.

c = pq + (p/2)m + r ⇒ (p/2)c = 2q + m + ε for ε = 2r/p

(2/p)c1 · (2/p)c2 ⇒ (2/p)(2/p)(c1 · c2)

b(2/p)c1c2e = pq∗ +
p

2
m1m2 + r∗ ... but r∗ is large.

Bit-Decomposition and Power-of-Two [Bra12]

Given a =
∑

i 2iai for ai ∈ {0, 1}, BD(a) = (a0, . . . , aγ−1).
Given s ∈ R, P(s) = (s, 2s, . . . , 2γ−1s).

〈BD(c),P(2/p)〉 = 2c/p (= 2q + m + ε)

〈BD(c), [P(2/p)]2〉 = 2N + m + ε for an integer N with |N| ≤ γ/2
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Multiplication (continued)

Tensor Product

u = (u1, . . . , um), v = (v1, . . . , vn)

u⊗ v = (u1v, u2v, . . . , umv)

〈u⊗ v,u′ ⊗ v′〉 = 〈u,u′〉〈v, v′〉

Let Y = [P(2/p)]2 ⊗ [P(2/p)]2. Then

〈BD(c1)⊗ BD(c2),Y〉 =
p

2
(2N1 + m1 + ε1)(2N2 + m2 + ε2),

which becomes m1m2 after b·e and [·]2.

Publish Ȳ, an encryption of Y. Then Mul(c1, c2) is

cmult = [〈BD(c1)⊗ BD(c2), Ȳ〉]x0 .
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Performance

After a multiplication, the noise increases ‘linearly’ (as in [Bra12]).

Bit-size of noise is ≤ L log γ after homomorphic evaluation of circuit
of multiplicative depth L.

The choice of ρ = Ω(λ), η − ρ = Ω(L log λ) and γ = O(L2λ log λ)
achieves the functionality and security reduction together.

⇒ Ciphertexts have quasi-linear size γ = Õ(λ).
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Open Questions

Truncation: c = pq + p
2m + r for random r ∈ Z∩ [2−ρ, 2ρ]. The lsb ρ

bits does not need to be transmitted. How small can (γ − ρ) be?

How to improve the scheme?

Faster Multiplication
Batch scheme with ciphertexts of quasi-linear size
Bootstrapping with non-binary message space

Integer version of Ring-LWE problem and a scheme based on this

Any essential difference between AGCD and LWE?
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