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Introduction

Introduction

Schnorr signatures: best-known example of the Fiat-Shamir heuristic
proven secure (under the DL assumption) in the Random Oracle Model
by Pointcheval and Stern (EC ’96) with the Forking Lemma
security reduction loses a factor qh (number of RO queries of the
forger), potentially very large
previous results showed that losing some factor was “unavoidable”:

a q1/2
h factor (Paillier and Vergnaud, AC 2005)

a q2/3
h factor (Garg, Bhaskar, and Lokam, CRYPTO 2008)

we show that losing a qh factor is unavoidable, closing the gap between
the Forking Lemma and previous impossibility results
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Schnorr Signatures and The Forking Lemma

Schnorr signatures

G cyclic group of prime order q and G a generator of G
secret key: x ∈r Zq \ {0}
public key: X = Gx

Sign(m), m ∈ {0, 1}∗:
a ∈r Zq, A = Ga (commitment) A=Ga

−−−−−−−−−→
c = H(m,A) (challenge) c←−−−−−−−−−
s = a + cx mod q (answer) s=a+cx−−−−−−−−−→
signature is (s, c)

Verif(m, (s, c)):
A = G sX−c

check H(m,A) = c

Here H is modeled as a random oracle H
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Schnorr Signatures and The Forking Lemma

Forger adversary against Schnorr signatures

we focus on universal forgery under no-message attacks: the adversary
is given a message m and a public key X and must return a forgery
(s, c) for m (it cannot make signature queries)
the random tape of the forger will be explicitly denoted ω

parameters characterizing a forger F :
running time tF
success probability εF
→ time-to-success ratio ρF = tF/εF
maximal number of RO queries qh

F

H

(m,X , ω) (s, c)

≤ qh

pictorial representation of a forgery experiment:

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

forgery (s`, c`) with s` = DLog(A`X c` )
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Schnorr Signatures and The Forking Lemma

Extracting discrete logarithms from a forger

given a forger F , one can build a reduction R which solves the DL
problem for the public key X = Gx using F as a black-box
main idea: have the forger output two forgeries (s1, c1) and (s2, c2) for
the same message m and the same commitment A = Ga, so that:

s1 = a + c1x and s2 = a + c2x ⇒ x =
s1 − s2
c1 − c2

mod q

F

H

(m,X , ω) (s, c)

X x = DLog(X )

R
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Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Multiple invocations of the forger: forking

how does R obtain two forgeries for the same commitment A?
⇒ “replay attack”
run F until it returns a first forgery for some RO query index ` ∈ [1..qh]

replay the attack up to the forgery point, using new random RO answers
from this point
keep doing this until F returns a new forgery for the same RO query

(m,X , ω)

A1

c1

A2

c2

A3 A`

c`

Aqh

Yannick Seurin (ANSSI) Exact Security of Schnorr Signatures EUROCRYPT 2012 8 / 28



Schnorr Signatures and The Forking Lemma

Success probability of the reduction: the Forking Lemma

to obtain the first forgery with constant proba.:
⇒ run the forger ' 1/εF times
to obtain the second forgery with constant proba.:
⇒ run the forger ' qh/εF times
total running time tR ' qh/εF × tF for constant success proba.
⇒ time-to-success ratio of the reduction: ρR ' qhρF
⇒ loses a factor qh

no matching attack known!
(best known attack = computing discrete log)

Question
Is there a better reduction with a time-to-success ratio closer to the one of
the forger?
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⇒ time-to-success ratio of the reduction: ρR ' qhρF
⇒ loses a factor qh

no matching attack known!
(best known attack = computing discrete log)

Question
Is there a better reduction with a time-to-success ratio closer to the one of
the forger?
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Meta-Reductions

The concept of meta-reduction

Boneh and Venkatesan (EC ’98) example:
If there is an (algebraic) reduction R from factoring to solving the RSA
problem with small public exponents, then there is a meta-reductionM
factoring RSA moduli directly (using R)
⇒ algebraic reductions from factoring to breaking low-RSA exponents
cannot exist unless factoring is easy
here, we will show that an (algebraic) reduction from the Discrete Log
(DL) problem to forging Schnorr signatures cannot be tight, unless the
One More Discrete Logarithm (OMDL) problem is easy
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Meta-Reductions

The One More Discrete Logarithm (OMDL) problem

Definition
M solves the OMDL problem if given (A0,A1, . . . ,An) ∈r Gn+1, it returns
the discrete log of all Ai ’s by making at most n calls to a discrete log
oracle DLog(·).

M

DLog(·)

A0, . . . ,An DLog(A0), . . . , DLog(An)

≤ n
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Meta-Reductions

Restriction to algebraic reductions

Definition
An algorithm R is algebraic (w.r.t. G) if it only applies group operations
on group elements (no bit manipulation, e.g. G ⊕ G ′).

Consequence
There exists a procedure Extract which, given the group elements
(G1, . . . ,Gk) input to R, R’s code and random tape, and any group
element Y output by R, extracts (α1, . . . , αk) such that:

Y = Gα1
1 · · ·G

αk
k

NB: all known reductions for DL-based cryptosystems are algebraic (in
particular the reduction of [PS96] for Schnorr signatures)
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Meta-Reductions

Meta-reduction: main idea

F

R.H

(m,X , ω) (s, c)

≤ qh

A0 DLog(A0)

≤ n

R

DLog(·)

A0, . . . ,An DLog(A0), . . . , DLog(An)

≤ n

M

n=number of times the reduction runs the forger
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Meta-Reductions

Meta-reduction: the general strategy

M receives (A0,A1, . . . ,An) as input and uses A0 as input to R
M uses Ai , i = 1, . . . , n during the i-th simulation of the forger to
construct qh commitments Aβ1

i , . . . ,A
βqh
i

for each simulation,M chooses some forgery index `i (more on the
choice later) and uses its discrete log oracle to forge a signature (si , ci )

by querying si = DLog(Aβ`i
i X c`i

i )

if the reduction succeeds in returning a0 = DLog(A0), and unless some
bad event happens,M will be able to use a0 and (si , ci ) to compute
ai = DLog(Ai ) for i = 1, . . . , n

(mi ,Xi , ωi )

Aβ1
i

c1

Aβ2
i

c2

Aβ3
i Aβ`i

i

c`i

Aβqh
i
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Meta-Reductions

Extraction of DLog(Ai) by the meta-reduction

if the simulation of the forger byM is OK, R returns a0 = DLog(A0)
(with probability ' εR)
M must then use a0 and the forged signatures (si , ci ) to compute
DLog(Ai ) for i = 1, . . . , n
the i-th forgery was computed with si = DLog(Aβi X ci

i )
→ computing DLog(Ai ) ⇔ computing DLog(Xi )

how canM retrieve the discrete log of the public keys Xi received from
the reduction R?
⇒ restriction to algebraic reductions
group elements input to R: G ,A0

procedure Extract yields γi , γ
′
i such that

Xi = Gγi Aγ
′
i

0 = Gγi+a0γ′
i
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Meta-Reductions

A bad event which makes the meta-reduction fail

two simulations may share some common history (under control of R!)
as in the Forking Lemma
M fails if it forges two signatures for the same commitment because it
will make a useless call to DLog(·) → event Bad happens
NB: this is exactly the event which makes the reduction succeed in the
Forking Lemma
unless Pr[Bad] ' 1, we get a contradiction since otherwiseM is an
efficient and successful algorithm for the OMDL problem

(mi ,Xi , ωi )

Aβ1
i

c1

Aβ2
i

c2

Aβ3
i Aβ`i

i

c`i

Aβqh
i

Aβ`i+1
i+1 Aβ`i+2

i+1 Aβqh
i+1
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Meta-Reductions

Simulation of the forger: choice of the forgery index

how should the meta-reduction choose the forgery index `i for the i-th
execution?
cannot choose `1 = 1, `2 = 2, etc. (the reduction would “notice” that a
simulation is ongoing)
natural choice: draw `i uniformly at random in [1..qh] independently for
each execution i = 1, . . . , n
this is what was done in previous work [PV05,GBL08]
straightforward analysis [PV05]:

Pr[Bad] ' n2

qh
⇒ n ' q1/2

h for Pr[Bad] ' 1

more careful analysis [GBL08]:

Pr[Bad] ' n3/2

qh
⇒ n ' q2/3

h for Pr[Bad] ' 1
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Main Result

Main theorem

Theorem
Any algebraic reduction from the DL problem to forging Schnorr
signatures must lose a factor qh in its time-to-success ratio, assuming the
OMDL problem is hard.

for strictly bounded adversaries, factor f (εF )qh with f (εF ) close to 1 as
long as εF < 0.9
for expected-time and queries adversaries, factor qh independently of εF

proof: new meta-reduction (crucial modification = choice of the forgery
index ` for the simulated forger)
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Main Result

A thought experiment

consider the following hypothetic forger F :
G is partitioned into two sets:

Γgood of size µ|G|: F can compute discrete logs efficiently for this set
Γbad of size (1− µ)|G|: F cannot compute discrete logs for this set

to forge a signature for m, F makes arbitrary RO queries H(m,Ai ) = ci
and returns a forgery for the first query such that AiX ci ∈ Γgood (or fails
to forge if there is no such query)
success probability of F if it makes qh RO queries:

for each RO query, AiX ci is unif. random in G
⇒ AiX ci ∈ Γgood with proba. µ
hence εF = 1− (1− µ)qh

we will call such a F a µ-good forger
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Main Result

The new meta-reduction

we define a meta-reductionM which simulates a µ-good forger
M builds Γgood and Γbad dynamically and randomly during the
simulation as follows:

for each RO query R.H(m,A) = c, define Z = AX c

if Z /∈ Γgood ∪ Γbad, draw a random coin δZ with

Pr[δZ = 1] = µ and Pr[δZ = 0] = 1− µ

and add Z to Γgood if δZ = 1 or to Γbad if δZ = 0.
discrete logs of elements of Γgood are obtained thanks to the discrete log
oracle ofM
the forgery index `i is distributed according to a (truncated) geometric
distribution of parameter µ
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Main Result

M “almost always” simulates a µ-good forger

the size of Γgood defined byM follows a binomial distribution of
parameters (|G |, µ)
⇒ by a Chernoff bound, |Γgood| ' µ|G| with overwhelming probability
in that case, the success probability of the simulated forger satisfies:

εF = 1− (1− µ)qh

by setting µ appropriately,M can simulate a forger achieving the
required success probability εF
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Main Result

Probability of event Bad

event Bad happens only if some execution forks from a previous one at
the forgery point, and the new answer c ′ is such that Z ′ = Aβ`i

i X c′
i is

fresh and is put in Γgood ⇒ probability less than µ for each execution
probability of Bad:

Pr[Bad] ≤ nµ ≤ n
g(εF )qh

hence to have Pr[Bad] ' 1 one must have n ' g(εF )qh and so
ρR/ρF ' f (εF )qh

(mi ,Xi , ωi )

Aβ1
i

c1

Aβ2
i

c2

Aβ3
i Aβ`i

i

c`i

Aβqh
i

Aβ`i+1
i+1 Aβ`i+2

i+1 Aβqh
i+1
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Main Result

Expected-time and queries forgers

considering forgers whose expected number of queries is upper bounded
by qh makes the analysis much easier
the meta-reduction now simulates a forger which makes an a priori
unbounded number of RO queries H(m,Ai ) = ci until there is a query
such that AiX ci ∈ Γgood

if |Γgood| = µ|G|, the forgery index ` has a geometric distribution of
parameter µ
it follows that E(#RO queries) = 1/µ
⇒ one can simply set µ = 1/qh

this shows that any algebraic reduction must lose a factor qh
independently of εF
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Main Result

Extensions

The result can be extended in three ways:

excluding tight reductions from the OMDL problem to forging
Schnorr signatures (under the OMDL assumption)
extension to generalized Schnorr signatures built from any one-way
group homomorphism (Guillou-Quisquater, Okamoto. . . ):
⇒ any reduction from the inversion problem for the group
homomorphism must lose a factor qh, assuming the One More
Inversion problem is hard
extension to variants of Schnorr signatures, e.g. Modified ElGamal of
[PS00]
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Conclusion

Conclusion

Bottomline
The Forking Lemma is optimal (for black-box, algebraic reductions).

interpretation of the result: points out the limitations of black-box
reduction techniques rather than a real hardness gap
open problems:

what about arbitrary reductions (not nec. algebraic)?
what about non black-box reductions?
what about reductions to other problems?
build an efficient signature scheme with a tight reduction to the DL
problem (even in the ROM this seems difficult)
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Thanks

The end. . .

Thanks for your attention!

Comments or questions?
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