

A Provable Security Analysis of
Intel's Secure Key RNG

Thomas Shrimpton & Seth Terashima
Portland State University

The Intel RNG
● New hardware random-number generator on all

recent Intel chips (Ivy Bridge +)
● Two new instructions:

– RDRAND: Fetch pseudo-random bits

– RDSEED: Fetch “truly random” bits (Broadwell +)

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES:
DRBG: RDRANDRDRAND

RDSEED

Agenda

● Intel's Secure-Key RNG design

● The Model : “PRNGs With Input” (PWIs)

● Analsyis

Not on the Agenda:

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Entropy Source

● Uses thermal noise to generate random bits
● Analysis of empirical data by Cryptographic

Research, Inc. (Hamburg, Kocher, Marson '12)
● 256-bit samples buffered in shift register

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Health Tests

● Heuristic tests for catastrophic ES failure
● 1% false-positive rate on ideal random source

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Conditioning

● ES bits are assumed to be biased, correlated
● Fed into streaming CBC-MAC computation to

“condition” them into (hopefully) uniform
random bits

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Health History

● At least two/three (Ivy Bridge/Broadwell) healthy
samples needed before CE buffer is “available”

● But samples don't count unless at least half of
the past 256 samples were healthy

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

RDSEED

● RDSEED instruction grabs bits from CE buffer
● Buffer not cleared, but flagged as “unavailable”
● Will be made available again after sufficient

number of healthy samples generated, conditioned

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

(Re)Seeding the DRBG

● CE buffer also used to reseed traditional
deterministic PRNG (CTR-AES based)

● Reseeding makes CE buffer unavailable

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

(Re)Seeding the DRBG

● PRNG outputs buffered
● Read by RDRAND instruction
● At most 64Kb generated between reseeds

Agenda

● Intel's Secure-Key RNG design

● The Model : “PRNGs With Input” (PWIs)

● Analsyis

PRNGs (the traditional view)

This isn't how

{/dev/[u]random, OpenSSL RNG, RDRAND}

 work.

PRNGSeed PRNG Random
Numbers

Step 1. Provide seed. Step 2. Get random numbers.

PRNGs with Input

PWIEntropy

PRNGs with Input

PWIEntropy

PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI“Entropy” PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI Random
Numbers

PWI“Entropy” PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI Random
Numbers

PWI“Entropy” PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI Random
Numbers

PWI“Entropy”

PWIState
compromise

PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI Random
Numbers

PWI“Entropy”

PWIState
compromise

PWI Random (?)
Numbers

PWI“Entropy”

PRNGs with Input

PWIEntropy

PWI Random
Numbers

PWI“Entropy”

PWI Random (?)
Numbers

PWIState
compromise

PWI Random (?)
Numbers

PWIEntropy

… GOTO 10

PWI“Entropy”

Types of security

Forward security: Random values are safe even if PWI state
is compromised in the future.

Backward security: Random values are safe even if PWI
state was compromised in the past (as long as we've
harvested enough entropy since then).

Resilience: Basic security. No state compromise, everything
looks random

Robustness: Both forward and backward security,
even if the adversary can tamper with state.

PWI Primitive

Entropy
Source

PWI

refresh(I)

next(m)

state

● Started with PWI
model of [DPRVW'13]

● Some simple
extensions:
– Blocking

– Multiple interfaces

– Explicit setup

– Asynchronous behavior setup()

tick()

PWI

refresh(I)

next(m)

state

setup()

tick()

PWI Oracles

Entropy
Source

get-state()

set-state()

b = ?

Challenger runs setup(),
flips coin b.
● Heads: API connects to

real PWI
● Tails: API connects to

idealized version of PWI

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?
PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

Grabs bits from entropy
source, feeds them to
PWI. Leaks some side-
channel info to attacker.

PWI Oracles

b = ?

Calls next(). Returns the
result.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

Calls next().
● Returns result if b = 0.
● Returns random string if

b = 1.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

Returns the PWI state.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

Sets the PWI state to a
value specified by the
Adversary.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

Prompts the PWI to
perform next scheduled
atomic task. No return
value.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

The get-state and set-
state oracles make the
state “corrupt”.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

While the state is corrupt,
the Adversary is cut off
from the next-ror oracle.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

PWI Oracles

b = ?

The state remains corrupt
until the PWI harvests a
specified amount of
entropy.

PWI

refresh(I)

next(m)

state

setup()

tick()

Entropy
Source

get-state()

set-state()

b

ES-Refresh()

get-next()

next-ror()

wait()

Measuring security

Attacker's advantage is:

Secure setup()

State produced by setup()

● setup() should place the PWI in a “good” state
– Some state is sensitive

– Other state is not (counters, buffered entropy, etc.)

● Define a masking function M such that M(S) is a “good
version” of S.

Forward security when
starting from masked state

Agenda

● Intel's Secure-Key RNG design

● The Model : “PRNGs With Input” (PWIs)

● Analsyis

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES:
DRBG:

RDRANDRDRAND

RDSEED

Entropy Source

From CRI Report (Hamburg, Kocher, Marson '12)

Entropy Source

The ES is a magic black box that
produces bits with some amount

of min-entropy.

Magic

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES:
DRBG:

RDRANDRDRAND

RDSEED

Entropy source assumptions

● Assume “healthy” samples have min-entropy

– Will estimate value from CRI analysis

– (Conservatively) assume no entropy from “unhealthy”
samples

● Assume ES will eventually produce a healthy sample

– Perfect entropy source = 1% of samples unhealthy

– Say any 256-bit sample is healthy with probability

ConditionerHealth TestES

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES:
DRBG:

RDRANDRDRAND

RDSEED

Old CE Buffer

ES

New CE Buffer

Conditioner: CBC-MAC
Loops until ES
generates 2-3

“Healthy” 256-bit
strings

Repeats for both 128-bit halves of
the CE Buffer

Conditioner seed K
is fixed, public

Does this work?

Theorem from [DGHKR Crypto '04] says CBC-
MAC (over a random permutation) works as an
entropy extractor but
– Intel RNG recycles state

– Bound degrades quickly with input length

Does this work?

Theorem from [DGHKR Crypto '04] says CBC-
MAC (over a random permutation) works as an
entropy extractor but
– Intel RNG recycles state

– Bound degrades quickly with input length

Not too hard to patch

Does this work?

Theorem from [DGHKR Crypto '04] says CBC-
MAC (over a random permutation) works as an
entropy extractor but
– Intel RNG recycles state

– Bound degrades quickly with input length

Not too hard to patch

We can impose a fixed “cut-off” point --- don't
count entropy or input length past this point.

ConditionerHealth Test

DRBG

ES

Entropy source
Deterministic random
bit generator

ES:
DRBG:

RDRANDRDRAND

RDSEED

DRBG: CTR-AES

● PWI state includes a CTR key and IV

● DRBG operation:

– Compute R, K', IV' as below

– Reassign (K, IV) ← (K', IV')

– Return R as the DRBG output

IV

R

IV+1

K'

IV+1

IV'

Helps with forward security.

Results

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Limited Backwards Security

● Future outputs, DRBG seeds linger in buffers, no
entropy collected when buffers full

● Only a concern for hardware attacks
● Security regained after this pipeline is flushed

ES Shift Register

OSTE Queue

CE BufferCondition

Health Test

Output Buffers

(K, IV)Reseed

DRBGRDSEED

RDRAND

ES
Entropy source
Online self-tested entropy
Conditioned entropy
Deterministic random bit generator

ES:
OSTE:

CE:
DRBG:

Health History

Technically no Forward Security

● Old outputs linger in buffers until overwritten
– Barring ES failure, this takes < 1 microsecond

● Only a concern for hardware attacks

Resilience / Limited Forward
Security

Need to start plugging in numbers
– CRI report estimates each 256 bit sample has

(0.65)*256 bits of entropy. Let's use 128 bits.

– No empirical data for β, but somewhere between 0.5
and 0.99 seems reasonable

– Dodis promises the big-O constant is less than 10

Let's to find max number of RDRAND/RDSEED queries
that limits advantage to 2-40.

Seth
Pencil

Resilience / Limited Forward
Security

To keep Adversary advantage below 2-40:
– RDSEED: Limit ~64MB (!)

– RDRAND: Hope Adversary can't bruteforce AES (dominant
non-computational term is ~6q/2128).

RDSEED bound is against

computationally unbounded
attackers, doesn't reflect a real

weakness...

...we think.

Bottom line

● RDRAND design seems sound
● RDSEED security bounds problematic,

but probably okay in practice
● It's nice to see theory put into practice

(entropy extractor taken from DGHKR
CRYPTO paper)

Seth

Seth
Rectangle

Seth
Pencil

Seth
Rectangle

Seth
Pencil

Seth
Pencil

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	page13 (1)
	page13 (2)
	page13 (3)
	page13 (4)
	page13 (5)
	page13 (6)
	page13 (7)
	page13 (8)
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	page36 (1)
	page36 (2)
	page36 (3)
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

