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Subversion of Cryptography

@ Black-box implementations are target of subversion into
subliminal channels - “Kleptography” (Young and Yung)

@ Recent Snowden revelations - Surveillance, Backdoors in
cryptographic standards and software.

Backdoored NIST standard - Dual EC PRG
Subversion of TLS encryption (Checkoway et al)

This work - Backdoored Pseudorandom Generators



Pseudorandom Generator

@ Stretches a short uniform random string into a long sequence
of pseudorandom bits

@ Security: A PRG is secure when no adversary can distinguish
between its outputs and random bits.



PRG Family

@ We consider a family of PRGs - for efficiency
@ A public parameter (like IV) designates a family

@ The public parameters pk picked once and are “innocent”
looking, typically random pk =U

e Each algorithm Gpi: S — {0,1}"” X S maps an input called
the state to an n-bit output and a new state
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Let G be a group and g be a generator of the group

The public key is a random pk = y from the group G
The PRG works as follows:

Gprlsi)=(rtvsiv) = (&7 y7)

Can be proven secure under the DDH assumption

e Detail - Encode group elements as bit strings
e Not important for the purposes of this talk

All good?
No! (' Shumow and Ferguson 2007 )
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Simplified Dual EC PRG

@ Suppose the public key y is chosen as follows:
y=g"

for x chosen at random from the group
The PRG works as follows:

Gpk(si) = (rit1,sit1) = (87, y%)

Attack

o Adversary A in possession of x sees one output riyq
o Can recover s;1 by computing sj11 = (rig1)* = y*
o All subsequent outputs predictable from current state

Dual EC PRG works as above (drops the last 16 bits)

Motivates the formal study of Backdoored Pseudorandom
generators
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Backdoored PRG

Intuition:
@ Behaves like a good PRG to an honest user, but...
@ Knowledge of trapdoor information compromises the security
of the PRG.
Formally,
o A triple of algorithms (K, G, A), where K($) — (pk, sk)
e Standard PRG security Ignoring sk, the pair (K,G) is a
PRG

@ Subversion The third algorithm A (the adversary)
co-designed with the rest of the scheme, uses the trapdoor sk
output by K to violate security of the PRG.
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Key Encapsulation Mechanism

A KEM scheme is a triple of algorithms (KeyGen, Encap, Decap).
@ The KeyGen outputs a public/secret key pair,

(pk, sk) < KeyGen
@ The encapsulation algorithm
(¢, K) < Encap(pk; r),K € {0,1}"
@ The decapsulation algorithm

Decap(sk, ¢) = K € {0,1}" U {invalid}



@ Correctness: With all but negl. probability,

Decap(sk, c¢) = K for (c, K) = Encap(pk; r)

@ Security: The outputs of Encap indistinguishable from a pair
of random bit strings.

o Ciphertext pseudorandomness - stronger than usual KEM
notion.
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Unext-BPRG from KEM

I = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

K:

( pk, sk)=— Gen
return (pk,sk)

A(sk, r, ..., rq):

s’«— Decap(sk, rq)
return s’

G(pk,s) : - Updated state = Key

(r, s')=— Encap(pk;s)
r return (r, s’)

Outp'ut = Ciphertext

e Attack « correctness of KEM

e Standard PRG security < ciphertext pseudorandomness
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Public

Key Encryption from BPRG

We show that the existence of BPRGs implies public-key
encryption (PKE).

From a backdoored PRG, we construct a bit encryption
scheme with noticeable correctness and overwhelming secrecy.

Amplify - Parallel repetition and privacy amplification of
key-agreement (Holenstein 2005), amplify secrecy and
correctness without increasing the number of rounds.

Since the number of rounds is not increased, we obtain secure
public-key encryption.
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Public Key Encryption from Ggi--BPRG

KeyGen: (pk,sk) <+ K
Encryption:

e To encrypt bit 0, ciphertext is set to uniformly random string
e To encrypt bit 1, ciphertext is the output of Ggs:-BPRG

Decryption: Call A with the secret key as trapdoor

@ Correctness of decryption - by advantage of A in the Ggist
game
@ Security - by standard PRG security for distinguishers without

the trapdoor.



Public Key Encryption from BPRG

@ Backdoored PRG constructions from KEM (equivalent to
PKE)

@ Public key encryption from a backdoored PRG.

Theorem (Informal)

Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.




Summary of results

o Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

gdist = IND$-CPA = gnextagrseek

@ Investigate countermeasures to BPRGs - immunizers

o (In)effectiveness of countermeasures
o Provably secure solution



Immunization




Immunization




Immunization




Immunization

f(R,) f(R) ,,y
!

A — »

N

QO —




Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random

fseed ( R1) fseed( Rg) r? y

N

@ —




Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random

fseed ( R1) fseed( Rg) r? y

[ e Subverted standard J

N

PRG

@ —




Immunization

Family of functions {f ___, | seed € {0,13*} seed « uniformly random
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Immunization models

@ Public immunization: Both G and A know seed.
o seed is revealed to the attacker A prior to construction of G.
@ Semi-private immunization: A knows seed, G does not.

o G is constructed without reference to seed. The attacker A
learns seed, and thus fieq, only after the specification of G

@ Private immunization: seed is secret from both A and G.

o G is constructed without reference to seed and A never learns
seed.



Results in Immunization models

@ Negative result in the public model - BPRG against any
immunization family

@ (Non-trivial) Positive results in the semi-private model

@ (Trivial) Positive and (initial) negative results in the private
model



Immunization models

@ Public immunization
@ Semi-private immunization

@ Private immunization



Public randomness

Key idea:
@ Prepare a string ¢ that is pseudorandom without sk
@ c gives away some information with the knowledge of sk
@ “Leak” c bit-by-bit through the PRG outputs
o Skip outputs until [f(.)]; is the bit to be leaked - rejection

sampling
o Leakage undetectable to user as c is pseudorandom without sk
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Public randomness

The high-level construction:

o
2]

BPRG in two phases - leakage phase and normal phase

Use the key idea in an initial /leakage phase - leak something
useful.

e Pseudorandom ciphertext encrypting a future state
The trapdoor is the secret key of the PKE

In normal phase - use the leaked string as initial state of an
underlying PRG
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Private randomness

Observation

feeed(R) = PRFseed(R) is secure immunization in private model.

Unsatisfactory.

If users had access to a backdoor-less PRF, then instead of
using it to immunize a backdoored PRG, they could use the
PRF itself for pseudorandomness.

Goal - explore functions weaker than PRF.

See paper for initial negative results
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Semi private randomness

@ Recall G does not know seed of f,..q, but the attacker A does
@ PRF does not work as seed is not secret

@ Natural Immunization function:

fseed(R) = RO(R||seed)

feeed(R) = RO(R||seed) is secure immunization in the semi-private
model
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Positive result in ROM

Intuition:
@ PRG outputs should have entropy even given the trapdoor

e If outputs do not have entropy, there are collisions - can be
publicly detected.

@ Collision entropy = min entropy

@ RO extracts pseudorandomness from min entropy



Positive result in ROM

@ Advantage in Ggis; after immunization:

Adv(Ask) ~ qroqpPrc \/ Adv(Dpk)

@ Open question - Is this poor dependence inherent?
@ In the standard model - replacing RO with a UCE (Bellare et
al 2013 ) secure hash function is a secure immunization.

e Strong standard model assumption, but does not come under
the impossibility results (Brzuska, Farshim and Mittelbach
2014)



Summary and Further questions

@ Definitional framework of Backdoored PRGs.

@ Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts
@ Investigate countermeasures to BPRGs - immunizers
o (In)effectiveness of countermeasures
e Provably secure solution
@ Open:
e Immunization in Private model - is PRF necessary?

e Semi-private - Positive result based on more standard
assumptions?



Thank You

Thank you!



