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Secret Sharing

Distribute a secret s to players
Pi,..., P, such that

e t-Privacy: Any set of t
players has no information
about s.

@ r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.

e Linearity (LSSS):
(c1)i and (d1); shares of s
and s; = (ac + Bd;);
shares of as; + 8s,. m
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Design Goals for Secret Sharing

e Structural Goals:
o Minimize size of shares (for given privacy and reconstruction
thresholds)
o Maximize the size of the secret (...)
o Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)
e Algorithmic Goals: Optimize overhead of sharing and
reconstruction /fancier reconstruction goals
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Secret Sharing Schemes

Useful for:

e MPC
@ 2PC via MPC-in-the-head
@ Attribute based encryption

@ Non-malleable codes

LSSS construction paradigms

@ Polynomials
@ Algebraic function fields

@ Random linear codes
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Error Correcting Codes

e Redundant (distance-amplifying)
encodings ECC : F¥ — F”

e my #£ m =
dist(ECC(my), ECC(my)) > d
@ This allows for correcting
errors/erasures
@ Linear codes: ECC is F-linear

@ Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.
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LSSS and Codes (1)

@ LSSS are codes with privacy

@ Natural approach: Construct LSSS from codes
[Mas96,CCGHVO07,...]

@ Privacy of LSSS established using properties of specific codes
(e.g. dual distance)

@ Properties irrelevant or detrimental for error correction
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LSSS and Codes (2)

@ Coding theory made huge algorithmic progress the last ~ 20y.

@ Linear time encoding, error/erasure correction
[5596,Spie96,Gl04,...]

o Efficient list decoding approaching the Singleton bound
[GRO7,GX13]

e Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?

o ...for any code?
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%'/. m Our Results

@ Black box construction of LSSS from any family of linear
codes*

@ Privacy close to best possible**

e Construction preserves algorithmic efficiency

FINEPRINT:

@ * Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares

e ** For sufficiently large alphabet/shares (still constant)

e Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS
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An information-theoretic look on secret sharing

Too Pessimistic!

Randomness r
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An information-theoretic look on secret sharing

What really happens:

‘ Randomness r ‘

2 &

Both linear
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What do we require from H?

@ H should be linear (we want linear SSS)

@ H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

e How do we construct such a H for arbitrary codes ECC?

@ Choose H at random from a small family
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Universal Hash Functions

@ Function Ensembles with statistical collision resistance
o H:{H: X — Y} is universal iff Vx; # xa:
Prucgu[H(x1) = H(x)] < 1/|Y|
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Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

@ H a family of linear universal hash functions Fg — qu

@ V a subspace of IF‘S of dimension at least r

@ H <g H chosen uniformly at random

e Then H(V) = IF‘Q (i.e. H is surjective on V), except with
probability g=("=!) over the choice of H
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The Scheme

LSSS

Fix some linear hash function H € H, ECC linear code

Share(s): Reconstruct(¢):
r <¢ H71(s) r + ECC.Decode(2)
c <+ ECC(r) Ifr=_1
Output share vector c Output L
s <« H(r)

Output secret s
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Main Theorem

® ECC an Fy-linear code of length n, rate R and alphabet F¢’

® H a family of Fg-linear universal hash functions IFg" — Fg"
e Constantn >0

@ There exists a H € H such that above scheme has
Tn-privacy., given that

R>p+n+7+h(r)/(m-log(q)).?

@ H can be chosen randomly with success-probability 1 — q=""™.

*h(p) = —plog(p) — (1 — p) log(1 — p)
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Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.

Standard reconstruction ~ erasure correction
Robust reconstruction ~ error correction

Robust reconstruction easy for t < n/3 and impossible for
t > n/2. For n/3 <t < n/2 only statistical robustness.

Efficient reconstruction!

Best construction so far ([CFOR12]): t < n/2 — 1, shares of
size O(A + n - log(n))

This work: t < (1 — €)n/2 for any constant ¢, shares of size
O(1+ X\/n)
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