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Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.
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Generalized Model

* Adversary can leak on an arbitrary order of
the component.
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Security

* The adversary learns nothing more than black-
box access to the device.
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Security

* The adversary learns nothing more than black-
box access to the device.

Simulated VIEW




How to measure the “quality” of a
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* Functionality
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How to measure the “quality” of a
construction

* Functionality
* Number of components
* Extra Secure Hardware
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Previous Result

* |tis impossible for one component (without
secure hardware) [folklore,GR12]

* For multi-component constructions, we have:

Scheme Hardware Components
JV10 Yes 2

DF11 Yes 2

GR12 No |C|

BDL14 No 20




Our Main Result

* Get best of the two: 2 components without
hardware!



Our Main Result

e Get best of the two: 2 components without
hardware!

A modular approach:

— Generic way to replace hardware in previous
schemes [JV, DF]

Scheme Hardware Components
JV-based No 2

DF-based No 2




Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality
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Original Dziembowski-Faust Scheme

* Given any D(¢), we can express it as a circuit of NAND
gates

— Initially, secret share s
— On input x, secret share x

Output D(*)
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Single gate

Original Dziembowski-Faust Scheme
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Single gate

Original Dziembowski-Faust Scheme

Great property of shares

* Independent leakage on shares cannot reveal the underlying
value!
« uis hidden given L,(u,), L,(u,), for bounded length functions

NAND




Gate by gate
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Original Dziembowski-Faust Scheme

* DF designed a scheme @
— A Protocol for NAND
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* DF designed a scheme @
— A Protocol for NAND
— A Protocol Refresh NAND
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Original Dziembowski-Faust Scheme

e Refresh needs hardware

il Secure Hardware
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Original Dziembowski-Faust Scheme

e Refresh needs hardware

L and R are vectors such that <L, R>=0
It is fine to leak on L and R separately, but NOT jointly



Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality



Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality



Hardware Replacement Theorem

* Given any hardware-based scheme




Hardware Replacement Theorem

* Given any hardware-based scheme




Hardware Replacement Theorem

* Given any hardware-based scheme




Hardware Replacement Theorem

* Given any hardware-based scheme




Similar to UC, leaky UC [BCH12]
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Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality



Sampling Functionality

* Let A be some distribution that samples (L, R)
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First idea

How to Implement Sampling

Functionality

* Let A be a distribution that hardware samples,

i.e. (LLR)<A

 Simple idea: let one party samples A and use
encryption to protect the communication

Sample coins
Compute (L, R) = A(coins)
Compute Enc(pk, R)

/

(pk,sk) <- Gen



First idea

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can obtain joint

leakage on L andR if Big Issue!!!

can leak on coins

pk
Enc(pk,R) >
\
Sample coins
Compute (L, R) = A(coins) (pk,sk) <- Gen
Compute Enc(pk, R)




[JLOO,CHKO5]

Receiver Non-committing Encryption

< ok
c = Enc(pk,m; r) >

Sender Receiver

(pk,sk) <- Gen



[SW14]

Univeral Deniable Encryption

[ Public Parameter PP

pk

c = Enc(PP, pk,m; r>

Sender Receiver

For any m’ in the message space, sender can produce a fake opening r’
that is consistent with the transcript, i.e. c= Enc(PP, pk,m’; r’)



Sahai-Waters’ Transformation

 Theorem [SW] Given any encryption E, there
exists an upgraded E* that is deniable.

[ Public Programs C,,.., Cexplain }

Use Cqypiain (€, M’) to come up with
consistent random coins with message m’
Sender Receiver
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P
Public Program C_,.: on input (pk, r),
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How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

~ ™

Public Program C_,.: on input (pk, r),

1. Sample (L, R) € A

kz. Output (c,,c,) = (L, Enc(pk, R) )

pk

Run Program C___(pk, r)

enc

and obtain (pk,sk) <- Gen
(c1,¢5) = (L, Enc(pk, R) )




How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can only

pk
-
- <
1 Sample r ¢, = Enc(pk,R) >
2. RunProgram C_,(pk, r)

and obtain
K (C]_IC2) h (LI EnC(pk, R) ) /
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How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can only

Can only leak R

leak L

pk

1. Sampler B ¢, = Enc(pk,R)
2. RunProgram C_,(pk, r)

and obtain
(C]_IC2) = (LI EnC(pk, R) ) - (pk,Sk) <- Gen




Final Scheme

* Replace hardware in DF by the protocol




Conclusion

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* New techniques to protect computation




Questions?

Thanks!
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More Concretely

* The sharingis an inner product scheme
— u = (uy, U,) such that their inner product is u

* <UL 09V, Ug (9 Vp> = <Ug, Up> ¥ <vy, vy>
w, = (100 100 000) @ w, = (101 101 101)

AND

u,= (11‘1; V,= (1

u, = (110)



However...

* Dimension blows up...
e Shares of w are not fresh ...

w, = (100 100 000) @ w,=(101 101 101)

AND

u,= (11; V,= (1



