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Overview 

Integral Distinguisher (Daemen 97, Knudsen and Wagner 02) 

• Exploit the set of chosen plaintexts that the XOR of 
the corresponding ciphertexts always becomes 0. 

• Already have two methods to create distinguisher. 
 1. Integral property 

2. Degree estimation 

Propose a new method to create integral distinguisher 

• Propose a new property called “Division Property.” 
• This property can exploit both confusion and diffusion. 

mainly exploit the diffusion part. 

mainly exploit the confusion part. 
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Summarization of Structural Evaluation 

Structural Evaluation (Generic Attack) 

Exploit only the feature of the network.  
It is applicable to large classes of block ciphers.  

Add some natural assumptions. 

Structure F-function vulnerable rounds Example 

(16,2)-Feistel Non-bijection 9R 231 CPs Simon 32 

(64,2)-Feistel Non-bijection 14R 2127 CPs Simon 128 

(4,3,32)-SPN - 7R 2124 CPs Serpent 

(5,2,320)-SPN - 15R 21595 CPs Keccak-𝑓[1600] 

(ℓ, 𝑑)-Feistel   ℓ-bit F-function with degree 𝑑. 
(ℓ, 𝑑,𝑚)-SPN  𝑚 concatenating ℓ-bit S-boxes with degree 𝑑.  
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Outline 

1. Background 

‐ What’s Integral Attack? 

‐ Higher-Order Differential? 

2. Division Property 

3. Vectorial and Collective Division Properties 

4. Application to Feistel Cipher 

5. Conclusion 
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What’s Integral Attack? 

• Classical differential attack observes the 
propagation of differences between two values. 

• Integral attack treats the propagation of the sum 
of many values. 

• History. 
‐ It has several names, 

• Higher-Order Differential attack [Lai, 94] 

• Square attack [Daemen et al., FSE97], 

• Saturation attack [Lucks, FSE01], 

• Integral attack [Knudsen, FSE02]. 

‐ We use “integral attack” in my talk. 
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Integral Property 

• When we search for the integral distinguisher, 
we often use the propagation of the integral 
property. 

• Integral property. 

‐ 𝐴 : Every value appears the same number.  

‐ 𝐵 : The XOR of all texts is 0.  

‐ 𝐶 : The value is fixed to a constant.  

‐ 𝑈 : The set does not have useful property.  
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Propagation of Integral Property 
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Higher-Order Differential? 

• Outline is the same as that of integral attack. 

• Exploit the algebraic degree of a function. 

‐ Choose a set of chosen plaintexts whose (d+1) 
bits of the input are active. 

‐ If the algebraic degree is at most d, the sum of 
the output is always 0.  

• How estimate the accurate degree? 

‐ It is very difficult to estimate the accurate 
algebraic degree. 
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Outline 

1. Background 

2. Division Property 

‐ Concept 

‐ How to evaluate multi-set by using 𝝅𝒖 

‐ Redefinition of integral property 

‐ Propagation characteristic 

3. Vectorial and Collective Division Properties 

4. Application to Feistel Cipher 

5. Conclusion 
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Concept 

• Intuition. 
‐ Integral property. 

• It treats S-box as a black box. 

• It does not clearly exploit the degree of S-box. 

• It mainly exploits the diffusion of block cipher. 

‐ Degree estimation. 
• It treats the algebraic degree of S-box. 

• It is very difficult to estimate accurate degree.  

• It mainly exploits the confusion of block cipher. 

• Motivation. 
‐ How can we exploit both confusion and diffusion? 
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How do we exploit both properties? 

• Assume that the degree of S-box is at most 𝑑. 

 

 

 

 

• Believe that some useful properties are hidden 
between “𝐴” and “𝐵”. 

• To exploit the useful property, we redefine each 
property by the same statement, and reveal the 
useful property.  

S 

S (𝑑 + 1)-bit active 

S 
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Bit Product Function 𝜋𝑢 

Multi-set 𝕏 
… 

𝑛 bits 

1 0 0 1 0 1 0 𝑢 

& 

• Choose bits that corresponding bits of u are 1, 
and output the AND.  

• Evaluate the parity of 𝜋𝑢(𝑥) for all elements.  

𝑥𝑖  

Calculate the parity. 
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Bit Product Function 𝜋𝑢 

Multi-set 𝕏 
… 

𝑛 bits 

1 0 0 1 0 1 0 𝑢 

& 

• Evaluate whether the parity becomes 0 or 1. 

• If the parity is 0, the value of u belongs to 𝕌0. 

• If the parity is 1, the value of u belongs to 𝕌1. 

 

𝑥𝑖  

Calculate the parity. 
Set 𝕌0 Set 𝕌1 
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Example 

• Assume that elements of 𝕏 take 3-bit value. 

Set 𝕏 𝜋𝒖(𝒙) 

000 

001 

010 

011 

100 

101 

110 

111 

Parity 

‐ All values appear only 
once in the set 𝕏. 

‐ The set 𝕏 has the 
integral property 𝐴. 

‐ Calculate the parity of 
𝜋𝑢(𝑥), and evaluate 
whether 𝑢 belongs to 
𝕌0 or 𝕌1. 
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Example 

Set 𝕏 𝜋𝟎𝟎𝟎(𝒙) 

000 0 

001 0 

010 0 

011 0 

100 0 

101 0 

110 0 

111 0 

Parity 0 

When 𝑢 of 𝜋𝑢 is equal to 000. 

Set 𝕌0 

Set 𝕌1 

000 
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Example 

Set 𝕏 𝜋𝟎𝟎𝟏(𝒙) 

000 0 

001 1 

010 0 

011 1 

100 0 

101 1 

110 0 

111 1 

Parity 0 

Set 𝕌0 

Set 𝕌1 

000, 001 

When 𝑢 of 𝜋𝑢 is equal to 001. 
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Example 

Set 𝕏 𝜋𝟏𝟏𝟏(𝒙) 

000 0 

001 0 

010 0 

011 0 

100 0 

101 0 

110 0 

111 1 

Parity 1 

Set 𝕌0 

Set 𝕌1 

000, 001, 010, 011,  
100, 101, 110 

111 

When 𝑢 of 𝜋𝑢 is equal to 111. 
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Another Example 

Set 𝕏 𝜋𝟏𝟏𝟎(𝒙) 

000 0 

001 0 

001 0 

011 0 

100 0 

110 1 

110 1 

111 1 

Parity 1 

Set 𝕌0 

Set 𝕌1 

000, 001, 010, 011,  
100,  

101, 110, 111 

Similarly, divide the set of 𝑢 into 𝕌0 and 𝕌1. 
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How to Evaluate Multi-Set with Unknown Elements 

• In previous simple example, we know all 
elements of the multi-set.  

• However, attackers can’t know elements, but 
they can only know the property of the multi-set.  

‐ Every value appears the same number. 

‐ The XOR of all values becomes 0. 

• We use a set 𝕌? instead of 𝕌1. 

‐ If attackers can know that the parity is always 0, 𝑢 
belongs to 𝕌0.  

‐ Otherwise, 𝑢 belongs to 𝕌?. 
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• Assume that 𝕏 has 𝐴.  

– If 𝒘𝒕(𝒖) < 𝒏, the parity is always 0. 

– If 𝒘𝒕(𝒖) = 𝒏, the parity becomes unknown. 

Redefinition of ALL 

Set 𝕏 
… 

𝑛 bits 

1 0 0 1 0 1 0 𝑢 

& 

Evaluate the set by a bit product function 𝜋𝑢. 

Calculate the parity. 
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Redefinition of BALANCE 

• Assume that 𝕏 has 𝐵.  

– If 𝒘𝒕(𝒖) < 𝟐, the parity is always 0. 

– If 𝒘𝒕 𝒖 ≥ 𝟐, the parity becomes unknown. 

Evaluate the set by a bit product function 𝜋𝑢. 

Set 𝕏 
… 

𝑛 bits 

1 0 0 1 0 1 0 𝑢 

& 
Calculate the parity. 
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Redefinition of UNKNOWN 

• Assume that 𝕏 has 𝑈.  

– If 𝒘𝒕(𝒖) < 𝟏, the parity is always 0. 

– If 𝒘𝒕 𝒖 ≥ 𝟏, the parity becomes unknown. 

Evaluate the set by a bit product function 𝜋𝑢. 

Set 𝕏 
… 

𝑛 bits 

1 0 0 1 0 1 0 𝑢 

& 
Calculate the parity. 
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Division Property 

• Division property 𝒟𝑘
𝑛 

‐ All n-bit values are divided into elements of the 
set 𝕌0 and those of the set 𝕌?. 

Input multiset 𝕏 

0 

Unknown 

The set of 𝑢 whose 𝑤𝑡(𝑢) < 𝑘 belongs the set 𝕌0. 

Set 𝕌0 

Set 𝕌? 
𝔽2

𝑛 
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Relation between Integral and Division 

Integral  
property 

𝒟𝑛
𝑛 𝒟2

𝑛 𝒟1
𝑛 

Division  
property 𝒟𝑘

𝑛 … … 

𝐴 𝐵 𝑈 

• The division property can treat the hidden 
property between 𝐴 and 𝐵 by using from 𝒟3

𝑛 
to 𝒟𝑛−1

𝑛 . 
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Propagation 

Set 𝕏 

𝑆 

𝕏 has      . unknown 

𝕐 has            . unknown 

Let S be a functions from 𝑛 bits to 𝑚 bits, and 
the algebraic degree is 𝑑. 

Set 𝕐 
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Propagation – Special Case  

𝕏 has      . 

𝕐 has      . 

 

Moreover, if the function S is bijective, 

Set 𝕏 

𝑆 

Set 𝕐 
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Outline 

1. Background 

2. Division Property 

3. Vectorial and Collective Division Properties 

‐ Definition of vectorial and collective ones 

‐ Simple example for vectorial division property 

‐ Simple example for collective division property 

4. Application to Feistel Cipher 

5. Conclusion 
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Vectorial and collective Division Property 

Set 𝕏 

& 

𝜋𝑢(𝑥) ⊕𝑥 ∈𝕏 𝜋𝑢(𝑥 ) 
𝑆1 

𝜋𝑢1
 

… 
𝑛 bits 𝑛 bits 𝑛 bits 

𝜋𝑢2
 𝜋𝑢𝑚

 

𝑆2 𝑆𝑚 … 

Vectorial and collective Division Properties are a little 
complicated, so we only explain them by two dimensions. 

Evaluate the set by the bit product function 𝜋𝑢. 

Calculate the parity. 
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Vectorial Division Property 

𝕏 has              . 

unknown 

Set 𝕏 

𝑆1 

Set 𝕐 

𝑆2 

The parity becomes unknown when 𝜋𝑢 is 
applied such that 𝑢1 ≥ 𝑘1 and 𝑢2 ≥ 𝑘2.  
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Propagation of Vectorial Division Property 

unknown 

𝕐 has                      . 

When 2 S-boxes are applied, we evaluate the 
propagation of each element of vector [𝑘1, 𝑘2]. 

Set 𝕏 

𝑆1 

Set 𝕐 

𝑆2 
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Collective Division Property 

unknown 

𝕏 has                         . 

When the unknown has to be represented by 
2 vectors, we use collective division property. 

Set 𝕏 

𝑆1 

Set 𝕐 

𝑆2 
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Propagation of Collective Division Property 

𝕐 has                                        . 

We evaluate the propagation of the vectorial 
division property every vector. 

unknown 

Set 𝕏 

𝑆1 

Set 𝕐 

𝑆2 
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Outline 

1. Background 

2. Division Property 

3. Vectorial and Collective Division Properties 

4. Application to Feistel Cipher 

‐ Definition of (ℓ, 𝒅)-Feistel 

‐ Propagation characteristic against (ℓ, 𝒅)-Feistel 

‐ Integral distinguisher on (ℓ, ℓ − 𝟏)-Feistel 

‐ Integral distinguisher on (ℓ, 𝟐)-Feistel 

5. Conclusion 
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Feistel Cipher 

• Famous structure to design block cipher. 

• It is widely applied, e.g., DES and Camellia. 

• Many results have been known about the 
structural evaluation. 

• Integral attack is strong attack, but previous 
approach is not effective if F is non-bijective.  

F 



35/40 Copyright©2015  NTT corp. All Rights Reserved. 

(ℓ, 𝑑)-Feistel 

• The bit length of F-function is ℓ bits. 

• The algebraic degree of F-function is at most 𝑑. 

• The block length is 2ℓ bits.  

F 
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Propagation on (ℓ, 𝑑)-Feistel 

• The division property propagates as follows. 

 

 

• Here 𝑘1 − 𝑞𝑑 ≥ 0 and 𝑘2 + 𝑞 ≤ ℓ. 

F 
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Distinguisher against (32,31)-Feistel 

Prepare 262 CPs with left 30 and right 32 bits are active 

Input 1st round 2nd round 

3rd round 4th round 5th round 
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Distinguisher against (ℓ, 2)-Feistel 

Target 
[Application] 

log𝟐(#𝒕𝒆𝒙𝒕𝒔) 
Method 

r=6 r=7 r=8 r=9 r=10 r=11 r=12 r=13 

(16,2)-Feistel 
[Simon 32] 

17 25 29 31 - - - - our 

- - - - - - - - degree 

(24,2)-Feistel 
[Simon 48] 

17 29 39 44 46 47 - - our 

17 - - - - - - - degree 

(32,2)-Feistel 
[Simon 64] 

17 33 49 57 61 63 - - our 

17 - - - - - - - degree 

(48,2)-Feistel 
[Simon 96] 

17 33 57 77 87 92 94 95 our 

17 33 - - - - - - degree 

(64,2)-Feistel 
[Simon 128] 

17 33 65 97 113 121 125 127 our 

17 33 - - - - - - degree 

15-round integral distinguisher against Simon32 were already known, 
but it was confirmed by experiments and the existence is not proven.  
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Outline 

1. Background 

2. Division Property 

3. Vectorial and Collective Division Properties 

4. Application to Feistel Cipher 

5. Conclusion 

 



40/40 Copyright©2015  NTT corp. All Rights Reserved. 

Conclusion 

• Propose the division property.  
‐ It is a generalization of the integral property such 

that it can also exploit the algebraic degree. 

•  Application 
‐ I showed structural evaluations for Feistel and SPN 

by adding some realistic assumptions. 
‐ Toward to dedicated cryptanalysis, we also show 

integral distinguishers of AES-Like ciphers. 

• Future works 
‐ I expect the division property is useful to construct 

integral characteristic of specific block ciphers. 
‐ I think that all integral distinguishers are looked 

again by using the division property. 
 


