
  

How to Obfuscate Programs Directly

Joe Zimmerman



  

Program Obfuscation

  – Goal: make a program P “unintelligible” while preserving
its functionality  [BGI+01]



  

Program Obfuscation

  – Goal: make a program P “unintelligible” while preserving
its functionality  [BGI+01]

  – Extremely powerful primitive



  

Program Obfuscation

  – Goal: make a program P “unintelligible” while preserving
its functionality  [BGI+01]

  – Extremely powerful primitive

  – Gold standard: Virtual Black-Box (VBB) security [BGI+01]
 

        – Obfuscated program O(P) no better than oracle access



  

Program Obfuscation

  – Goal: make a program P “unintelligible” while preserving
its functionality  [BGI+01]

  – Extremely powerful primitive

  – Gold standard: Virtual Black-Box (VBB) security [BGI+01]
 

        – Obfuscated program O(P) no better than oracle access

  – Weaker definition: indistinguishability obfuscation (iO) [BGI+01]



  

Program Obfuscation

  – Several candidate obfuscators known
[GGH+13b, BR14, BGK+14, PST14, GLSW14, AGIS14, MSW14]



  

Program Obfuscation

  – Several candidate obfuscators known
[GGH+13b, BR14, BGK+14, PST14, GLSW14, AGIS14, MSW14]

 
– Fundamental building block: multilinear maps

[BS03, GGH13a, CLT14, GGH14, CLT15]
 

– VBB security in generic multilinear map model
[GGH+13b, BGK+13]
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This work

  – New construction:
 

– Obfuscate general circuits directly
 

– No matrix branching programs
 

  – Evaluation of obfuscated circuit mirrors structure of original
 

  – Number of ring ops polynomial in original circuit size
 

  – Prove VBB obfuscation in generic model
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  – For “noisy” maps  [GGH13a, CLT13, GGH14, CLT15]:
concrete efficiency improvements

 

– Due to noise, cost of ring operations is still exp(d)
 

– Still requires FHE for P/poly

  – For “clean” maps (open problem): obfuscation for P/poly
would now be practical!

 

– “Noise” not inherent – central open problem

  – Concurrent work:
 

– [AB15]: also obfuscates circuits without converting to
    branching programs; achieves iO in generic model
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 )  →  [xy]

S ∪ T
   (where S ∪ T ⊂ U) 

  

ZeroTest( pp, [x]
U 

)  →  “zero”        if x = 0, 

                                                  “nonzero”  otherwise

        “ST”
(product notation)
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Background: multilinear maps

  – Example:
 

x = Encode(sp, 2, AB) = [2]
AB

 

y = Encode(sp, 3, BC) = [3]
BC

 

          z = Encode(sp, -6, AB  C) = [-6]
AB  C

 

w = Mult(pp, x, y) = [2]
AB

 * [3]
BC

 = [6]
AB  C

 

ZeroTest( pp, Add(pp, z, w) ) = “zero”
 

(assuming AB  C is the top-level index set U)

2

2
2
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– Stronger model: adversary can zero-test anywhere
  

– Captures deterministic encodings
 

– Generic transformation [BWZ14]:
 

– If M is secure with zero-testing only at U,
       then M' is secure with arbitrary zero-testing

 

– M → M' adds only two components to modulus N 
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  – We will make essential use of composite order

  – Direct Product Notation:
For encodings [x]

S
, with x in Z

N
 = Z

N  ...N  
:

 

          write as [x
1
, …, x

k
]
S
, where x = x

i
 ( mod N

i 
) by CRT

  – Addition and multiplication operate componentwise
 
  – ZeroTest(pp, [x

1
, …, x

k
]
U
) = “zero”  ↔ x

i
 = 0 for all i

  – Crucial property: adversary does not know N
1
, …, N

k
,

      cannot act independently on components

1 k
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Our construction

  – We obfuscate keyed arithmetic circuit families C(x, y)
 

  – Boolean output defined by whether C(x, y) = 0
  

  – Obfuscation need only hide secret key y
 

– Must be able to evaluate C(., y) given Obf
C
(y)

– VBB security:
 

“Obf
C
(y) no better than oracle access to C(., y)”
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Our construction

  – Keyed obfuscation C(., y) still general-purpose
 

(C can be universal circuit)

  – Avoid universal circuit when possible
 

– Obfuscate directly
  
  – Note: often only care about hiding key
 

– e.g., punctured PRFs  [SW14]
 

– Rich design space of data-oblivious algorithms
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  – First idea (not secure):

– A keyed obfuscation of C(., y) contains:
 

– The circuit C
 

– 2n encodings, of the choices {0, 1} for each of 
the n bits of the input x

 

– m encodings, one of each bit of the secret y

– To evaluate C(x, y):
 

– Select n of the 2n encodings for the bits of x 
 

– Produce an encoding of C(x, y) using the map's
Add, Mult

 

– Test whether C(x, y) = 0 using the map's ZeroTest



  

Our construction

  – Problem 1:



  

Our construction

  – Problem 1:
 

– Adversary can evaluate any computation, not just C!



  

Our construction

  – Problem 1:
 

– Adversary can evaluate any computation, not just C!
 

– Standard approach [GGH+13b]:
 

– Convert to branching program [Bar86]
 

– “Garble” using Kilian's protocol [Kil88]
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  give out encodings [0, α], [1, α]   (CRT notation)
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– Subtract off precomputed encoding [0, C(α, β)]
 

     Honest:  [C(x, y), C(α, β)] – [0, C(α, β)]  =  [C(x, y), 0]   
 

 Malicious:  [C'(x, y), C'(α, β)] – [0, C(α, β)]
  

= [C'(x, y), (C'-C)(α, β)]
  

– Adversary's C' will not pass ZeroTest unless C' = C
(as a polynomial)
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– Cannot be simulated using oracle access to C(., y)

  – Our solution (overview):
 

– Encodings for choices (x
i
 = 0, x

i
 = 1) have

different index sets
 

– Introduce auxiliary “interlocking” encodings
 

– Allow completion to top level U only for consistent
   expressions
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– Requires additional techniques (e.g., straddling set 
    systems [BGK+13])

– Simplified version for iO; better efficiency parameters

– Also define succinct obfuscation (size overhead
   depends only on secret y)

 

– Theorem: “clean” multilinear maps imply succinct 
   obfuscation (assuming hardness of factoring)
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  – New construction:
 

– Obfuscate general circuits directly
 

– No matrix branching programs

  – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:
  

– Concrete efficiency improvements
 

– Remains impractical due to noise blowup

  – For “clean” maps (open problem):
 

– Obfuscation for P/poly would now be practical!
 

– e.g., for AES:  133K ring elements, 281K ring ops
 

– “Noise” not inherent – central open problem
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