

How to Obfuscate Programs Directly

Joe Zimmerman

Program Obfuscation

 – Goal: make a program P “unintelligible” while preserving
its functionality [BGI+01]

Program Obfuscation

 – Goal: make a program P “unintelligible” while preserving
its functionality [BGI+01]

 – Extremely powerful primitive

Program Obfuscation

 – Goal: make a program P “unintelligible” while preserving
its functionality [BGI+01]

 – Extremely powerful primitive

 – Gold standard: Virtual Black-Box (VBB) security [BGI+01]

 – Obfuscated program O(P) no better than oracle access

Program Obfuscation

 – Goal: make a program P “unintelligible” while preserving
its functionality [BGI+01]

 – Extremely powerful primitive

 – Gold standard: Virtual Black-Box (VBB) security [BGI+01]

 – Obfuscated program O(P) no better than oracle access

 – Weaker definition: indistinguishability obfuscation (iO) [BGI+01]

Program Obfuscation

 – Several candidate obfuscators known
[GGH+13b, BR14, BGK+14, PST14, GLSW14, AGIS14, MSW14]

Program Obfuscation

 – Several candidate obfuscators known
[GGH+13b, BR14, BGK+14, PST14, GLSW14, AGIS14, MSW14]

– Fundamental building block: multilinear maps

[BS03, GGH13a, CLT14, GGH14, CLT15]

– VBB security in generic multilinear map model
[GGH+13b, BGK+13]

Program Obfuscation

 – In all known constructions, cost remains astronomical

– Can be improved for some specific function families
 [LPS04, Wee05, CD08, CRV10, AGIS14, SZ14]

Program Obfuscation

 – In all known constructions, cost remains astronomical

– Can be improved for some specific function families
 [LPS04, Wee05, CD08, CRV10, AGIS14, SZ14]

 – Obstacles to efficient general-purpose obfuscation:

1. Circuits must be converted to matrix branching
programs: depth d → size 4d [Bar86]

Program Obfuscation

 – In all known constructions, cost remains astronomical

– Can be improved for some specific function families
 [LPS04, Wee05, CD08, CRV10, AGIS14, SZ14]

 – Obstacles to efficient general-purpose obfuscation:

1. Circuits must be converted to matrix branching
programs: depth d → size 4d [Bar86]

2. Known multilinear maps have “noise” parameter
that grows with the degree

This work

 – In all known constructions, cost remains astronomical

– Can be improved for some specific function families
 [LPS04, Wee05, CD08, CRV10, AGIS14, SZ14]

 – Obstacles to efficient general-purpose obfuscation:

1. Circuits must be converted to matrix branching
programs: depth d → size 4d [Bar86]

2. Known multilinear maps have “noise” parameter
that grows with the degree

This work

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

This work

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – Evaluation of obfuscated circuit mirrors structure of original

This work

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – Evaluation of obfuscated circuit mirrors structure of original

 – Number of ring ops polynomial in original circuit size

This work

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – Evaluation of obfuscated circuit mirrors structure of original

 – Number of ring ops polynomial in original circuit size

This work

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – Evaluation of obfuscated circuit mirrors structure of original

 – Number of ring ops polynomial in original circuit size

 – Prove VBB obfuscation in generic model

This work

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:
concrete efficiency improvements

– Due to noise, cost of ring operations is still exp(d)

– Still requires FHE for P/poly

This work

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:
concrete efficiency improvements

– Due to noise, cost of ring operations is still exp(d)

– Still requires FHE for P/poly

 – For “clean” maps (open problem): obfuscation for P/poly
would now be practical!

– “Noise” not inherent – central open problem

This work

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:
concrete efficiency improvements

– Due to noise, cost of ring operations is still exp(d)

– Still requires FHE for P/poly

 – For “clean” maps (open problem): obfuscation for P/poly
would now be practical!

– “Noise” not inherent – central open problem

 – Concurrent work:

– [AB15]: also obfuscates circuits without converting to
 branching programs; achieves iO in generic model

Background: multilinear maps

 – Fundamental tool for obfuscation

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Encode(sp, x, S) → [x]
S
 (where S ⊂ U)

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Encode(sp, x, S) → [x]
S
 (where S ⊂ U)

Add(pp, [x]
S

, [y]
S

) → [x+y]
S
 (arithmetic mod N)

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Encode(sp, x, S) → [x]
S
 (where S ⊂ U)

Add(pp, [x]
S

, [y]
S

) → [x+y]
S
 (arithmetic mod N)

Mult(pp, [x]
S
, [y]

T
) → [xy]

S ∪ T
 (where S ∪ T ⊂ U)

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Encode(sp, x, S) → [x]
S
 (where S ⊂ U)

Add(pp, [x]
S

, [y]
S

) → [x+y]
S
 (arithmetic mod N)

Mult(pp, [x]
S
, [y]

T
) → [xy]

S ∪ T
 (where S ∪ T ⊂ U)

ZeroTest(pp, [x]
U

) → “zero” if x = 0,

 “nonzero” otherwise

Background: multilinear maps

 – Fundamental tool for obfuscation

 – Asymmetric, composite-order [CLT13, GLW14, CLT15]

 – Modulus N = N
1
 … N

k
, multi-set U of formal indices

 – Supports the following operations:

Setup() → (pp, sp)

Encode(sp, x, S) → [x]
S
 (where S ⊂ U)

Add(pp, [x]
S

, [y]
S

) → [x+y]
S
 (arithmetic mod N)

Mult(pp, [x]
S
, [y]

T
) → [xy]

S ∪ T
 (where S ∪ T ⊂ U)

ZeroTest(pp, [x]
U

) → “zero” if x = 0,

 “nonzero” otherwise

 “ST”
(product notation)

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

y = Encode(sp, 3, BC) = [3]
BC

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

y = Encode(sp, 3, BC) = [3]
BC

 z = Encode(sp, -6, AB C) = [-6]
AB C2

2

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

y = Encode(sp, 3, BC) = [3]
BC

 z = Encode(sp, -6, AB C) = [-6]
AB C

w = Mult(pp, x, y) = [2]
AB

 * [3]
BC

 = [6]
AB C2

2
2

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

y = Encode(sp, 3, BC) = [3]
BC

 z = Encode(sp, -6, AB C) = [-6]
AB C

w = Mult(pp, x, y) = [2]
AB

 * [3]
BC

 = [6]
AB C

ZeroTest(pp, Add(pp, z, w)) = “zero”

2

2
2

Background: multilinear maps

 – Example:

x = Encode(sp, 2, AB) = [2]
AB

y = Encode(sp, 3, BC) = [3]
BC

 z = Encode(sp, -6, AB C) = [-6]
AB C

w = Mult(pp, x, y) = [2]
AB

 * [3]
BC

 = [6]
AB C

ZeroTest(pp, Add(pp, z, w)) = “zero”

(assuming AB C is the top-level index set U)

2

2
2

2

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

 – Note: zero-testing only possible at the top index set U

– Stronger model: adversary can zero-test anywhere

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

 – Note: zero-testing only possible at the top index set U

– Stronger model: adversary can zero-test anywhere

– Captures deterministic encodings

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

 – Note: zero-testing only possible at the top index set U

– Stronger model: adversary can zero-test anywhere

– Captures deterministic encodings

– Generic transformation [BWZ14]:

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

 – Note: zero-testing only possible at the top index set U

– Stronger model: adversary can zero-test anywhere

– Captures deterministic encodings

– Generic transformation [BWZ14]:

– If M is secure with zero-testing only at U,
 then M' is secure with arbitrary zero-testing

Background: multilinear maps

 – Security definition:

– Intuitively, encodings [x]
S
 hide original scalars x in Z

N

– Formally: generic model only exposes map operations
[GGH+13a, BR13, BGK+13]

– See paper for details

 – Note: zero-testing only possible at the top index set U

– Stronger model: adversary can zero-test anywhere

– Captures deterministic encodings

– Generic transformation [BWZ14]:

– If M is secure with zero-testing only at U,
 then M' is secure with arbitrary zero-testing

– M → M' adds only two components to modulus N

Background: multilinear maps

 – We will make essential use of composite order

Background: multilinear maps

 – We will make essential use of composite order

 – Direct Product Notation:
For encodings [x]

S
, with x in Z

N
 = Z

N ...N
:

 write as [x
1
, …, x

k
]
S
, where x = x

i
 (mod N

i
) by CRT

1 k

Background: multilinear maps

 – We will make essential use of composite order

 – Direct Product Notation:
For encodings [x]

S
, with x in Z

N
 = Z

N ...N
:

 write as [x
1
, …, x

k
]
S
, where x = x

i
 (mod N

i
) by CRT

 – Addition and multiplication operate componentwise

1 k

Background: multilinear maps

 – We will make essential use of composite order

 – Direct Product Notation:
For encodings [x]

S
, with x in Z

N
 = Z

N ...N
:

 write as [x
1
, …, x

k
]
S
, where x = x

i
 (mod N

i
) by CRT

 – Addition and multiplication operate componentwise

 – ZeroTest(pp, [x

1
, …, x

k
]
U
) = “zero” ↔ x

i
 = 0 for all i

1 k

Background: multilinear maps

 – We will make essential use of composite order

 – Direct Product Notation:
For encodings [x]

S
, with x in Z

N
 = Z

N ...N
:

 write as [x
1
, …, x

k
]
S
, where x = x

i
 (mod N

i
) by CRT

 – Addition and multiplication operate componentwise

 – ZeroTest(pp, [x

1
, …, x

k
]
U
) = “zero” ↔ x

i
 = 0 for all i

 – Crucial property: adversary does not know N
1
, …, N

k
,

 cannot act independently on components

1 k

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

– e.g., AES

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

 – Boolean output defined by whether C(x, y) = 0

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

 – Boolean output defined by whether C(x, y) = 0

 – Obfuscation need only hide secret key y

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

 – Boolean output defined by whether C(x, y) = 0

 – Obfuscation need only hide secret key y

– Must be able to evaluate C(., y) given Obf
C
(y)

Our construction

 – We obfuscate keyed arithmetic circuit families C(x, y)

 – Boolean output defined by whether C(x, y) = 0

 – Obfuscation need only hide secret key y

– Must be able to evaluate C(., y) given Obf
C
(y)

– VBB security:

“Obf
C
(y) no better than oracle access to C(., y)”

Our construction

 – Keyed obfuscation C(., y) still general-purpose

(C can be universal circuit)

Our construction

 – Keyed obfuscation C(., y) still general-purpose

(C can be universal circuit)

 – Avoid universal circuit when possible

– Obfuscate directly

Our construction

 – Keyed obfuscation C(., y) still general-purpose

(C can be universal circuit)

 – Avoid universal circuit when possible

– Obfuscate directly

 – Note: often only care about hiding key

Our construction

 – Keyed obfuscation C(., y) still general-purpose

(C can be universal circuit)

 – Avoid universal circuit when possible

– Obfuscate directly

 – Note: often only care about hiding key

– e.g., punctured PRFs [SW14]

Our construction

 – Keyed obfuscation C(., y) still general-purpose

(C can be universal circuit)

 – Avoid universal circuit when possible

– Obfuscate directly

 – Note: often only care about hiding key

– e.g., punctured PRFs [SW14]

– Rich design space of data-oblivious algorithms

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

– m encodings, one of each bit of the secret y

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

– m encodings, one of each bit of the secret y

– To evaluate C(x, y):

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

– m encodings, one of each bit of the secret y

– To evaluate C(x, y):

– Select n of the 2n encodings for the bits of x

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

– m encodings, one of each bit of the secret y

– To evaluate C(x, y):

– Select n of the 2n encodings for the bits of x

– Produce an encoding of C(x, y) using the map's
Add, Mult

Our construction – first attempt

 – First idea (not secure):

– A keyed obfuscation of C(., y) contains:

– The circuit C

– 2n encodings, of the choices {0, 1} for each of
the n bits of the input x

– m encodings, one of each bit of the secret y

– To evaluate C(x, y):

– Select n of the 2n encodings for the bits of x

– Produce an encoding of C(x, y) using the map's
Add, Mult

– Test whether C(x, y) = 0 using the map's ZeroTest

Our construction

 – Problem 1:

Our construction

 – Problem 1:

– Adversary can evaluate any computation, not just C!

Our construction

 – Problem 1:

– Adversary can evaluate any computation, not just C!

– Standard approach [GGH+13b]:

– Convert to branching program [Bar86]

– “Garble” using Kilian's protocol [Kil88]

Our construction

 – Our solution (overview):

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

– Subtract off precomputed encoding [0, C(α, β)]

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

– Subtract off precomputed encoding [0, C(α, β)]

 Honest: [C(x, y), C(α, β)] – [0, C(α, β)] = [C(x, y), 0]

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

– Subtract off precomputed encoding [0, C(α, β)]

 Honest: [C(x, y), C(α, β)] – [0, C(α, β)] = [C(x, y), 0]

 Malicious: [C'(x, y), C'(α, β)] – [0, C(α, β)]

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

– Subtract off precomputed encoding [0, C(α, β)]

 Honest: [C(x, y), C(α, β)] – [0, C(α, β)] = [C(x, y), 0]

 Malicious: [C'(x, y), C'(α, β)] – [0, C(α, β)]

= [C'(x, y), (C'-C)(α, β)]

Our construction

 – Our solution (overview):

– Composite modulus N = N
ev

N
chk

\

– Instead of encodings [0], [1] for each bit,
 give out encodings [0, α], [1, α] (CRT notation)

– Evaluation produces [C(x, y), C(α, β)] for random
“check” vectors α, β modulo N

chk

– Subtract off precomputed encoding [0, C(α, β)]

 Honest: [C(x, y), C(α, β)] – [0, C(α, β)] = [C(x, y), 0]

 Malicious: [C'(x, y), C'(α, β)] – [0, C(α, β)]

= [C'(x, y), (C'-C)(α, β)]

– Adversary's C' will not pass ZeroTest unless C' = C
(as a polynomial)

Our construction

 – Problem 2:

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

– Cannot be simulated using oracle access to C(., y)

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

– Cannot be simulated using oracle access to C(., y)

 – Our solution (overview):

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

– Cannot be simulated using oracle access to C(., y)

 – Our solution (overview):

– Encodings for choices (x
i
 = 0, x

i
 = 1) have

different index sets

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

– Cannot be simulated using oracle access to C(., y)

 – Our solution (overview):

– Encodings for choices (x
i
 = 0, x

i
 = 1) have

different index sets

– Introduce auxiliary “interlocking” encodings

Our construction

 – Problem 2:

– Adversary's computation can be inconsistent
– For an input bit x

i
, can supply encoding [0, α] on first

use in C and [1, α] on second use

– Cannot be simulated using oracle access to C(., y)

 – Our solution (overview):

– Encodings for choices (x
i
 = 0, x

i
 = 1) have

different index sets

– Introduce auxiliary “interlocking” encodings

– Allow completion to top level U only for consistent
 expressions

Our construction

 – Resulting algorithm (simplified; iO only):

Our construction

 – Resulting algorithm (simplified; iO only):

Our construction

 – Resulting algorithm (simplified; iO only):

Interlocking index sets

Our construction

 – Main theorems:

Our construction

 – Main theorems:

– We prove VBB security in generic model

Our construction

 – Main theorems:

– We prove VBB security in generic model

– Requires additional techniques (e.g., straddling set
 systems [BGK+13])

Our construction

 – Main theorems:

– We prove VBB security in generic model

– Requires additional techniques (e.g., straddling set
 systems [BGK+13])

– Simplified version for iO; better efficiency parameters

Our construction

 – Main theorems:

– We prove VBB security in generic model

– Requires additional techniques (e.g., straddling set
 systems [BGK+13])

– Simplified version for iO; better efficiency parameters

– Also define succinct obfuscation (size overhead
 depends only on secret y)

Our construction

 – Main theorems:

– We prove VBB security in generic model

– Requires additional techniques (e.g., straddling set
 systems [BGK+13])

– Simplified version for iO; better efficiency parameters

– Also define succinct obfuscation (size overhead
 depends only on secret y)

– Theorem: “clean” multilinear maps imply succinct
 obfuscation (assuming hardness of factoring)

Conclusion

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

Conclusion

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:

– Concrete efficiency improvements

– Remains impractical due to noise blowup

Conclusion

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:

– Concrete efficiency improvements

– Remains impractical due to noise blowup

 – For “clean” maps (open problem):

– Obfuscation for P/poly would now be practical!

Conclusion

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:

– Concrete efficiency improvements

– Remains impractical due to noise blowup

 – For “clean” maps (open problem):

– Obfuscation for P/poly would now be practical!

– e.g., for AES: 133K ring elements, 281K ring ops

Conclusion

 – New construction:

– Obfuscate general circuits directly

– No matrix branching programs

 – For “noisy” maps [GGH13a, CLT13, GGH14, CLT15]:

– Concrete efficiency improvements

– Remains impractical due to noise blowup

 – For “clean” maps (open problem):

– Obfuscation for P/poly would now be practical!

– e.g., for AES: 133K ring elements, 281K ring ops

– “Noise” not inherent – central open problem

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101

