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KSA

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[ j])
7: output zi = S[S[i]+S[ j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms
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Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡj

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .
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2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡi,j

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj
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Algorithm 8.2 An optimized attack against the WEP protocol

1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first ⇤15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15
5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i�1):
7: If input is only k̄15, set i = 3.
8: if i ⇥ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i� 1, 15}

10: truncate Li to its first ⇤i terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i�1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

The expected value and the variance of this random variable can be computed as follows:

ri = E(Ri) = (Nx � 1)⌅(��i)

and

E(R2
i ) = E(Ri) + (Nx � 1)(Nx � 2) · E(Ui1.Ui2)

(8.1)

where
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This finally yields

V (Ri) = (Nx � 1)⌅(��i) + (Nx � 1)(Nx � 2) . E(Ui1.Ui2)� (Nx � 1)2⌅(��i)
2 (8.2)

In [SVV11], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ⇤ (Nx � 1)⌅(��i)(1� ⌅(�i)) ⇤ ri

which did not match our experiment. Now, the fundamental question is what would be the
distribution of Ri. This is discussed in the next section.

8.2.1 Analysis Based on Pólya Distribution

In [SVV11], it was assumed that the distribution of Ri is normal. Running a few experiments,
we noticed that in fact it is following a distribution very close to the Poisson distribution. An
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Chapter 2
RC4 in WEP and WPA Protocols

2.1 Introduction

We made a heuristic assumption that V (Ygood) ⇥ V (Ybad).

In practice: V (Ygood) ⇤= V (Ybad)

We made a heuristic approximation that (Ygood � Yi)’s are independent for all bad i’s.

In practice: (Ygood � Yi)’s are not independent.

Assume the rank R of the correct counter to be normally distributed.

In practice: R is not normally distributed.

Assume R is following Poisson distribution.

In practice E(R) ⇤= V (R).

In this chapter, we are going to describe the RC4 stream cipher and its applications in IEEE
802.11 standard for wireless communication, i.e., WEP and WPA. Furthermore, we recall the
previous cryptanalysis results against RC4 in both applications.

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anonymously
posted on Cypherpunks mailing list in September 1994. Nowadays, due to its simplicity RC4 is
widely used in SSL/TLS, Microsoft Lotus, Oracle Secure SQL and Wi-Fi 802.11 wireless commu-
nications. The 802.11 [IEE03] used to be protected by WEP (Wired Equivalent Privacy) which is
now being replaced by WPA (Wi-Fi Protected Access) due to security weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by an XOR to a keystream
generated by RC4. The RC4 key is a pre-shared key prepended with a 3-byte nonce initialization

7
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Minimize c in terms of �i’s, with the constraint that u =
15�

i=3

(1� Ipi(�i, ri)) =
1

2

To solve this optimization problem, we deploy three distinct approaches:

– To obtain the probability 50%, we let the probabilities ui’s to be equal for all i ⇥ {3, . . . , 15}.
Hence, we set

(1� Ipi(�i, ri)) = 2

�
�1

imax�1

⇥

= 0.9481

and we find the corresponding �i’s. This approach does not yield the optimal solution, but
at least it gives a benchmark on what we should expect.

– Another approach is to use Lagrange multipliers to find the optimal solution. We used
the fmincon function in Matlab with the Sequential Quadratic Programming [NW06] (SQP)
algorithm as the default algorithm to compute the local minimum. This algorithm was very
fast and stable compared to the Genetic algorithm being explained next. Since this algorithm
needs a starting point x0 for its computations, we used the GlobalSearch class which iterates
the fmincon function multiple times using random vectors for x0. Simultaneously, it checks
how the results merge towards the global minimum. The drawback of any Lagrange multiplier
approach is that the algorithm should be fed with a continuous objective function. This is
because it has to compute some derivatives. Since, we need integer values for �i’s in practice,
we had to relax the outputs by the ceil function to round up the �i’s found by this approach.
Therefore, it does not guarantee that the optimal solution is found at the end, but it finds a
complexity very close to the optimal. As our experiment revealed, this algorithm most often
sets �14 = N . So, using this approach, imax = 13 and we do not often need to vote for K̄[14].
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(Adv i so ry  C o m m i t t e e  on  W e a t h e r  Control ,  W a s h i n g t o n  D. C.) 

The Frequency oI Hail Occurrence 
B y  

H. C. S. Thorn 

Summary. Hail occurrence, being a comparatively rare event, is fit well by 
the Poisson distribution providing the hail storms are independent. When 
this condition is not met, hail occurrence follows the negative binomial distri- 
bution. A test is given which determines whether the Poisson distribution may 
be used, or whether the negative binomial is necessary, The parameter of the 
Poisson distribution is always estimated efficiently by the method of moments. 
The parameters of the negative binomial distribution, however, are 0nly 
efficiently estimated by the method of moments under certain conditions; 
when the method of moments fails, the method of maximum likelihood must 
be employed. A criterion to determine when this method must be used is 
given together with the method of obtaining the estimates. The methods 
presented are illustrated by application to several hail records. 

Zusammeufassung. Unter der Voraussetzung, da[3 die Hagelfiille von- 
einander unabhiingig sind, kann das Auftreten dieses verh~Itnism~l~ig sel- 
tenen Ereignisses gut dutch eine Foissonsche Verteilung dargestellt werden; 
ist dies nicht der Fall, dann folgt es einer negativ binomischen Verteilung. 
Es wird clue Testmethode mitgeteilt, naeh welcher man entscheiden kann, 
ob die Poissonsehe oder die ncgativ binomische Verteilung zu verwenden ist. 
Die [Parameter der Poissonschen Verteilung kSnnen mit der Methode der 
Momente immer zuverl~ssig bestimmt werden. Die Parameter der negativ 
bingmischen Verteilung j edoeh kSnnen mit dieser Methode nut unter bestimm- 
ten Umst~nden ermittelt werden. Falls die Methode der Momente versagt, 
ist die IViethode der grSl]tcn Wahrscheinlichkeit anzuwenden. Ein Kriterium 
zur Entscheidung, warm diese Methode angewendet werden muG, sowie eine 
Methode zur Ermittlung geniiherter Werte werden mitgeteilt. Die beschrie- 
benen statistischen Methoden werden durch Anwendung auf einige Hagel- 
beobaehtungsreihen erl~iutert. 

R6sum6. En adrnettant que les chutes de gr@le sont ind~pendantes les 
unes des autres, on peut eonvenablement repr6senter leur apparition par une 
distribution de frdquenees de Poisson. Si ee n'est pas le eas, ces chutes ob@issent 

une distribution bino.miale n@gative. L'auteur propose un test permettant 

Arch. ~et. Geoph. Biokl. ]3. Bd. 8, H. 2. 13 

Rank of the correct counter follows the Pólya 
distribution. 

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]
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TORNADO PROBABILITIES 
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Office of Climatology, US. Weather Bureau, Washington D.C. 
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ABSTRACT 
The frequency distributions of tornado path width and length are developed using data series from Iowa and 

Kansas. Direction of path and annual frequency are discussed. 
It is found that  all but about 1 percent of Iowa tornadoes had path directions toward the northeast and southeast 
quadrants. The annual frequency for a group of Iowa couiities is found to have a negative binomial distribution 
indicating that  the climatological series is formed from a Polya stochastic process. This resembles the situation 
for other types of storms where the events tend to  cluster. A new map of annual frequency for the United States 
is presented for the period 1953-62, during which i t  is believed tornado observation was fairly stable. The expected 
value of tornado area is derived from the area distribution. From this and the annual frequency, the probability 

From these, the distribution of path area is derived. 

of a tornado striking a point is found. 

1. INTRODUCTION 
There have been a large number of studies of tornado 

climatology, most of which have been simply counts of 
tornadoes for various areas and time periods. Asp [I] 
lists 78 references, a few of which are not climatological 
in nature; not all references have been listed. Many of 
these studies have recognized the possible incompleteness 
of the frequency series and the dif!iculties of observation, 
but little could be done to correct this deficiency. So far 
as is known, none of these studies made a direct attack 
on the problem of tornado probability, which is the object 
of the present, study. 

In 1945, William F. Kuffel, then of the Dubuque Fire 
Marine Insurance Company, asked the writer to develop 
a system of limiting the loss from a single tornado in a 
given region for the purpose of preventing liabilities from 
exceeding reserve funds. This resulted in a limited study 
for several Iowa counties [a]  in ivhich the direction fre- 
quency and path length and width distributions were 
discussed. From this, a directed standard path was 
devised within whose bounds the insured liability could 
be totaled. If this exceeded a certain limit related to 
the reserves of the company, the excess could be reinsured 
with other companies. It should be noted that the 
occurrence of more than one tornado in the region is still 
to  be taken care of by the ordinary risk of the business 
which is not well defined in this type of insurance coverage. 

By 1957, these ideas had developed further [3], and 
after mathematical distributions were fitted to the path 
length and width it was possible to determine the prob- 
ability of a tornado striking a point. There still remained 
a bothersome correlation between path length and 
width which was not easily taken into account in the area 

distribution. This prevented obtaining a complete solu- 
tion to the distribution problem. In  1958, Battan [4] 
presented a simple frequency diagram of path length, 
but his objective was to  study the duration of a tornado, 
not its probability of occurrence. 

In the present study, we introduce distribution theory 
which provides a better fit to the basic data and makes 
possible a more satisfactory solution to  the area distribu- 
tion problem. The distribution of annual frequency 
is also discussed and several comparisons of data are 
made, together with a number of statistical tests for 
homogeneity. 

2. PATH LENGTH AND WIDTH DISTRIBUTIONS 
Since path width and length cannot be negative, zero 

must be the lower bound of any distribution assumed, 
although this need not be a greatest lower bound. As 
with a number of other physical variables, where the true 
bound is certainly near zero, but cannot be established 
to be different from zero, it has proven convenient to 
assume that the distribution has a zero lower bound. 
Also, in this instance, it would appear that both variables 
should have a probability density of zero at the origin, 
for as the path length and width approach their greatest 
lower bounds, the probability density should approach 
zero. 

In  previous studies [3], a gamma distribution was as- 
sumed. While it has a zero bound, it need not have a 
zero probability density at  the origin. When fitted to 
length and width data, both variables gave shape param- 
eter estimates which indicated non-zero densities at the 
origin. Furthermore, with this function the distribution 
of area becomes intractable, and above all, the distribution 
did not fit the data series particularly well. 

Rank of the correct counter follows the Pólya 
distribution. 

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]
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“The annual frequency for a group 
of Iowa counties is found to have 
a negative binomial distribution 
indicating that the climatological 
series is formed from a Pólya 
stochastic process.”

Rank of the correct counter follows the Pólya 
distribution. 

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]
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A IEEE 802.11 Data Frames Encapsulating ARP and TCP/IPv4 Protocols

ARP Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00

0x00 ORG Code
0x00

0x08 ARP
0x06

0x00 Ethernet
0x01

0x08 IP
0x00

0x06 Hardware size
0x04 Protocol
0x00 Opcode Request/Reply
0x??

0x?? MAC addr src
0x??

0x??

0x??

0x??

0x??

0x?? IP src
0x??

0x??

0x??

0x?? MAC addr dst
0x??

0x??

0x??

0x??

0x??

TCP/IPv4 Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00

0x00 ORG Code
0x00

0x08 IP
0x00

0x45 IP Version + Header length
0x00 Type of Service
0x?? Packet length
0x??

0x?? IP ID RFC815
0x??

0x40 Fragment type and o↵set
0x??

0x?? TTL
0x06 TCP type
0x?? Header checksum
0x??

0x?? IP src
0x??

0x??

0x??

0x?? IP dst
0x??

0x??

0x??

0x?? Port src
0x??

0x?? Port dst
0x??

Fig. 6. The plaintext bytes of the 802.11 data frames encapsulating ARP and TCP/IPv4 protocols [31,34]. The
values in white are almost fixed or can be computed dynamically. The values in light Grey can be guessed. The
values in dark Grey are not predictable.
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8 Comparison with Aircrack-ng

Fig. 5 represents a comparison between Aircrack-ng and our new attack. The reader can see
that our passive attack outperforms Aircrack-ng running in active mode. This gives significant
advantage to the attacker, since for some network cards, the driver has to be patched so that the
network card can inject packets, and in some cases such patch is not available at all. Moreover,
the active attacks are detectable by intrusion detection systems. Similarly, passive attacks can
be performed from much large distance. Moreover, the TCP/IPv4 packets can be captured with
much higher rate than ARP packets. As a rule of thumb, in a high tra�c network, (for instance
the user is downloading a movie), if we consider TCP/IPv4 packets with maximum size around
1500 bytes, in a 20 Mbit/sec wireless network, it takes almost 10 seconds to capture 22 500
packets. This amount is already enough to find a key with our improved Aircrack-ng in less
than 5 seconds.
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Fig. 5. Our attacks success probability (both active and passive attacks) with respect to the number of packets
compared to Aircrack-ng in active attack mode.

9 Conclusion

In this paper, we gave a precise theoretical background to improve the state of the art attacks on
WEP. As an empirical proof, we updated Aircrack-ng and showed that our attack significantly
outperforms the previous versions in all scenarios. We modified the algorithm according to
the theoretical results, removed the ad-hoc constants which were initially found empirically in
previous papers and implementations. We gave a theoretical background for all constants which
a↵ect the performance of the new Aircrack-ng. This result shows the significance of theoretical
analysis in practical scenarios, and allows the attacker to break WEP even on constrained
devices. As a result, the best attack to date requires 22 500 packets for the success probability
of 50% to break WEP.
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Conclusion

Providing the fastest attack on WEP to the date

Good understanding of the behaviour of all biases in WEP

All the theory behind WEP attack with a proof

A better understanding of WPA security

Necessity of practical evaluation to ensure the correctness of theory



Questions?


