Quadratic Time, Linear Space
Algorithms for Gram-Schmidt
Orthogonalization and Gaussian

Sampling in Structured Lattices

Vadim Lyubashevsky and
THALES

Introduction: Key Sizes in Lattice-Based Cryptography

Faster Gram-Schmidt Orthogonalization in Structured Lattices

Storage-Efficient Gaussian Sampler in Structured Lattices

Conclusion

Introduction: Key Sizes in Lattice-Based Cryptography

Key Sizes in Cryptography

Key Sizes in Cryptography

OV =N
T Roa]

Key Sizes in Cryptography

; RSA

Elliptic Curves -

Key Sizes in Cryptography

RSA]
Elliptic Curves -

RENEEN
1,
N Lattices

|deal lattices [LMO6]

Figure : Size of the keys in lattice-based cryptography

Generic lattices

Ideal lattices

Space requirement goes from O(n?) to O(n), where n is the dimension.

Gaussian Sampling [Kle00, GPV08]

Very important primitive in lattice-based cryptography:
e Hash-and-sign signatures [GPV08]

e (H)IBE [GPV08, CHKP10, ABB10] o . o . .
e Standard-model signatures [ABB10] R . . .
e Attribute-based encryption [BGG'114]
o .
Current “best” one: variation [BLP*13] of : g .. Y ¥
Gaussian Sampler [GPV08] o . 5 . .
. O . o .

The Gaussian Sampler of [Kle00, GPV08]

What is the data required by the Gaussian Sampler for
ideal lattices?

Basis B

Highly structured!

The Gaussian Sampler of [Kle00, GPV08]

What is the data required by the Gaussian Sampler for
ideal lattices?

Basis B B = GramSchmidt(B)

EEEEEE EEEEEE

Highly structured! No space-saving structure!

Faster Gram-Schmidt Orthogonalization in Structured Lattices

Gram-Schmidt Orthogonalization (GSO)

What is the Gram-Schmidt Orthogonalization (GSO)?

=
B B = GSO(B)

The GSO for two vectors

Figure : Computing the GSO B = {51, bo, ...,B,,} for n vectors.
One — arrow takes time O(n). Total time complexity = O(n*)

The Geometry of |deal Lattices

For the bases we study, we have Yk, by = r(bx_1):

r T T r r r
®-0 -0 -0 -0-0

Where r is an easily computable isometry: ||r(v)|| = ||v]|.

Example:

.... f mod x* +1
.... xf mod x* +1
.... x?f mod x* +1
.... x3f mod x* +1

(It still is the case when replacing x* + 1 with any cyclotomic polynomial)

10 / 24

Exploiting the Relationship R

The idea: compute IN)kH from Bk

’ Bk is the reduction of by w.r.t. all the previous vectors

4

4

I;k €L b17b27 "~7bk71

by — by € Span(by, by, ...,bx_1)

= r(bg) L r(by),r(by),...,r(bx_1) || = r(bx) — r(bx) € Span(r(by),r(bs),...,r(bx_1))

= r(Bk) 1 J)1/7b27b3,,..,bk

= bk+1 —I’(Bk) S Span(b17b2,b37...7bk)

4

4

r(by) is “almost” the reduction of by, w.r.t. all the previous vectors

How to turn r(by) into a complete reduction of by ;?

e Reduce r(by) w.r.t. to by? Breaks orthogonality X

e Reduce r(Bk) w.r.t. to

vk 2 by — Proj(by, Span(bs, ..., by)) [

11 /24

GSO for Isometric Bases

00— —0—-0—0
/./

GSO for Isometric Bases

-+ o—0— —0—0—9©

GSO for Isometric Bases

®—-0—-0—- —0—0—®
S S S
© e o ©

-+ o—0— —0—0—9©

— 0—0— —0—0—0

Figure : Computing the Gram-Schmidt Orthogonalization with a double recursion
One —® arrow takes time O(n). Total time complexity = O(n?)

12 /24

GSO for Isometric Bases

—0—0—®
XXX
—e—e—e

Algorithm Isometric_GSO(B

Algorithm Classical GSO(B)

)
Require: Basis B = {by,...,b,}
Ensure: GSO basis B — (b,b,}
61 <~ b;
V] <— b]_
for k=1,...n—1do

byy1 f(Bk) — L),

vl

(b)) (F
i (0x)

Vil < Vi —

end for . .)
return B = {by, ... b,}

Require: Basis B = {by,...,b,}
Ensure: GSO basis B = {51. Bn}
Bl — b1
for k=1,...n—1do
Bk+1 < r(b) — Zj<k foolby) Bj
end for
return

B = {by,....b,}

13 /24

GSO for Isometric Bases

—0—0—®
XXX
—e—e—e

Algorithm Isometric_GSO(B

Algorithm Classical GSO(B)

)
Require: Basis B = {by,...,b,}
Ensure: GSO basis B — (b,b,}
61 <~ b;
V] <— b]_
for k=1,...n—1do

byy1 f(Bk) — L),

vl

(b)) (F
i (0x)

Vil < Vi —

end for . .)
return B = {by, ... b,}

Require: Basis B = {by,...,b,}
Ensure: GSO basis B = {51. Bn}
Bl — b1
for k=1,...n—1do
Bk+1 < r(b) — Zj<k foolby) Bj
end for
return

B = {by,....b,}

Further optimizations: We can avoid 2 out 3 scalar products = up to 67% faster

13 /24

Gram-Schmidt Decomposition (GSD)

Definition (Gram-Schmidt Decomposition (GSD))
Write B = /. x B, where B is the GSO of B

Applications:
e In cryptology: lattice reduction (LLL, BKZ...), Gaussian Sampling

e OQutside cryptology: solving least square problems, linear systems,
computing eigenvalues...

14 /24

Speeding up GSD for Isometric Bases

Sy
e
HEEEERR
Ly
HEEN

. Trivial values
. Nontrivial values

— = O(1) operations

Figure : Fast computation of the matrix u for an isometric basis.
Overall time and space complexity: O(n?)

15 / 24

Storage-Efficient Gaussian Sampler in Structured Lattices

16 /24

GSO and Gaussian Sampler

Now both GSO and the Gaussian Sampler run in time O(n?).

Can we directly plug together the Isometric GSO
and the Gaussian Sampler to both run on-the-fly?

; Gaussian Sampler —>.
Isometric GSO

GSO and Gaussian Sampler

Now both GSO and the Gaussian Sampler run in time O(n?).

Can we directly plug together the Isometric GSO
and the Gaussian Sampler to both run on-the-fly?

; Gaussian Sampler —>.
Isometric GSO

Not really.

17 /24

Linear-Space Gaussian Sampler

Figure : Reverting Isometric GSO in order to do linear-space Gaussian Sampling
One —® arrow takes time O(n) and space O(1) (besides the vectors by, vi).

18 / 24

A Linear Space Gaussian Sampler

@ 0@
XX
o0

000
X X X
—0—0-—0

Algorithm B
Classic_Sampler(B, B, o,c)

Require: B, B, o, c
Ensure: z sampled in Dj(g).0,c
Cp+C
for k< n,..;,1do _
dy = (ci, br) /[|bilf?
ok < o/|lbl
zi < Dz.0, .4,
Ci—1 < €k — zkby
end for
return c — ¢y

A Linear Space Gaussian Sampler

®-— 06| —0-—0-—0
NoX XXX
®—e | —e—90—0

Algorithm Algorithm
Classic_Sampler(B, B, o, c) Compact_Sampler(B, b, v, 0, ¢, (Hk, I)k)
Require: B, B, o c Require: B, 5,,7v,,, o, C
Ensure: z sampled in D/\(B),a,c Ensure: z sampled in ’DA(B).’,,,C
C,+C Ch,+C
for k< n,..;,1do _ for k< n,..,1 do
dic + (ck, bi) /[|bk]l dic + (ck, bi) /[Ibk]l
ok o/|bxl ok o/||bl
Zy DZ,ak,dk Z DZ,o'k,dk
Ck—1 ¢ €k — zkby Ck—1 < €k — zkby
end for br—1 = r(Hibi + levi)
return ¢ —cg vi_1 = lkby + Hivy
end for

return ¢ —cg

19 /24

Timings and Space Requirements

Table : Timings and space requirements of the classic and compact Gaussian Samplers

(Classic GS and Compact GS)*.

Statistical distance from ideal 2-128
Precision needed Classic G5 163 bits
Compact GS | 193 bits

Running time Classic GS 170 ms
Compact GS | 521 ms

Space requirement Classic G5 163 Mb
Compact GS | 0.47 Mb

e Running time: x3.06
e Space requirement: /340

1The implementation was done in C++ using GMP. Timings were performed on an Intel Core
i5-3210M laptop with a 2.5GHz CPU and 6GB RAM.

20 /24

Conclusion

21 /24

A few open questions:

e Precision analysis of Isometric GSO?

e Better precision analysis of Gaussian Sampler?

e Combine with ideas of [DN12]?

e How does this link to Arnoldi iteration and Lanczos Algorithm?

e Use same principles to improve other algorithms?

29 /24

Conclusion

Precision analysis of
Gaussian Sampler

Faster Exact GSO
Faster Exact GSD

@ This talk
C_D This work
@@ Open question

Figure : Present and future work

23 /24

Conclusion

Precision analysis of
Gaussian Sampler

Faster Exact GSO
Faster Exact GSD

@ This talk
C_D This work
@@ Open question

Figure : Present and future work

Thank you!

23 /24

Shweta Agrawal, Dan Boneh, and Xavier Boyen

Lattice basis delegation in fixed dimension and shorter-ciphertext
hierarchical IBE.

In CRYPTO'10, pages 98-115, 2010

Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria
Nikolaenko, Gil Segev, Vinod Vaikuntanathan, and Dhinakaran
Vinayagamurthy.

Fully key-homomorphic encryption, arithmetic circuit ABE and
compact garbled circuits.

In EUROCRYPT'14, pages 5

Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and
Damien Stehlé.

Classical hardness of learning with errors.

In STOC, pages 575-584, 2013

David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert.
Bonsai trees, or how to delegate a lattice basis.

In EUROCRYPT, pages 523-552, 2010

Léo Ducas and Phong Q. Nguyen.

Faster gaussian lattice sampling using lazy floating-point
arithmetic.

In ASIACRYPT 2012, pages 415-432, 2012

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan.
Trapdoors for hard lattices and new cryptographic constructions.
In STOC, pages 197-206, 2008

Philip N. Klein.
Finding the closest lattice vector when it's unusually close.
In SODA’00, pages 937941, 2000

Vadim Lyubashevsky and Daniele Micciancio.
Generalized compact knapsacks are collision resistant.
In ICALP (2), pages 144-155, 2006

	Introduction: Key Sizes in Lattice-Based Cryptography
	Faster Gram-Schmidt Orthogonalization in Structured Lattices
	Storage-Efficient Gaussian Sampler in Structured Lattices
	Conclusion

