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Secret Sharing

Distribute a secret s to players
P1, . . . ,Pn such that

t-Privacy: Any set of t
players has no information
about s.
r-Reconstruction: Any
set of r players can
(efficiently) reconstruct s.
Linearity (LSSS):
(c1)i and (d1)i shares of s1
and s2 ⇒ (αci + βdi )i
shares of αs1 + βs2.

Share(s)

/ s
Reconstruct(. . . )
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Design Goals for Secret Sharing

Structural Goals:
Minimize size of shares (for given privacy and reconstruction
thresholds)
Maximize the size of the secret (...)

Additional algebraic/combinatorial properties (multiplicativity,
sophisticated access structures,...)

Algorithmic Goals: Optimize overhead of sharing and
reconstruction/fancier reconstruction goals
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Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head

Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption

Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials

Algebraic function fields
Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields

Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19



Secret Sharing Schemes

Useful for:
MPC
2PC via MPC-in-the-head
Attribute based encryption
Non-malleable codes
...

LSSS construction paradigms
Polynomials
Algebraic function fields
Random linear codes

4 / 19



Error Correcting Codes

Redundant (distance-amplifying)
encodings ECC : Fk → Fn

m1 6= m2 ⇒
dist(ECC (m1),ECC (m2)) > d
This allows for correcting
errors/erasures
Linear codes: ECC is F-linear
Algorithmic Goals: Efficient
encoding, decoding from
errors/erasures, list-decoding.

•

•

•
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LSSS and Codes (1)

LSSS are codes with privacy
Natural approach: Construct LSSS from codes
[Mas96,CCGHV07,...]

Privacy of LSSS established using properties of specific codes
(e.g. dual distance)
Properties irrelevant or detrimental for error correction
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LSSS and Codes (2)

Coding theory made huge algorithmic progress the last ≈ 20y .
Linear time encoding, error/erasure correction
[SS96,Spie96,GI04,...]

Efficient list decoding approaching the Singleton bound
[GR07,GX13]
Can we translate (algorithmic) progress in coding theory into
realm of secret sharing?
...for any code?
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Our Results

Black box construction of LSSS from any family of linear
codes∗

Privacy close to best possible∗∗

Construction preserves algorithmic efficiency

Fineprint:
∗ Ramp scheme: gap between privacy and reconstruction, large
number of players, secret larger than shares
∗∗ For sufficiently large alphabet/shares (still constant)
Multiplicativity of a code not preserved by our
constructions: No multiplicative SSS
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An information-theoretic look on secret sharing

Secret s = H(r) Shares c = ECC (r)

Randomness r

H

ECC

Both linearBoth linear

Too Pessimistic!What really happens:
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What do we require from H?

H should be linear (we want linear SSS)
H should be surjective on all affine subspaces that correspond
to sets in adversarial structure

H

How do we construct such a H for arbitrary codes ECC?
Choose H at random from a small family
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Universal Hash Functions

Function Ensembles with statistical collision resistance
H : {H : X → Y } is universal iff ∀x1 6= x2:
PrH←$H[H(x1) = H(x2)] ≤ 1/|Y |
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Subspace Surjectivity

Almost all functions of a family will be surjective on a fix subspace
of some minimum dimension.

H a family of linear universal hash functions Fk
q → Fl

q

V a subspace of Fk
q of dimension at least r

H ←$ H chosen uniformly at random
Then H(V ) = Fl

q (i.e. H is surjective on V ), except with
probability q−(r−l) over the choice of H
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The Scheme

LSSS
Fix some linear hash function H ∈ H, ECC linear code

Share(s):
r ←$ H−1(s)
c← ECC (r)
Output share vector c

Reconstruct(c̃):
r ← ECC .Decode(c̃)
If r = ⊥

Output ⊥
s ← H(r)
Output secret s

13 / 19



Main Theorem

Theorem
ECC an Fq-linear code of length n, rate R and alphabet Fm

q

H a family of Fq-linear universal hash functions FRn
q → Fρnq

Constant η > 0
There exists a H ∈ H such that above scheme has
τn-privacy., given that

R ≥ ρ+ η + τ + h(τ)/(m · log(q)).a

H can be chosen randomly with success-probability 1− q−ηnm.
ah(p) = −p log(p)− (1 − p) log(1 − p)
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Applications

1 LSSS with linear time sharing and reconstruction.
2 Robust secret sharing
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Linear Time Secret Sharing

Use linear time en- and decodable codes [Spi96,GI04] + linear
time computable hash functions [IKOS07,DI14]
Small annoyance: Sharing algorithm inverts hash function

But: Can share random secrets without inverting hash function
Bootstrap this into a standard sharing algorithm via OTP
encryption + dispersion (similar to [Kra93])
Application of the Application: (Amortized) Linear time
commitments via MPC-in-the-head.
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Robust Secret Sharing

Stronger reconstruction property: Adversary returns corrupted
shares.
Standard reconstruction ∼ erasure correction

Robust reconstruction ∼ error correction
Robust reconstruction easy for t ≤ n/3 and impossible for
t ≥ n/2. For n/3 ≤ t < n/2 only statistical robustness.
Efficient reconstruction!
Best construction so far ([CFOR12]): t ≤ n/2− 1, shares of
size O(λ+ n · log(n))
This work: t < (1− ε)n/2 for any constant ε, shares of size
O(1+ λ/n)
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Robust Secret Sharing

Idea
List Decodable Code ⇒ List Decodable SSS
List Decodable SSS + AMD Codes ⇒ Robust Secret Sharing
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Thank You!
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