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Pseudorandom Generator

Stretches a short uniform random string into a long sequence
of pseudorandom bits

Security: A PRG is secure when no adversary can distinguish
between its outputs and random bits.



PRG Family

We consider a family of PRGs - for efficiency

A public parameter (like IV) designates a family

The public parameters pk picked once and are “innocent”
looking, typically random pk ≡ U
Each algorithm Gpk : S → {0, 1}n × S maps an input called
the state to an n-bit output and a new state
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Simplified Dual EC PRG

Let G be a group and g be a generator of the group

The public key is a random pk = y from the group G

The PRG works as follows:

Gpk(si ) = (ri+1, si+1) = (g si , y si )

Can be proven secure under the DDH assumption

Detail - Encode group elements as bit strings
Not important for the purposes of this talk

All good?

No! ( Shumow and Ferguson 2007 )
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Suppose the public key y is chosen as follows:

y = g x

for x chosen at random from the group

The PRG works as follows:

Gpk(si ) = (ri+1, si+1) = (g si , y si )

Attack

Adversary A in possession of x sees one output ri+1

Can recover si+1 by computing si+1 = (ri+1)x = y si

All subsequent outputs predictable from current state

Dual EC PRG works as above (drops the last 16 bits)

Motivates the formal study of Backdoored Pseudorandom
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Backdoored PRG

Intuition:

Behaves like a good PRG to an honest user, but...

Knowledge of trapdoor information compromises the security
of the PRG.

Formally,

A triple of algorithms (K,G,A), where K($)→ (pk, sk)

Standard PRG security Ignoring sk , the pair (K,G) is a
PRG

Subversion The third algorithm A (the adversary)
co-designed with the rest of the scheme, uses the trapdoor sk
output by K to violate security of the PRG.
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Key Encapsulation Mechanism

A KEM scheme is a triple of algorithms (KeyGen,Encap,Decap).

The KeyGen outputs a public/secret key pair,

(pk, sk)← KeyGen

The encapsulation algorithm

(c ,K )← Encap(pk; r),K ∈ {0, 1}n

The decapsulation algorithm

Decap(sk, c) = K̃ ∈ {0, 1}n ∪ {invalid}



KEM

Correctness: With all but negl. probability,

Decap(sk , c) = K for (c ,K ) = Encap(pk; r)

Security: The outputs of Encap indistinguishable from a pair
of random bit strings.

Ciphertext pseudorandomness - stronger than usual KEM
notion.
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Γ = (Gen, Encap, Decap) a pseudorandom-ciphertext KEM

 K :      G(pk,s) :

 ( pk, sk)         Gen        ( r, s’)        Encap(pk;s)     
 return (pk,sk)                        return (r, s’)

 A (sk, r1, … , rq) :

 s’        Decap(sk, rq)
 return s’

● Attack ←  correctness  of KEM

● Standard PRG security ← ciphertext pseudorandomness

  Output = Ciphertext 

Updated state =  Key 

Gnext-BPRG from KEM
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Public Key Encryption from BPRG

We show that the existence of BPRGs implies public-key
encryption (PKE).

From a backdoored PRG, we construct a bit encryption
scheme with noticeable correctness and overwhelming secrecy.

Amplify - Parallel repetition and privacy amplification of
key-agreement (Holenstein 2005), amplify secrecy and
correctness without increasing the number of rounds.

Since the number of rounds is not increased, we obtain secure
public-key encryption.



Public Key Encryption from Gdist-BPRG

KeyGen: (pk, sk)← K

Encryption:

To encrypt bit 0, ciphertext is set to uniformly random string
To encrypt bit 1, ciphertext is the output of Gdist-BPRG

Decryption: Call A with the secret key as trapdoor

Correctness of decryption - by advantage of A in the Gdist
game

Security - by standard PRG security for distinguishers without
the trapdoor.
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Public Key Encryption from BPRG

Backdoored PRG constructions from KEM (equivalent to
PKE)

Public key encryption from a backdoored PRG.

Theorem (Informal)

Backdoor PRGs exist iff public-key encryption with pseudorandom
ciphertexts exists.
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Immunization models

Public immunization: Both G and A know seed.

seed is revealed to the attacker A prior to construction of G.

Semi-private immunization: A knows seed, G does not.

G is constructed without reference to seed. The attacker A
learns seed, and thus fseed, only after the specification of G

Private immunization: seed is secret from both A and G.

G is constructed without reference to seed and A never learns
seed.



Results in Immunization models

Negative result in the public model - BPRG against any
immunization family

(Non-trivial) Positive results in the semi-private model

(Trivial) Positive and (initial) negative results in the private
model
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Public immunization

Semi-private immunization

Private immunization



Public randomness

Key idea:

Prepare a string c that is pseudorandom without sk

c gives away some information with the knowledge of sk

“Leak” c bit-by-bit through the PRG outputs

Skip outputs until [f (.)]1 is the bit to be leaked - rejection
sampling
Leakage undetectable to user as c is pseudorandom without sk
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Public randomness

The high-level construction:

1 BPRG in two phases - leakage phase and normal phase

2 Use the key idea in an initial leakage phase - leak something
useful.

Pseudorandom ciphertext encrypting a future state

3 The trapdoor is the secret key of the PKE

4 In normal phase - use the leaked string as initial state of an
underlying PRG
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Private randomness

Observation

fseed(R) = PRFseed(R) is secure immunization in private model.

Unsatisfactory.

If users had access to a backdoor-less PRF, then instead of
using it to immunize a backdoored PRG, they could use the
PRF itself for pseudorandomness.

Goal - explore functions weaker than PRF.

See paper for initial negative results
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Semi private randomness

Recall G does not know seed of fseed, but the attacker A does

PRF does not work as seed is not secret

Natural Immunization function:

fseed(R) = RO(R||seed)

Theorem

fseed(R) = RO(R||seed) is secure immunization in the semi-private
model



Positive result in ROM

Intuition:

PRG outputs should have entropy even given the trapdoor

If outputs do not have entropy, there are collisions - can be
publicly detected.

Collision entropy =⇒ min entropy

RO extracts pseudorandomness from min entropy
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Positive result in ROM

Advantage in Gdist after immunization:

Adv(Ask) ≈ qROqPRG

√
Adv(Dpk)

Open question - Is this poor dependence inherent?

In the standard model - replacing RO with a UCE (Bellare et
al 2013 ) secure hash function is a secure immunization.

Strong standard model assumption, but does not come under
the impossibility results (Brzuska, Farshim and Mittelbach
2014)



Summary and Further questions

Definitional framework of Backdoored PRGs.

Equivalence of backdoored PRGs and public-key encryption
schemes with pseudorandom ciphertexts

Investigate countermeasures to BPRGs - immunizers

(In)effectiveness of countermeasures
Provably secure solution

Open:

Immunization in Private model - is PRF necessary?
Semi-private - Positive result based on more standard
assumptions?



Thank You

Thank you!


