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Public Key Encryption RISEG.

- The construction of efficient and (IND-CCA) secure public key encryption has
been a successful research area

 Practical and efficient design approach: hybrid encryption
A public key encryption scheme is constructed from two components:
1. A key encapsulation mechanism (KEM)

2. A data encapsulation mechanism (DEM)
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Hylrid Encryption

- Key encapsulation mechanism:
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=fficient Key Encapsulation Mechanisms RISEG.

- We focus on the problem of minimizing ciphertext overhead

« A number of very efficient KEMs already exist in the standard model

Scheme Security Assumption Overhead
[CSO03] IND-CCA DDH 3G
[HaKu08] IND-CCA CDH 3G
[KD04] Constrained IND-CCA DDH 2 |G
[HoKi07] Constrained IND-CCA DDH 2 |G
[HaKu08] Constrained IND-CCA DDH 2 |G
[Kiltz07] IND-CCA GHDH 2 |G
BMWO05 IND-CCA DBDH 2 |G
[CHH+07] Bounded IND-g-CCA DDH 111G




Motivating Question

Question
Is it possible to construct a KEM with a ciphertext

overhead of less than two group elements that
achieves IND-CCA security in the standard model?




The Cramer-Shoup KEM [CSO03]
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The Cramer-Shoup KEM [CSO03]
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The Hofheinz-Kiltz KEM [HKO7]
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The Hofheinz-Kiltz KEM [HKO7]
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Main Result %

 We show that

 There is no algebraic black-box reduction from the OW-CCA security of a
class of KEMs with ciphertexts consisting of a single group element and a
string, to the hardness of a non-interactive problem
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A Class of Efficient
Key Encapsulation Mechanisms RISEG.

- We consider a class K of KEMs defined in a prime order group G with the
following additional properties:

I-Publickey:-plk— (G = X anx)c G {01 (vi = log, X;)

2. Encapsulation: ¢ = (¢, d) = (g, f(pk, r)) € G x {0, 1}*

K = ghlekn T x ek
=l

3. Decapsulated key: K = g¥o(Pk.Coyi..yn) c¥1(Pk,Coyayeciyn)
where-ilpk;: Gyr o V)=l pk - C) Y b Pk 2C

e
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OW-CCA Security for KEMs RISEG.

Decapsulation

e (c*, K*) « Enc(pk)
K /LTl Coiat
Decapsulation [ AdvOV A (@) = Prik’ = K*] j
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Non-interactive Problems &3:&

* A non-interactive problem in a group Is given by

A= (g pG) (x,y, w) y
| | !
& =V ==
| | |
(v w) e X

- Hardness of a non-interactive problem
@ winsif V(x,y,w)=T

Advp'" (igf) = Pr[ @ wins] — Pr[U wins]

P is hard if Advp" (@) < neg()\) Vgl
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Non-interactive Problems

* A non-interactive problem in a group Is given by

A= (g p G) (x,y, w)
! !
as =
! \

(y, w) EE

- Hardness of a non-interactive problem
PPTA

B |
it ‘ Captured problems:

DDH, CDH, g-SDH, q-ABDHE, IND-CPA, ...

T —

@ winsif V(x,y,w)=T

— Pr[U wins]

neg()) Vigh
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Black-box Reductions @c’

- There is a black-box reduction from the OW-CCA security of a KEM I to a
non-interactive problem P if

Oracle PPTA e U) > neg(\)

\

Advglp(@ ) > neg(\)

 This is a fully black-box reduction in the terminology by Reingold et al.
[RTV04]
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Algebraic Algorithms RISEG.

« Defined via the existence of an extractor

(Xl Xn; r)
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* The security reductions of existing KEMs defined in prime order groups are all
algebraic.
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Main Theorem

Theorem
V[ e K VP e NIP Alg + BB

Pis hard = OW-CCA %» P
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Oracle Separation Lemma RISEG.

:.,f £ ‘m.\)
Assume there exists an oracle distribution (::}) such that

Alg PPTA
JiEe = @ st e E {AdV?W CCA(@)} > neg

and

Alg PPTA PPTA PPTA

VP € NIP vfd 3_&& A
[Ava|P(di)} < Adv N'P(@ ) JrAdVDL( &)

Alg + BB

Then, VI € K and VP € NIP, if P hard: OW-CCA - % > P
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Additional Observations

RIS
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Additional Observations @C,

- Looking at the details of the proofs yields a few additional insights

- The KEM attacker constructed in the proof only requires n decryption
queries for a KEM with n group elements in the public key

Corollary
vIle I VP e NIP BB + Alg
P is hard :
+ = OW—n-CCAr > P
pk € {0,1}" x G"

Cee— —————————
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Additional Observations RISEC.

- Looking at the details of the proofs yields a few additional insights

- The KEM attacker constructed in the proof only requires n decryption
queries for a KEM with n group elements in the public key

- Adaptive decryption queries are not required -- one parallel query is
sufficient

Corollary

v Corollary
vIie K VP e NIP BB + Alg

D
pl Pis hard = NM—CPAr %» =

T — EE——

18



Programmable Hash Functions

RISEG
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Programmable Hash Functions

* Programmable hash functions
- Introduced by Hofheinz and Kiltz [HKO08]
* Provides programmabillity in the standard model

- Main application: short signatures
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Programmable Hash Functions RISEG.

* Programmable hash functions
- Introduced by Hofheinz and Kiltz [HKO08]
* Provides programmabillity in the standard model

- Main application: short signatures

- Based on an algebraic (poly, 7)-programmable hash function, we can
construct a KEM which

* Is IND-CCA secure based on the DDH problem
* Has an algebraic black-box security reduction

* Has a ciphertext overhead of a single group element
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Programmable Hash Functions RISEG.

* Programmable hash functions
- Introduced by Hofheinz and Kiltz [HKO08]
* Provides programmabillity in the standard model

- Main application: short signatures

- Based on an algebraic (poly, 7)-programmable hash function, we can

construct a KEM
Corollary

* Is IND-CCA st vk e N there exists no algebraic
- Has an algebr (poly,k)-programmable hash function

_ In prime order groups
* Has a cipherte e S ———
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Programmable Hash Functions RISEG.

* Programmable hash functions
- Introduced by Hofheinz and Kiltz [HKO08]
* Provides programmabillity in the standard model

- Main application: short signatures

- Based on an algebraic (poly, 7)-programmable hash function, we can

construct a KEM
Corollary
« Is IND-CC

Corollary
* Has anal( v, ¢ N there exists no algebraic
» Has a cipl (n,k)-programmable hash function with
k € {0,1}* x G™ m < n in prime order groups
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Summary RISEG.

 We have shown that

» There exists no algebraic black-box reduction from the OW-CCA security of
a class of efficient KEMs to a non-interactive problem

- Certain types of programmable hash functions cannot be constructed in
prime order groups

« Open problems

» (Im)possible to construct an IND-CCA secure KEM without pairings based on
a non-interactive assumption and with two group element encapsulations?

» Possible to extend results to constrained CCA security?

* Possible to make any conclusions about schemes relying on key derivation
functions?
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