Backdoored Pseudorandom Generators

Yevgeniy Dodis, Chaya Ganesh, Alexander Golovnev, Ari Juels,
Thomas Ristenpart

Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

@ Recent Snowden revelations - Surveillance, Backdoors in
cryptographic standards and software.

Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

@ Recent Snowden revelations - Surveillance, Backdoors in
cryptographic standards and software.

@ Backdoored NIST standard - Dual EC PRG

Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

@ Recent Snowden revelations - Surveillance, Backdoors in
cryptographic standards and software.

@ Backdoored NIST standard - Dual EC PRG
@ Subversion of TLS encryption (Checkoway et al)

Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

@ Recent Snowden revelations - Surveillance, Backdoors in
cryptographic standards and software.

Backdoored NIST standard - Dual EC PRG
Subversion of TLS encryption (Checkoway et al)

This work - Backdoored Pseudorandom Generators

Pseudorandom Generator

@ Stretches a short uniform random string into a long sequence
of pseudorandom bits

@ Security: A PRG is secure when no adversary can distinguish
between its outputs and random bits.

PRG Family

@ We consider a family of PRGs - for efficiency
@ A public parameter (like IV) designates a family

@ The public parameters pk picked once and are “innocent”
looking, typically random pk =U

e Each algorithm Gpi: S — {0,1}"” X S maps an input called
the state to an n-bit output and a new state

pk

DA

DA

DA

DA

DA

Adversary
A

K
pk
R1 Rz
S S
_O> ka 1 — pk —>

Gk

=2

Adversary
A

=

Adversary
A

Simplified Dual EC PRG

@ Let G be a group and g be a generator of the group

Simplified Dual EC PRG

@ Let G be a group and g be a generator of the group
@ The public key is a random pk = y from the group G

Simplified Dual EC PRG

@ Let G be a group and g be a generator of the group
@ The public key is a random pk = y from the group G
@ The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Simplified Dual EC PRG

Let G be a group and g be a generator of the group
The public key is a random pk = y from the group G
The PRG works as follows:

Gpk(si) = (fit1,si+1) = (87, ¥%)

Can be proven secure under the DDH assumption

Simplified Dual EC PRG

Let G be a group and g be a generator of the group

The public key is a random pk = y from the group G
The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Can be proven secure under the DDH assumption
e Detail - Encode group elements as bit strings

Simplified Dual EC PRG

Let G be a group and g be a generator of the group
The public key is a random pk = y from the group G
The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Can be proven secure under the DDH assumption

e Detail - Encode group elements as bit strings
e Not important for the purposes of this talk

Simplified Dual EC PRG

Let G be a group and g be a generator of the group
The public key is a random pk = y from the group G
The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Can be proven secure under the DDH assumption

e Detail - Encode group elements as bit strings
e Not important for the purposes of this talk

All good?

Simplified Dual EC PRG

Let G be a group and g be a generator of the group

The public key is a random pk = y from the group G
The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Can be proven secure under the DDH assumption

e Detail - Encode group elements as bit strings
e Not important for the purposes of this talk

All good?
No! (' Shumow and Ferguson 2007)

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

@ The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

@ The PRG works as follows:

Gpk(si) = (rit1,si41) = (87, ¥%)
o Attack

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

@ The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

e Attack
o Adversary A in possession of x sees one output riyq

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

@ The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

o Attack

o Adversary A in possession of x sees one output riyq
o Can recover s;1 by computing sj11 = (rig1)* = y*

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
Kistien
for x chosen at random from the group
@ The PRG works as follows:
EAAEANSTTASIGON | D0y

o Attack
o Adversary A in possession of x sees one output riyq
o Can recover s;1 by computing sj11 = (rig1)* = y*
o All subsequent outputs predictable from current state

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group

@ The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

o Attack

o Adversary A in possession of x sees one output riyq
o Can recover s;1 by computing sj11 = (rig1)* = y*
o All subsequent outputs predictable from current state

e Dual EC PRG works as above (drops the last 16 bits)

Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group
The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

Attack

o Adversary A in possession of x sees one output riyq
o Can recover s;1 by computing sj11 = (rig1)* = y*
o All subsequent outputs predictable from current state

Dual EC PRG works as above (drops the last 16 bits)

Motivates the formal study of Backdoored Pseudorandom
generators

Summary of results

@ Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts.

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
e Provably secure solution

Summary of results

@ Definitional framework of Backdoored PRGs

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts.

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
e Provably secure solution

Backdoored PRG

Intuition:
@ Behaves like a good PRG to an honest user, but...
@ Knowledge of trapdoor information compromises the security
of the PRG.
Formally,
o A triple of algorithms (K, G, A), where K($) — (pk, sk)
e Standard PRG security Ignoring sk, the pair (K,G) is a
PRG

@ Subversion The third algorithm A (the adversary)
co-designed with the rest of the scheme, uses the trapdoor sk
output by K to violate security of the PRG.

Normal Operation

pk

Normal Operation

pk

Normal Operation

pk

DA

Normal Operation

pk

Adv §

10000100
_ "#}J"J er

100N

DA

Backdoor Operation

sk

pk

Adv §

10000100
_ "#}J"J er

100N

DA

Backdoor Operation

Adv J
10
sk

OToToOTTTO0T0

TODDOT00D

disher

pk

Q™

Backdoor Operation

pk

sk

00

side

Adv € Adv ¢
Adversary Distinguisher
A(sk) D(pk)

R, R

@ —

pk

pk [~

Backdoor Operation

Backdo
(1 id;) Adv &

010101110070 10000100
- Adversary | Distinguisher
mmu. l nmm 1M

Adv J

Y100

Q™

Backdoor Operation

ckdoO
(a ide) dstacn

oToOTOTTTO00T0

 Adversary
01016430010

pk

Adv
10000100
n{:.rl'} er
Dipk) 100

DA

Backdoor Operation

pk

sk

00

side

Adv & Adv ¢
Adversary Distinguisher
A(sk) D(pk)

|

@ —

Various levels of
insecurity

pk

Backdoor Operation

Bac\(docir
insid®) agy . Adv 6
Adversary Distinguisher
K sk A(sk) D(pk)
l Various levels of
insecurity
pk
T ! R,[> Adv(A,)>>Adv (D)
S0 G S

Backdoor Operation

Bac\(docir
insid®) agy . Adv 6
Adversary Distinguisher
K sk A(sk) D(pk)
l Various levels of
insecurity
pk

R, R,[> Adv(A,)>>Adv (D)
, > €= Q(1) 6 =negl

S S

—0> ka 1 =7 ka —

Backdoor Operation

Bac\(docir
insid®) agy . Adv 6
Adversary Distinguisher
f sk A(sk) D(pk)
l Various levels of
insecurity
pk

R, R,[> Adv(A,)>>Adv(D,)
’ > €= Q(1) 6 =negl

S S

—0> ka 1 i ka —

Distinguishing - Gyist

Adversary
A

Distinguishing - Gyist

Adversary
A

/
K

Distinguishing - Gyist

Adversary
A
/
K
pk

e

Distinguishing - Gyist

Adversary
A
/
K
pk
,R1 RIZ Rq
s s S
0 pk 1 > ka — pk J—b

Distinguishing - Gyist

Adversary
A

/
K

Next state prediction - Gext

Adversary
A

/
K

Next state prediction - Gext

Adversary
A
/
K
pk
T1 72 Rq
S S S
—O> pk ; =t ka —m " pk 9,

Next state prediction - Gext

pk
R1 R
S S
0 . 1 G

pk

Adversary
A

Next state prediction - Gext

pk
R1 R
S S
0 . 1 G

pk

Adversary
A

Random seek - Gceek

Adversary
A

/
K

Random seek - Gceek

Adversary
A

/ I’J€[1’q]
K

pk
T 72 Rq
S S S
—O> pk ; =t ka —m " pk 9,

Random seek - Gceek

Adversary
A

/ I’J€[1’q]
K

pk
T 72 Rq
S S S
—O> pk ; =t ka —m " pk 9,

Random seek - Gceek

Adversary
A

/ Rj iielta]
K

Adv (A,)=Pr[R=R]

pk
T 72 Rq
S S S
—O> pk ; =t ka —m " pk 9,

Summary of results

o Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

gdist = IND$-CPA = gnextagrseek

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
o Provably secure solution

Summary of results

@ Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

gdist e AR O =2 gnextagrseek

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
e Provably secure solution

Key Encapsulation Mechanism

A KEM scheme is a triple of algorithms (KeyGen, Encap, Decap).
@ The KeyGen outputs a public/secret key pair,

(pk, sk) < KeyGen
@ The encapsulation algorithm
(¢, K) < Encap(pk; r),K € {0,1}"
@ The decapsulation algorithm

Decap(sk, ¢) = K € {0,1}" U {invalid}

@ Correctness: With all but negl. probability,

Decap(sk, c¢) = K for (c, K) = Encap(pk; r)

@ Security: The outputs of Encap indistinguishable from a pair
of random bit strings.

o Ciphertext pseudorandomness - stronger than usual KEM
notion.

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K:

(pk, sk)=— Gen
return (pk,sk)

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K: G(pk,s) :

(pk, sk)=— Gen (r, s’)=— Encap(pk;s)
return (pk,sk) return (r, s’)

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K: G(pk,s) : Updated state = Key
(pk, sk)=— Gen (r, s'}~— Encap(pk:s)
return (pk,sk) r return (r, ")

Outp'ut = Ciphertext

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K: G(pk,s) : Updated state = Key
(pk, sk)=— Gen (r, s'}~— Encap(pk:s)
return (pk,sk) r return (r, ")

Outp'ut = Ciphertext

A(skry, ...,r):

s'«— Decap(sk, r)
return s’

Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K:

(pk, sk)=— Gen
return (pk,sk)

A(sk, r, ..., rq):

s’«— Decap(sk, rq)
return s’

G(pk,s) : - Updated state = Key

(r, s')=— Encap(pk;s)
r return (r, s’)

Outp'ut = Ciphertext

e Attack « correctness of KEM

e Standard PRG security < ciphertext pseudorandomness

Summary of results

o Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

gdist = IND$-CPA = gnextagrseek

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
o Provably secure solution

Summary of results

@ Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

‘gdist — IND$-CPA| = gnextygrseek

@ Investigate countermeasures to BPRGs - immunizers.

o (In)effectiveness of countermeasures
e Provably secure solution

Public

Key Encryption from BPRG

We show that the existence of BPRGs implies public-key
encryption (PKE).

From a backdoored PRG, we construct a bit encryption
scheme with noticeable correctness and overwhelming secrecy.

Amplify - Parallel repetition and privacy amplification of
key-agreement (Holenstein 2005), amplify secrecy and
correctness without increasing the number of rounds.

Since the number of rounds is not increased, we obtain secure
public-key encryption.

Public Key Encryption from Gg:-BPRG

o KeyGen: (pk,sk) «+ K

Public Key Encryption from Gg:-BPRG

o KeyGen: (pk,sk) «+ K
@ Encryption:

Public Key Encryption from Gg:-BPRG

o KeyGen: (pk,sk) «+ K
@ Encryption:
e To encrypt bit 0, ciphertext is set to uniformly random string

Public Key Encryption from Gg:-BPRG

o KeyGen: (pk,sk) «+ K
@ Encryption:

e To encrypt bit 0, ciphertext is set to uniformly random string
e To encrypt bit 1, ciphertext is the output of Ggs:-BPRG

Public Key Encryption from Gg:-BPRG

o KeyGen: (pk,sk) «+ K
@ Encryption:

e To encrypt bit 0, ciphertext is set to uniformly random string
e To encrypt bit 1, ciphertext is the output of Ggs:-BPRG

@ Decryption: Call A with the secret key as trapdoor

Public Key Encryption from Gg:-BPRG

KeyGen: (pk,sk) <+ K
Encryption:

e To encrypt bit 0, ciphertext is set to uniformly random string
e To encrypt bit 1, ciphertext is the output of Ggs:-BPRG

Decryption: Call A with the secret key as trapdoor

Correctness of decryption - by advantage of A in the Ggist
game

Public Key Encryption from Ggi--BPRG

KeyGen: (pk,sk) <+ K
Encryption:

e To encrypt bit 0, ciphertext is set to uniformly random string
e To encrypt bit 1, ciphertext is the output of Ggs:-BPRG

Decryption: Call A with the secret key as trapdoor

@ Correctness of decryption - by advantage of A in the Ggist
game
@ Security - by standard PRG security for distinguishers without

the trapdoor.

Public Key Encryption from BPRG

@ Backdoored PRG constructions from KEM (equivalent to
PKE)

@ Public key encryption from a backdoored PRG.

Theorem (Informal)

Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.

Summary of results

o Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

gdist = IND$-CPA = gnextagrseek

@ Investigate countermeasures to BPRGs - immunizers

o (In)effectiveness of countermeasures
o Provably secure solution

Immunization

Immunization

Immunization

Immunization

f(R,) f(R) ,,y
!

A — »

N

QO —

Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random

fseed (R1) fseed(Rg) r? y

N

@ —

Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random

fseed (R1) fseed(Rg) r? y

[e Subverted standard J

N

PRG

@ —

Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random

see!

fseed (R1) fseed(Rg) r? y

R1 3 e Subverted standard
PRG
] ° fseed-User’s choice
S S
_o b G, ([S .

Immunization models

@ Public immunization: Both G and A know seed.
o seed is revealed to the attacker A prior to construction of G.
@ Semi-private immunization: A knows seed, G does not.

o G is constructed without reference to seed. The attacker A
learns seed, and thus fieq, only after the specification of G

@ Private immunization: seed is secret from both A and G.

o G is constructed without reference to seed and A never learns
seed.

Results in Immunization models

@ Negative result in the public model - BPRG against any
immunization family

@ (Non-trivial) Positive results in the semi-private model

@ (Trivial) Positive and (initial) negative results in the private
model

Immunization models

@ Public immunization
@ Semi-private immunization

@ Private immunization

Public randomness

Key idea:
@ Prepare a string ¢ that is pseudorandom without sk
@ c gives away some information with the knowledge of sk
@ “Leak” c bit-by-bit through the PRG outputs
o Skip outputs until [f(.)]; is the bit to be leaked - rejection

sampling
o Leakage undetectable to user as c is pseudorandom without sk

C - pseudorandom string
R1
SO

C - pseudorandom string
Leak a bit of ¢ R,
sO

)|

[f seed(R)]1_C? _*

NO

[fseed(R1)]1= Cj? -—*
R1
So

R

NO
[feeeal R2)]1= S 5 Rf*

NES
[fseed(I:zi)]1= Cj ?

Y

=
[1:seed(I:zi)]1= CJ'

j™ output

.

R

Public randomness

The high-level construction:

@ BPRG in two phases - leakage phase and normal phase

Public randomness

The high-level construction:

@ BPRG in two phases - leakage phase and normal phase

@ Use the key idea in an initial /eakage phase - leak something
useful.

Public randomness

The high-level construction:

@ BPRG in two phases - leakage phase and normal phase

@ Use the key idea in an initial /eakage phase - leak something
useful.

e Pseudorandom ciphertext encrypting a future state

Public randomness

The high-level construction:
@ BPRG in two phases - leakage phase and normal phase

@ Use the key idea in an initial /eakage phase - leak something
useful.
e Pseudorandom ciphertext encrypting a future state

© The trapdoor is the secret key of the PKE

Public randomness

The high-level construction:

o
2]

BPRG in two phases - leakage phase and normal phase

Use the key idea in an initial /leakage phase - leak something
useful.

e Pseudorandom ciphertext encrypting a future state
The trapdoor is the secret key of the PKE

In normal phase - use the leaked string as initial state of an
underlying PRG

Immunization models

@ Public immunization X
@ Semi-private immunization

@ Private immunization

Immunization models

@ Public immunization X
@ Semi-private immunization

@ Private immunization

Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

@ Unsatisfactory.

Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

@ Unsatisfactory.

@ If users had access to a backdoor-less PRF, then instead of
using it to immunize a backdoored PRG, they could use the
PRF itself for pseudorandomness.

Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

@ Unsatisfactory.

@ If users had access to a backdoor-less PRF, then instead of
using it to immunize a backdoored PRG, they could use the
PRF itself for pseudorandomness.

@ Goal - explore functions weaker than PRF.

Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

Unsatisfactory.

If users had access to a backdoor-less PRF, then instead of
using it to immunize a backdoored PRG, they could use the
PRF itself for pseudorandomness.

Goal - explore functions weaker than PRF.

See paper for initial negative results

Immunization models

@ Public immunization X
@ Semi-private immunization

@ Private immunization 2

Immunization models

@ Public immunization X
@ Semi-private immunization

@ Private immunization 2

Immunization models

@ Public immunization X
@ Semi-private immunization

@ Private immunization 2

Semi private randomness

@ Recall G does not know seed of f,..q, but the attacker A does
@ PRF does not work as seed is not secret

@ Natural Immunization function:

fseed(R) = RO(R||seed)

feeed(R) = RO(R||seed) is secure immunization in the semi-private
model

Positive result in ROM

Intuition:
@ PRG outputs should have entropy even given the trapdoor

Positive result in ROM

Intuition:
@ PRG outputs should have entropy even given the trapdoor

e If outputs do not have entropy, there are collisions - can be
publicly detected.

Positive result in ROM

Intuition:
@ PRG outputs should have entropy even given the trapdoor

e If outputs do not have entropy, there are collisions - can be
publicly detected.

@ Collision entropy = min entropy

Positive result in ROM

Intuition:
@ PRG outputs should have entropy even given the trapdoor

e If outputs do not have entropy, there are collisions - can be
publicly detected.

@ Collision entropy = min entropy

@ RO extracts pseudorandomness from min entropy

Positive result in ROM

@ Advantage in Ggis; after immunization:

Adv(Ask) ~ qroqpPrc \/ Adv(Dpk)

@ Open question - Is this poor dependence inherent?
@ In the standard model - replacing RO with a UCE (Bellare et
al 2013) secure hash function is a secure immunization.

e Strong standard model assumption, but does not come under
the impossibility results (Brzuska, Farshim and Mittelbach
2014)

Summary and Further questions

@ Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts
@ Investigate countermeasures to BPRGs - immunizers
o (In)effectiveness of countermeasures
e Provably secure solution
@ Open:
e Immunization in Private model - is PRF necessary?

e Semi-private - Positive result based on more standard
assumptions?

Thank You

Thank you!

