
Linear Secret Sharing Schemes from Error
Correcting Codes and Universal Hash Functions

Ronald Cramer1,2 Ivan Damgård3 Nico Döttling3

Serge Fehr1 Gabriele Spini1,2,4

1CWI Amsterdam 2Mathematical Institute, Leiden University
3Aarhus University 4Institut de Mathématiques de Bordeaux

Eurocrypt’15, April 28, 2015

1 / 19

Secret Sharing

Distribute a secret s to players
P1, . . . ,Pn such that

t-Privacy: Any set of t
players has no information
about s.
r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.
Linearity (LSSS):
(c1)i and (d1)i shares of s1
and s2 ⇒ (αci + βdi)i
shares of αs1 + βs2.

Share(s)

/ s
Reconstruct(. . .)

2 / 19

Secret Sharing

Distribute a secret s to players
P1, . . . ,Pn such that

t-Privacy: Any set of t
players has no information
about s.

r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.
Linearity (LSSS):
(c1)i and (d1)i shares of s1
and s2 ⇒ (αci + βdi)i
shares of αs1 + βs2.

Share(s)

/ s
Reconstruct(. . .)

2 / 19

Secret Sharing

Distribute a secret s to players
P1, . . . ,Pn such that

t-Privacy: Any set of t
players has no information
about s.
r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.

Linearity (LSSS):
(c1)i and (d1)i shares of s1
and s2 ⇒ (αci + βdi)i
shares of αs1 + βs2.

Share(s)

/ s
Reconstruct(. . .)

2 / 19

Secret Sharing

Distribute a secret s to players
P1, . . . ,Pn such that

t-Privacy: Any set of t
players has no information
about s.
r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.
Linearity (LSSS):
(c1)i and (d1)i shares of s1
and s2 ⇒ (αci + βdi)i
shares of αs1 + βs2.

Share(s)

/ s
Reconstruct(. . .)

2 / 19

Design Goals for Secret Sharing

Structural Goals:
Minimize size of shares (for given privacy and reconstruction
thresholds)
Maximize the size of the secret (...)

Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)

Algorithmic Goals: Optimize overhead of sharing and
reconstruction/fancier reconstruction goals

3 / 19

Design Goals for Secret Sharing

Structural Goals:
Minimize size of shares (for given privacy and reconstruction
thresholds)
Maximize the size of the secret (...)
Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)

Algorithmic Goals: Optimize overhead of sharing and
reconstruction/fancier reconstruction goals

3 / 19

Design Goals for Secret Sharing

Structural Goals:
Minimize size of shares (for given privacy and reconstruction
thresholds)
Maximize the size of the secret (...)
Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)

Algorithmic Goals: Optimize overhead of sharing and
reconstruction/fancier reconstruction goals

3 / 19

Design Goals for Secret Sharing

Structural Goals:
Minimize size of shares (for given privacy and reconstruction
thresholds)
Maximize the size of the secret (...)
Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)

Algorithmic Goals: Optimize overhead of sharing and
reconstruction/fancier reconstruction goals

3 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head

Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption

Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials

Algebraic function fields
Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields

Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19

Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures
Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d

This allows for correcting
errors/erasures
Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures

Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures

Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures

Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures

Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures
Linear codes: ECC is F-linear

Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures
Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•

5 / 19

LSSS and Codes (1)

LSSS are codes with privacy
Natural approach: Construct LSSS from codes
[Mas96,CCGHV07,...]

Privacy of LSSS established using properties of specific codes
(e.g. dual distance)
Properties irrelevant or detrimental for error correction

6 / 19

LSSS and Codes (1)

LSSS are codes with privacy
Natural approach: Construct LSSS from codes
[Mas96,CCGHV07,...]
Privacy of LSSS established using properties of specific codes
(e.g. dual distance)

Properties irrelevant or detrimental for error correction

6 / 19

LSSS and Codes (1)

LSSS are codes with privacy
Natural approach: Construct LSSS from codes
[Mas96,CCGHV07,...]
Privacy of LSSS established using properties of specific codes
(e.g. dual distance)
Properties irrelevant or detrimental for error correction

6 / 19

LSSS and Codes (1)

LSSS are codes with privacy
Natural approach: Construct LSSS from codes
[Mas96,CCGHV07,...]
Privacy of LSSS established using properties of specific codes
(e.g. dual distance)
Properties irrelevant or detrimental for error correction

6 / 19

LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]

Efficient list decoding approaching the Singleton bound
[GR07,GX13]
Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?
...for any code?

7 / 19

LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]
Efficient list decoding approaching the Singleton bound
[GR07,GX13]

Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?
...for any code?

7 / 19

LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]
Efficient list decoding approaching the Singleton bound
[GR07,GX13]
Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?

...for any code?

7 / 19

LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]
Efficient list decoding approaching the Singleton bound
[GR07,GX13]
Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?
...for any code?

7 / 19

LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]
Efficient list decoding approaching the Singleton bound
[GR07,GX13]
Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?
...for any code?

7 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares

∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)

Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS

8 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:

9 / 19

What do we require from H?

H should be linear (we want linear SSS)
H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

How do we construct such a H for arbitrary codes ECC?
Choose H at random from a small family

10 / 19

What do we require from H?

H should be linear (we want linear SSS)
H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

How do we construct such a H for arbitrary codes ECC?

Choose H at random from a small family

10 / 19

What do we require from H?

H should be linear (we want linear SSS)
H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

How do we construct such a H for arbitrary codes ECC?
Choose H at random from a small family

10 / 19

What do we require from H?

H should be linear (we want linear SSS)
H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

How do we construct such a H for arbitrary codes ECC?
Choose H at random from a small family

10 / 19

Universal Hash Functions

Function Ensembles with statistical collision resistance
H : {H : X → Y } is universal iff ∀x1 6= x2:
PrH←$H[H(x1) = H(x2)] ≤ 1/|Y |

11 / 19

Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

H a family of linear universal hash functions Fk
q → Fl

q

V a subspace of Fk
q of dimension at least r

H ←$ H chosen uniformly at random
Then H(V) = Fl

q (i.e. H is surjective on V), except with
probability q−(r−l) over the choice of H

12 / 19

Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

H a family of linear universal hash functions Fk
q → Fl

q

V a subspace of Fk
q of dimension at least r

H ←$ H chosen uniformly at random

Then H(V) = Fl
q (i.e. H is surjective on V), except with

probability q−(r−l) over the choice of H

12 / 19

Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

H a family of linear universal hash functions Fk
q → Fl

q

V a subspace of Fk
q of dimension at least r

H ←$ H chosen uniformly at random
Then H(V) = Fl

q (i.e. H is surjective on V), except with
probability q−(r−l) over the choice of H

12 / 19

Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

H a family of linear universal hash functions Fk
q → Fl

q

V a subspace of Fk
q of dimension at least r

H ←$ H chosen uniformly at random
Then H(V) = Fl

q (i.e. H is surjective on V), except with
probability q−(r−l) over the choice of H

12 / 19

The Scheme

LSSS
Fix some linear hash function H ∈ H, ECC linear code

Share(s):
r ←$ H−1(s)
c← ECC (r)
Output share vector c

Reconstruct(c̃):
r ← ECC .Decode(c̃)
If r = ⊥

Output ⊥
s ← H(r)
Output secret s

13 / 19

Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0
There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)

14 / 19

Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0

There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)

14 / 19

Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0
There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)

14 / 19

Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0
There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)

14 / 19

Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0
There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)

14 / 19

Applications

1 LSSS with linear time sharing and reconstruction.
2 Robust secret sharing

15 / 19

Applications

1 LSSS with linear time sharing and reconstruction.
2 Robust secret sharing

15 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function

But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function
But: Can share random secrets without inverting hash function

Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function
But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])

Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function
But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function
But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function
But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.

16 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction

Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction

Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.

Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!

Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))

This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction
Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)

17 / 19

Robust Secret Sharing

Idea
List Decodable Code ⇒ List Decodable SSS
List Decodable SSS + AMD Codes ⇒ Robust Secret Sharing

18 / 19

Robust Secret Sharing

Idea
List Decodable Code ⇒ List Decodable SSS
List Decodable SSS + AMD Codes ⇒ Robust Secret Sharing

18 / 19

Thank You!

19 / 19

