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Polynomial Hashing Authentication

Polynomial Hashing Scheme

Processes an input consisting of a key H and plaintext/ciphertext
M = (M1||M2|| · · · ||Mt), where each Mi ∈ F128

2 , by evaluating

hH(M) :=
t∑

i=1

MiH
i ∈ F128

2

Poly hashing is used:

GCM (NIST standard).

Some CAESAR candidates (Ongoing Crypto Competition).
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Recent Attack: Procter’ and Cid’s General Framework (FSE 2013)

Previous attacks are special cases of this framework.

Forgery Polynomial

Assume that q(X ) =
∑r

i=1 qiX
i and that q(H) = 0. Assume that

M = (M1||M2|| · · · ||Ml),Q = (q1||q2|| · · · ||qr ) and that l < r .
Then

hH(M) =
r∑

i=1

MiH
i =

l∑
i=1

MiH
i +

r∑
i=1

qiH
i

=
r∑

i=1

(Mi + qi )H
i

= hH(M + Q)

If hH(M) = hH(M + Q) then H might be a weak key.
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Handschuh and Preneel’s Weak-key Definition (Crypto 2008)

Weak Keys

A class of keys of size N is called weak if membership testing:

costs less than N key tests and verification queries.
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Open Questions

Question I

How to efficiently construct a forgery polynomial q(X ) of degree t?

Näıve way (X − H1) · · · (X − Ht): impractical.

random polynomials: repeated roots.

Only proposed explicit polynomials:

X t+1 − X where t|(2128 − 1) due to Saarinen (FSE 2012).

Not useful for efficient key recovery.

Question II

How to efficiently cover the whole key space with a set of forgery
polynomials?

Goal: explicit non-cyclic polynomials with unique roots from
different subgroups covering key space.
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Twisted Polynomials

Let V be a vector subspace of F2128 with d-dim basis

Polynomials pV (X ) whose roots are exactly the elements
of V can be constructed efficiently using Ore ring theory.

Twisted polynomials of degree 2d but sparse with d + 1
nonzeros

pV (X ) = X 2d + cd−1X
2d−1

+ · · ·+ c1X
2 + c0X

Remark

Ferguson (NIST Comment 2007) used linearized polynomials to
recover GCM’s hash key when short tags are used.
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Disjoint Coverage

pV (X − a) = pV (X )− pV (a)

pV (x)− pV (a) has as sets of roots exactly a + V , a ∈ Fq.

Construct n = 2128−d polynomials with:

a1 + V , · · · , an + V as roots to disjointly cover F128
2 .
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Example I

Forgery polynomial of degree 231 but sparse with 31 nonzero
coefficients (ci = aei ):
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Example II

Forgery polynomial of degree 261 but sparse with 61 nonzero
coefficients (ci = aei ):
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Description of GCM

Ciphertext generation:

Ci = Ek(Ji )⊕Mi

Tag generation:
T = Ek(J0)⊕ hH(C )

Counter values depends on the nonce N:

J0 =

{
N||031||1 if |N| = 96,

hH(N||0s+64||[|N|]64) if |N| 6= 96,

where Ji = inc32(Ji−1) and s = 128d|N|/128e − |N|
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Weak-key Detection Process on GCM

The weak-key detection process is as follows:

Observe a ciphertext/tag pair (C ;T ).

Submit a verification query with 231-block (C + Q;T ).

Success: H is root of pV (X ) and we recover it using binary
search key recovery (31 queries).

Universal Forgeries

Recovering H leads to nonce-respecting universal forgeries on GCM
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Attack I: Slide Attack on GCM when |N| 6= 96 I (Chosen Nonce)

H is known. Observe M/C with nonce N.

Create a universal forgery for M ′ by sliding Ji+1 into J ′i as follows:

Compute J0 = hH(N||0s+64||[|N|]64), Ji+1 = inc32(Ji ).

Compute EK (Ji ) = Mi ⊕ Ci .

Solve for N ′: J ′0 = J1 = hH(N ′||0s+64||[|N ′|]64)

Compute C ′i = M ′i ⊕ EK (J ′i ) = M ′i ⊕ EK (Ji+1)

Compute T ′ = EK (J ′0)⊕ hH(C ′) = EK (J1)⊕ hH(C ′).

Output: C ′ and T ′.
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Attack II: Interaction Attack on GCM when |N| = 96

Interaction possibility is one of the undesirable characteristics
of GCM (Rogaway CRYPTREC Report 2011).
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Further Results

Universal forgeries on POET-(Galois mult. variant)
(withdrawn from CAESAR upon our analysis)

Improved key recovery:
Handschuh and Preneel’s used verification queries (binary
search) to recover GCM’s hash key from an identified class of
weak keys (Crypto 2008).

Universal forgeries on COBRA and Julius.
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Summary

Complete disjoint coverage of the key space by forgery
polynomials.

Nonce-respecting universal forgeries weak-key attacks on
GCM.

Universal fogeries weak-key attacks on POET, COBRA and
Julius.
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Thank you for your attention
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