
Threshold Implementations

Vincent Rijmen
Eurocrypt 2015

Cryptanalysis

c = E(k,p)

(Known plaintext:)
Equations in the key

Difficult to solve:
high nonlinearity,
high diffusion

Side-channel attacks

Device gives information
on its internal state

Equations in intermediate
variables

More easy to solve:
low nonlinearity,
low diffusion

Product cipher [Shannon, 1949]

Power attacks (EM radiation)

Power consumption
depends on:
§  Instructions executed
§ Data processed

Hardware sidechannels

•  Switching a logic cell from “0” to “1” consumes energy

•  The amount of energy depends on:
–  transistor design
–  process variations,
–  length of connection line,
–  crosstalk between lines,
– 

•  Leaks Hamming weight of stored variables
–  Sometimes more information leaks

Countering power attacks

1.  Balancing power consumption
–  Constant instruction sequence
–  Special hardware logic styles [Tiri+ 2003]

2.  Masking [Chari+ 1999]
–  Removes correlation between secret key and data processed

3.  Leakage-resilient cryptography
–  Ephemeral keys [Kocher 2005]

Masking

f x y

xm ym

mx
my r

mx + xm = x
my + ym = y

f’
f’

Private circuits [Ishai+ ‘03]

•  f = XOR: easy
•  f = AND: construction given in the paper
•  f = anything else: combinations of these two

–  Circuit size O(nt2)

•  Proof of security

Masked multiplier [Trichina+ ‘04]

•  1 multiplier becomes
4 multipliers + 4 XORs

•  None of the signals is
correlated to a, b or q

•  Security proof
•  Assumptions:

computation model
–  Discrete-time
–  Imperative programming

style

qm = ambm + (mbam + (mabm + (mamb + mq)))

Logic analyser (digital view)

CLK

am

bm

ma

mb

mq

qm

Signal analyzer (analog view)

CLK

am

bm

ma

mb

mq

qm

Transient effects in hardware

•  Changing values takes time: transition period

•  Delays depend on details of the circuit lay-out
–  Race conditions

•  Transient effects account for almost all the power

consumption of CMOS circuits

Crisis

•  Propagation of transient effects depends on the input of

the combinational circuit
•  Dependency is non-linear
•  Modeling requires knowledge of low-level circuit details

•  Security breakdown

0
0

1

Threshold implementations

•  Don’t rely on the behaviour of hardware implementations
of combinational logic

•  Assume that combinational logic leaks information on all
its inputs

•  Secret sharing

x1 + x2 + x3 = x
y1 + y2 + y3 = y

Non-completeness

f1 x1 y1

f2 x2 y2

f3 x3 y3
Multi-Party

Computation!

x1 + x2 + x3 = x
y1 + y2 + y3 = y

y = f(x)

Security: main theorem

Average power consumption of the circuit is independent of x

•  fi depends only on (xi+1, xi-1), is independent of xi
•  Power consumption of fi is independent of xi
•  If (xi+1, xi-1) independent of x, then the power

 consumption of fi is independent of x

•  Average power consumption of the circuit

= sum of average power consumptions of fi
•  Hence, independent of x

Assumptions

•  xi uniformly random
–  Knowledge of n-1 shares gives no information on x

•  fi implementation depends only on (x1,…, xi+1, xi-1,…, xn):
–  No cross-talk from xi

•  Suitable fi have to exist:

–  Trivial for linear f
–  Research problem for most of the interesting f

f1 x2, x3,…, xn()+ f2 x1, x3,…, xn()+!+ fn x1, x2,…, xn−1() = f x1, x2,…, xn()

Example: multiplier

•  3 shares

•  Secure, even with transient effects
•  No extra random input required

z = f x, y() = x ⋅ y
z1 = f1 x2, x3, y2, y3() = x2y2 + x2y3 + x3y2
z2 = f2 x1, x3, y1, y3() = x3y3 + x1y3 + x3y1
z3 = f3 x1, x2, y1, y2() = x1y1 + x1y2 + x1y3

Related approach [Prouff+ 2011]

•  Shamir’s secret sharing
•  BGW secure multiparty computation protocol

–  Construction for fi

•  Circuit size O(t3), extra randomness O(t2)

Arbitrary functions (ciphers)

•  Hardware size increases
with the number of shares

•  Functions with algebraic
degree n require n+1 shares

•  Strong ciphers have high
algebraic degree

Registers

•  Combinational logic between registers has lower
algebraic degree

•  Registers limit propagation of transient effects

•  Protect each stage individually

Assumptions!

•  The inputs of each stage need to be uniformly distributed

•  The input of the 2nd step = output of 1st step

•  Outputs of 1st step need to be uniformly distributed
– remasking, or
– extra property for fi

Extra property for (f1,f2,…)

•  With sin, sout be the number of shares in input, output
•  Always

∀y ∈ Fout,∀ y1, y2,…, ysout(),∀x ∈ Finwith f (x) = y :

x1, x2,…, xsin() | x1, x2,…, xsin()→ y1, y2,…, ysout(){ }=
Fin()sin−1

Fout()sout−1

x1 + x2 +!+ xsin = x and y1 + y2 +!+ ysout = y

In words

Every yi-tuple for the same y gets an equal amount of “hits”

If sin = sout:
 is an invertible function

 is an invertible function

f : x→ y

!

F : (x1, x2,…, xs)→ (y1, y2,…, ys)

Multiplier v1.0

x y z1z2z3

000 011 110 101 001 010 100 111

0 0 7 3 3 3 0 0 0 0

0 1 7 3 3 3 0 0 0 0

1 0 7 3 3 3 0 0 0 0

1 1 0 0 0 0 5 5 5 1

z1 = f1 x2, x3, y2, y3() = x2y2 + x2y3 + x3y2
z2 = f2 x1, x3, y1, y3() = x3y3 + x1y3 + x3y1
z3 = f3 x1, x2, y1, y2() = x1y1 + x1y2 + x1y3

Multiplier v2.0

x y z1z2z3z4

0000 0011 0110 0110 1100 0101 1010 1111 0001 0010 0100 1000 0111 1011 1101 1110

0 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

0 1 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

1 0 8 8 8 8 8 8 8 8 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8

z1 = x3 + x4() y2 + y3()+ x2 + x4
z2 = x1 + x3() y1 + y4()+ y1 + x4
z3 = x2 + x4() y1 + y4()+ x2
z4 = x1 + x2() y2 + y3()+ y1

In practice: Noekeon

•  Block cipher submitted to NESSIE (2000)
•  Lightweight
•  Ultra compact and fast in hardware

•  4-bit S-box

The S-box

Two non-linear parts with deg=2:
d c b a

NOR AND

NOR AND

h g f e

l k j i

non-linear

non-linear

linear

x

y

z

Protecting the S-box

•  3 shares
•  1 intermediate register layer
•  Each function:

–  independent of at least one share
–  uniform input and output distribution

AES

•  Nonlinear part = inversion
over GF(256)

•  Tower field approach

•  Large search space
•  Ongoing research

Present

•  4-bit Sbox without structure
•  Constructing fi: search space too large
•  Decompose into sequence of functions with known

sharing circuit [Poschmann+ 2011]

S = G o F

All invertible 4-bit S-boxes

•  302 classes of affine-equivalent S-boxes

[Bilgin+, 2012]

remark
unshared 3 shares 4 shares 5 shares

1 2 3 4 1 2 3 1

affine 1 1 1 1

quadratic 6 5 1 6 6

cubic in A16 30 28 2 30 30

cubic in A16 114 113 1 114 114

cubic in S16 \ A16 151 4 22 125 151

Secure implementation of Keccak

Keccak nonlinearity:
•  5-bit S-box
•  320 instances per round

Secure implementation:
•  4 shares
•  3 shares + remasking

–  Start: 2 fresh random bits per state bit (3200 bits)
–  Reduced to 4 fresh random bits per S-box (1280 bits)
–  Re-use random bits for next S-box (4 bits)

[Bilgin+ 2013]

PRIMATEs

•  Authenticated-Encryption ciphers
–  Submitted to CAESAR competition

•  Designed for TI
–  5-bit S-box
–  Good resistance against linear and differential cryptanalysis
–  Small hardware (threshold) implementation

[Andreeva+ 2014]

Higher-order attacks

Types:
1.  Higher-order statistics but single measurement per data

2.  Higher order statistics and multiple measurements per

data, measured simultaneously

3.  Higher order statistics and multiple measurements per
data, possibly with delay between the measurements

dth-order non-completeness

•  All combinations of up to d functions fi must not depend
on at least one xj

•  Protects against dth-order attacks of Type 1 and Type 2

[Bilgin+ 2014]

Linear functions

Use d+1 shares

f1 x1 y1

f2 x2 y2

fd+1 xd+1 yd+1

… …

Functions of degree r

•  There always exists a circuit with
–  sin = rd + 1 input shares
–  sout = Comb(sin, r) output shares (and functions fi)

•  Other (sin, sout)-combinations exist

•  Extra reduction step to decrease number of shares from
sout to sin

Further work

•  Security against fault attacks
–  Induce hardware failure while measuring signals
–  Techniques from robust multiparty computation (?)

•  Security against attacks using non-linear combination of
signals measured at different times
–  Alternatives to remasking

•  Incorporate assumptions about the power of the
adversary

Thanks

•  Begül Bilgin
•  Joan Daemen
•  Thomas De Cnudde
•  Benedikt Gierlichs
•  Venzislav Nikov
•  Svetla Nikova
•  Christian Rechberger
•  Martin Schläffer
•  Georg Stütz
•  Natalia Tokareva
•  Gilles Van Assche
•  Valeriya Vitkup

