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• The construction of efficient and (IND-CCA) secure public key encryption has 
been a successful research area

• Practical and efficient design approach: hybrid encryption

• A public key encryption scheme is constructed from two components:

1. A key encapsulation mechanism (KEM)

2. A data encapsulation mechanism (DEM) 

Public Key Encryption
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Hybrid Encryption

• Key encapsulation mechanism: 

• Data encapsulation mechanism:
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Security
IND-CCA secure encryption is achieved by

1. IND-CCA KEM  +  IND-OT-CCA DEM
2. Constrained IND-CCA KEM  +  AE-OT DEM

 



• We focus on the problem of minimizing ciphertext overhead

• A number of very efficient KEMs already exist in the standard model

Efficient Key Encapsulation Mechanisms
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Scheme Security Assumption Overhead
[CS03] IND-CCA DDH 3

[HaKu08] IND-CCA CDH 3
[KD04] Constrained IND-CCA DDH 2

[HoKi07] Constrained IND-CCA DDH 2
[HaKu08] Constrained IND-CCA DDH 2
[Kiltz07] IND-CCA GHDH 2

[BMW05] IND-CCA DBDH 2
[CHH+07] Bounded IND-q-CCA DDH 1
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Motivating Question
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Question
Is it possible to construct a KEM with a ciphertext 
overhead of less than two group elements that 
achieves IND-CCA security in the standard model?



The Cramer-Shoup KEM [CS03]
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The Cramer-Shoup KEM [CS03]
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The Hofheinz-Kiltz KEM [HK07]
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The Hofheinz-Kiltz KEM [HK07]
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Main Result

• We show that 

• There is no algebraic black-box reduction from the OW-CCA security of a 
class of KEMs with ciphertexts consisting of a single group element and a 
string, to the hardness of a non-interactive problem
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• We consider a class    of KEMs defined in a prime order group     with the 
following additional properties:

1. Public key:

2. Encapsulation:

3. Decapsulated key:
 where

4. 

A Class of Efficient 
Key Encapsulation Mechanisms
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C = (c , d) = (g r , f̃ (pk , r)) 2 G⇥ {0, 1}⇤

9 2 s.t. d =  2(pk , c , y1, ... , yn)

(yi = logg Xi )pk = (X1, ... ,Xn, aux) 2 Gn ⇥ {0, 1}⇤

K = g 0(pk,C ,y1,...,yn)c 1(pk,C ,y1,...,yn)

 i (pk ,C , y1, ... , yn) =  i ,1(pk ,C ) · y1 + ... +  i ,n(pk ,C ) · yn

K G

K = g f0(pk,r)
nY
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X fi (pk,r)
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OW-CCA Security for KEMs
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Non-interactive Problems

• A non-interactive problem in a group is given by

• Hardness of a non-interactive problem
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Black-box Reductions

• There is a black-box reduction from the OW-CCA security of a KEM     to a 
non-interactive problem P if

• This is a fully black-box reduction in the terminology by Reingold et al. 
[RTV04]
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Algebraic Algorithms

• Defined via the existence of an extractor

• The security reductions of existing KEMs defined in prime order groups are all 
algebraic. 

15

nY

i=1

X yi
i = Ysuch that

Y

(X1, ... ,Xn; r) (X1, ... ,Xn; r)

(y1, ... , yn)

9



Main Theorem
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Theorem
8� 2 K 8P 2 NIP

P is hard ) OW-CCA� P

Alg + BB



Oracle Separation Lemma
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Then,              and                , if P hard: 8� 2 K 8P 2 NIP

Alg + BB

OW-CCA P�
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Additional Observations
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• Looking at the details of the proofs yields a few additional insights

• The KEM attacker constructed in the proof only requires n decryption 
queries for a KEM with n group elements in the public key 

Corollary

P is hard
) OW-n-CCA� P

BB + Alg8� 2 K 8P 2 NIP

+
pk 2 {0, 1}⇤ ⇥Gn
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• Looking at the details of the proofs yields a few additional insights

• The KEM attacker constructed in the proof only requires n decryption 
queries for a KEM with n group elements in the public key 

• Adaptive decryption queries are not required -- one parallel query is 
sufficient

Corollary

P is hard
) OW-n-CCA� P

BB + Alg8� 2 K 8P 2 NIP

+
pk 2 {0, 1}⇤ ⇥Gn

Additional Observations
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Corollary
8� 2 K 8P 2 NIP
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Programmable Hash Functions
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Programmable Hash Functions

• Programmable hash functions

• Introduced by Hofheinz and Kiltz [HK08]

• Provides programmability in the standard model

• Main application: short signatures
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Corollary
             there exists no algebraic 
(poly,k)-programmable hash function
in prime order groups

8k 2 NCorollary
                there exists no algebraic 
(n,k)-programmable hash function with 
                                        in prime order groups

8n, k 2 N

 2 {0, 1}⇤ ⇥Gm m  n



Summary

• We have shown that

• There exists no algebraic black-box reduction from the OW-CCA security of 
a class of efficient KEMs to a non-interactive problem

• Certain types of programmable hash functions cannot be constructed in 
prime order groups

• Open problems

• (Im)possible to construct an IND-CCA secure KEM without pairings based on 
a non-interactive assumption and with two group element encapsulations?

• Possible to extend results to constrained CCA security?

• Possible to make any conclusions about schemes relying on key derivation 
functions?
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Thank you!


