Leakage-Resilient Circuits

Revisited

-- Optimal Number of Computing Components
without Leak-free Hardware

Hong-Sheng Zhou

Virginia Commonwealth University

Joint work with

Dana Dachman-Soled and Feng-Hao Liu
University of Maryland

TCC Test-of-Time Award

The TCC Test of Time Award recognizes outstanding papers, published in TCC at least eight years ago, making a significant contribution to the
influence also in other area of cryptography, theory, and beyond. The inaugural TCC Test of Time Award was given in TCC 2015 for papers pu

Award Recipients

2015:

« Physically Observable Cryptography by Silvio Micali (MIT) and Leonid Reyzin (Boston University), which was published in TCC 2004
award for pioneering a mathematical foundation of cryptography in the presence of information leakage in physical systems.

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret is shared in components }

| o

A i 'l "

Secret s, Secret s, Secret s;
ey [ey e
Ly | g | Tk

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret is shared in components }

A i p | - | p | - |
j‘> Secret s, Secret s, Secret s
input
N gLy N NSy N .y
g) e T

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret is shared in components }

a2 L3

p | - | 'l |
Secret s, Secret s
N iy L e

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

B -}
Secret s,

Wy,

i

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

Secret S, Secret S3

mr W[R7 sr?‘ A

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are

leaky.
Y Z Leak L,(s,) }

/x [Secret is shared in components }

Secret S, Secret S3

mr W[R7 sr?‘ A

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret a}'rﬁ d in components }

P2 /22
R Ia-ﬂ‘"\; Y ,E—‘_—ﬁ,\,
. Secret s, Secret s
input - -
N Ry A

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret a}'rﬁ d in components }

P2 /22
R Ia-ﬂ‘"\; Y ,E—‘_—ﬁ,\,
. Secret s, Secret s
input - -
N Ry A

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are

leaky.
Y Z Leak L,(s,) }

[Secret a}'rﬁ d in components }

P2 /22
R Ia-ﬂ‘"\; Y ,E—‘_—ﬁ,\,
. Secret s, Secret s
input - -
N Ry A

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret is shared in componenti ,ﬁ

b . ;
™ ™
| o— | o—
— Secret s, |:> Secret s,
Tl Tt
in‘r i'l

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are
leaky.

[Secret is shared in componenti ,ﬁ

™ ™
| —— | —
— Secret s, |:> Secret s,
Tl Tt
in‘r i'l

Only Computation Leaks (OCL) [MR]

* |dea: computation is performed by multiple
components, where only the active ones are

leaky.
Y Z Leak Ls(s;) }

[Secret is shared in componenti ,ﬁ

b . ;
™ ™
| o— | o—
— Secret s, |:> Secret s,
Tl Tt
in‘r i'l

Generalized Model

* Adversary can leak on an arbitrary order of
the component.

[Secret is shared in components }

I—

Generalized Model

* Adversary can leak on an arbitrary order of
the component.

\
2 Leak Ly(s;) |is shared in components }

I—

Generalized Model

* Adversary can leak on an arbitrary order of

the component.

.

2 Leak Ly(s1) js sharef Leak Ly(s,)

I—

~

output >

Generalized Model

* Adversary can leak on an arbitrary order of
the component.

(N\
2 Leak Ly(s1) js sharef Leak Ly(s,)

i
M=

Gy | Secrets, |

input

Security

* The adversary learns nothing more than black-
box access to the device.

I—

L.—f,-—] output
1

Security

* The adversary learns nothing more than black-
box access to the device.

VIEW of Adversary

I—

L,Tv._] output
A

Security

* The adversary learns nothing more than black-
box access to the device.

Simulated VIEW

How to measure the “quality” of a
construction

* Functionality

Elr

o —
|£‘\

— Secrets; |) Secret S, T— Se‘cﬁret >3 Eput'>

grﬂ w2y mt' W7 sr?‘ Ly

How to measure the “quality” of a
construction

* Functionality
* Number of components

22 23 =\

T Secret Sl |:> Secret S, :> [‘-—v—v——J .
gg iy sg i3 :::

How to measure the “quality” of a
construction

* Functionality
* Number of components
* Extra Secure Hardware

Secure Hardware

B,
input Secret 51 I— SeCFEt S; | —p [Secfet >3] Eput>
, -

m" LIy m\

Our Goal

* How do we secure general computation?
— With the optimal number of components
— Without secure hardware

Our Goal

* How do we secure general computation?
— With the optimal number of components
— Without secure hardware

Function D (*)

Our Goal

* How do we secure general computation?
— With the optimal number of component
— Without secure hardware

Function D (*)

Compile

e
| — |

Secret s,
Y

Our Goal

* How do we secure general computation?
— With the optimal number of component
— Without secure hardware

Function D,(*) * |dentical input/output behavior

. * Resilient to leakage attacks
Compile

e
| — |

ecret s,
- i

Our Goal

* How do we secure general computation?
— With the optimal number of component
— Without secure hardware

Function D,(*) * |dentical input/output behavior

. * Resilient to leakage attacks
Compile

e
| — |

ecret s,
- i

Previous Result

* |tis impossible for one component (without
secure hardware) [folklore,GR12]

* For multi-component constructions, we have:

Scheme Hardware Components
JV10 Yes 2

DF11 Yes 2

GR12 No |C|

BDL14 No 20

Our Main Result

* Get best of the two: 2 components without
hardware!

Our Main Result

e Get best of the two: 2 components without
hardware!

A modular approach:

— Generic way to replace hardware in previous
schemes [JV, DF]

Scheme Hardware Components
JV-based No 2

DF-based No 2

Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality

Original Dziembowski-Faust Scheme

* Given any D(®), we can express it as a circuit of NAND
gates

Output D(*)

NAND Gates

Af

Input x Secret s

Original Dziembowski-Faust Scheme

* Given any D(®), we can express it as a circuit of NAND
gates

— Initially, secret share s
Output D(*)
i":_‘\l I \\l
Secret s, NAND Gates Secret s,
pa W pa W

Input x Secret s

Original Dziembowski-Faust Scheme

* Given any D(¢), we can express it as a circuit of NAND
gates

— Initially, secret share s
— On input x, secret share x

Output D(*)

2 2

=
g\‘
p | - |

Secret s, NAND Gates

Af

Input x Secret s

Single gate

Original Dziembowski-Faust Scheme

NAND

Single gate

Original Dziembowski-Faust Scheme

NAND

Single gate

Original Dziembowski-Faust Scheme

Great property of shares

* Independent leakage on shares cannot reveal the underlying
value!
« uis hidden given L,(u,), L,(u,), for bounded length functions

NAND

Gate by gate

Original Dziembowski-Faust Scheme

NAND

Gate by gate

Original Dziembowski-Faust Scheme

Original Dziembowski-Faust Scheme

* DF designed a scheme @
— A Protocol for NAND

NAND

™
T

{8

I =

srf‘. W/ |
-

u, v,

Original Dziembowski-Faust Scheme

* DF designed a scheme @
— A Protocol for NAND
— A Protocol Refresh NAND

<
<

Refresh(w)

Original Dziembowski-Faust Scheme

* DF designed a scheme @
— A Protocol for NAND
— A Protocol Refresh NAND

<
<

Refresh(w)

Original Dziembowski-Faust Scheme

e Refresh needs hardware

il Secure Hardware

Original Dziembowski-Faust Scheme

e Refresh needs hardware

Original Dziembowski-Faust Scheme

e Refresh needs hardware

L and R are vectors such that <L, R>=0
It is fine to leak on L and R separately, but NOT jointly

Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality

Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality

Hardware Replacement Theorem

* Given any hardware-based scheme

Hardware Replacement Theorem

* Given any hardware-based scheme

Hardware Replacement Theorem

* Given any hardware-based scheme

Hardware Replacement Theorem

* Given any hardware-based scheme

Similar to UC, leaky UC [BCH12]
Hardware Replacement Theorem

* Given any hardware-based scheme

Similar to UC, leaky UC [BCH12]
Hardware Replacement Theorem

* Given any hardware-based scheme

@&

== =
—eg

\ri 7 b
e

NSy

Challenge: Need to make sure Adv can not
learn joint leakage of Land R !

Roadmap

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* Hardware replacement theorem
* Implement sampling functionality

Sampling Functionality

* Let A be some distribution that samples (L, R)

Secure Hardware

/ \

|]
Secret s, — Secret s,

Ly

T — 5

How to Implement Sampling
Functionality

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

First idea

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

 Simple idea: let one party samples A and use
encryption to protect the communication

First idea

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

 Simple idea: let one party samples A and use
encryption to protect the communication

(pk,sk) <- Gen

First idea

How to Implement Sampling

Functionality

* Let A be a distribution that hardware samples,

i.e. (LLR)<A

 Simple idea: let one party samples A and use
encryption to protect the communication

Sample coins
Compute (L, R) = A(coins)
Compute Enc(pk, R)

/

(pk,sk) <- Gen

First idea

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can obtain joint

leakage on L andR if Big Issue!!!

can leak on coins

pk
Enc(pk,R) >
\
Sample coins
Compute (L, R) = A(coins) (pk,sk) <- Gen
Compute Enc(pk, R)

[JLOO,CHKO5]

Receiver Non-committing Encryption

< ok
c = Enc(pk,m; r) >

Sender Receiver

(pk,sk) <- Gen

[SW14]

Univeral Deniable Encryption

[Public Parameter PP

pk

c = Enc(PP, pk,m; r>

Sender Receiver

For any m’ in the message space, sender can produce a fake opening r’
that is consistent with the transcript, i.e. c= Enc(PP, pk,m’; r’)

Sahai-Waters’ Transformation

 Theorem [SW] Given any encryption E, there
exists an upgraded E* that is deniable.

[Public Programs C,,.., Cexplain }

Use Cqypiain (€, M’) to come up with
consistent random coins with message m’
Sender Receiver

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

pk

¢, = Enc(pk,R) >

(pk,sk) <- Gen

How to Implement Sampling

Functionality

* Let A be a distribution that hardware samples,
i.e.

LR) <A

P
Public Program C_,.: on input (pk, r),
1. Sample (L, R) € A

\2. Output (c,,c,) = (L, Enc(pk, R))

pk

¢, = Enc(pk,R) >

\

(pk,sk) <- Gen

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

~ ™

Public Program C_,.: on input (pk, r),

1. Sample (L, R) € A

kz. Output (c,,c,) = (L, Enc(pk, R))

pk

Run Program C___(pk, r)

enc

and obtain (pk,sk) <- Gen
(c1,¢5) = (L, Enc(pk, R))

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can only

pk
-
- <
1 Sample r ¢, = Enc(pk,R) >
2. RunProgram C_,(pk, r)

and obtain
K (C]_IC2) h (LI EnC(pk, R)) /

(pk,sk) <- Gen

How to Implement Sampling
Functionality

* Let A be a distribution that hardware samples,
i.e. (LLR)<A

Can only

Can only leak R

leak L

pk

1. Sampler B ¢, = Enc(pk,R)
2. RunProgram C_,(pk, r)

and obtain
(C]_IC2) = (LI EnC(pk, R)) - (pk,Sk) <- Gen

Final Scheme

* Replace hardware in DF by the protocol

Conclusion

* A generic design paradigm
— Stepl: desigh a hardware-based scheme
— Step2: get rid of the hardware

* New techniques to protect computation

Questions?

Thanks!

More Concretely

* The sharingis an inner product scheme
— u = (uy, U,) such that their inner product is u

AND

u,= (111) v,= (101)

More Concretely

* The sharing is an inner product scheme
— u = (uy, u,) such that their inner product is u

e Getting partial information of the shares does
not leak the inner product

More Concretely

* The sharingis an inner product scheme
— u = (uy, U,) such that their inner product is u

* <UL 09V, Ug (9 Vp> = <Ug, Up> ¥ <vy, vy>
w, = (100 100 000) @ w, = (101 101 101)

AND

u,= (11‘1; V,= (1

u, = (110)

However...

* Dimension blows up...
e Shares of w are not fresh ...

w, = (100 100 000) @ w,=(101 101 101)

AND

u,= (11; V,= (1

