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Keccak 
(Bertoni, Daemen, Peeters and Van Assche) 

• The winner of the SHA-3 competition 

• Officially supports hash sizes n of 224,256,384 and 512 
bits 

• Uses the sponge construction 

 

 

 

 



Keccak 
(Bertoni, Daemen, Peeters and Van Assche) 

• ƒ is a permutation that operates on a 1600-bit 
state 

• c=2n and r=1600-2n 



Keccak 
The Inner State 

• Can be viewed as  

   a 5x5x64-bit cube 

• Or as a 5x5 matrix,  

   where each cell  

   is a 64-bit lane in  

  the direction of the 

  z axis 



Keccak 
The function ƒ 

• ƒ is a 24-round permutation on the 1600-bit 
state 

 

• Each round consists of 5 mappings R=ι◦χ◦π◦ρ◦Θ 

 

• We denote L= π◦ρ◦Θ and refer to L as a         
“half-round”, where ι◦χ make up the other half 

 



Keccak 
The function ƒ 

• χ is the only non-linear mapping of Keccak 

• Sbox layer applying the same 5 bits to 5 bits 
Sbox to the 320 rows independently 

 

 

 

 

 

 



Keccak 
The function ƒ 

• ι adds a low Hamming-weight round constant to 
the state 

 

• The state is initialized to zero before the XOR 
with the first message block 



Keccak 
Collision Attacks on Round-Reduced Keccak 

•  “Practical analysis of reduced-round Keccak” by 
Naya-Plasencia, Röck and Meier (Indocrypt 2011) 

• Collisions in 2 rounds of Keccak-224 and Keccak-256 

• “New attacks on Keccak-224 and Keccak-256” by 
Dinur, Dunkelman and Shamir (FSE 2012) 

• Collisions in 4 rounds of Keccak-224 and Keccak-256 

 

• No published collision attack on Keccak-384 and 
Keccak-512 

  

 

 

 

 

 



Keccak 
Our New Results 

• Keccak-512: A 3-round practical collision attack 

• Keccak-384: A 3-round practical collision attack 

•                        A 4-round collision attack (faster                       

                           than the birthday bound by 245) 

• Keccak-256: A 5-round collision attack (faster                       

                           than the birthday bound by 213) 

 

 

 

 

 

 

Keccak-512 Keccak-384 Keccak-256 Keccak-224 

- - 4 (practical) 4 (practical) Previous 

- New 3 (practical) 
 

3 (practical) 
4 (2147) 

5 (2115) 
 



Keccak 
The Translation-Invariance Property 

• Defined in the Keccak submission document 

• 4 out of the 5 internal mappings (all but ι) are 
translation invariant in the direction of the z axis 
(of length 64) 

 



Keccak 
The Translation-Invariance Property 

• If one state is the rotation of the other with 
respect to the z-axis, then applying to them any 
of the Θ,ρ,π,χ operations, maintains this 
property 



Symmetric States 
 

• A state which is rotation-invariant in the 
direction of the z axis by some rotation index i is 
called a symmetric state 

• i can attain non-trivial values that divide the lane 
size 64 (iϵ{1,2,4,8,16,32}) 

 



Consecutive Slice Sets 
An example 

• For i=16 we split the state into 4 consecutive 
slice sets (CSS) 
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Symmetric States 
An Example 

• In symmetric states all CSS’s are equal 

• In a symmetric state with i=16, each 64-bit lane is 
composed of a 4-repetition of a 16-bit value  
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Symmetric states remain symmetric 
after applying the Θ,ρ,π,χ operations 
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The Fifth Mapping 
 

• ι destroys the perfect symmetry of the state by 
adding a non-symmetric round constant   



An Overview of the Basic Attack 
 

• Pick a single-block message such that the initial 
state is symmetric 

• The state remains symmetric after the first 4 
mappings   

• The symmetry is slightly perturbed by the ι 
mapping since the constants added are of low 
Hamming-weight (between 1 and 5) 

• The diffusion is sufficiently slow such that the 
state remains “close” to symmetric for the first 
few rounds 



An Overview of the Basic Attack 
The Squeeze Attack 

• The effective output size for symmetric 
messages is reduced 

• We use a natural attack (called the squeeze 
attack) that exploits this property 

• We force a larger than expected number of 
inputs to squeeze into a small subset of possible 
outputs in which collisions are more likely 

 



An Overview of the Basic Attack 
The Squeeze Attack 

• A member of the input set is mapped with 
probability p to the output set of size D  

• The time complexity of the attack is 1/p∙√D 



 
Subset Cryptanalysis 
 
• In order to devise and analyze the attack we use 

a very common cryptanalysis framework which 
we call subset cryptanalysis  

• Uses subset characteristics to track the 
evolution of subsets through the internal state of 
the cryptosystem 

• Associate a triplet (input subset, output subset, 
transition probability) to each internal operation 



Internal Differential Cryptanalysis 
 

• Internal differential cryptanalysis: 

• Introduced by Thomas Peyrin (Crypto 2010) in 
the analysis of Grostl 

• Standard differential cryptanalysis: 
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State 1 

m1 
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Generalized Internal Differential 
Cryptanalysis 
 
• We generalize and extend it: 

• Shown to be applicable only to hash functions built 
using separate data-paths, whereas Keccak has only 
one data-path  

• The differences considered were between 2 parts of 
the state, whereas we consider more complex 
differential relations between multiple parts of the 
state 



Internal Differences 
Definitions 

• In symmetric states all CSS’s are equal 

• In states which are almost symmetric the 
differences between the first CSS and the other 
3 CSS’s (∆1,∆2,∆3) are of low Hamming weight  

• We group all states with a fixed (∆1,∆2,∆3) into an 
internal difference set    

 



Internal Differences 
Definitions 

• Given a state u, the set  

{v| v=u+w and w is symmetric} is an internal 
difference set 

• The differences between the CSS’s is specified by 
u which is a representative state  

• A state v of a lowest Hamming weight defines 
the weight of the internal difference 

• The zero internal difference contains the 
symmetric states and has a weight of 0 



Internal Differential Characteristics 
 

• We describe how to track the evolution of 
internal differences through the Keccak’s 
permutation 

• For example, any symmetric state chosen from the 
zero self-difference remains symmetric after applying 
Θ,ρ,π,χ 

• We develop tools that allow us to construct 
internal differential characteristics for the first 
few Keccak rounds 

 



Internal Differential Characteristics 
A 1.5-round Example 



Collision Attacks 
Practical Attacks 
 
• A 3-round collision in Keccak-512 (with rotation 

index i=4) 

 
M1= 

88888888 88888888 66666666 66666666 AAAAAAAA AAAAAAAA 77777777 
77777777 BBBBBBBB BBBBBBBB BBBBBBBB BBBBBBBB 11111111 11111111 
88888888 88888888 CCCCCCCC CCCCCCCC 

M2= 

AAAAAAAA AAAAAAAA 88888888 88888888 EEEEEEEE EEEEEEEE 99999999 
99999999 99999999 99999999 99999999 99999999 88888888 88888888 
CCCCCCCC CCCCCCCC CCCCCCCC CCCCCCCC 

Output= 

56BCC94B C4445644 D7655451 5DD96555 71FA7332 3BA30B23 958408C5 
64407664 41805414 11190901 6ABAA8BA A8ABAEFA 7EF8AEEE ECCE68DC 
4EC8ACEC DD5D5CCC 

 

 

 



Collision Attacks 
Practical Attacks 
 
• A 3-round collision in Keccak-384 (with rotation 

index i=4) 
M1= 

FFFFFFFF FF7FFFFF BBBBBBBB BBFBBBBB 44444444 44444444 FFFFFFFF 
FFFFFFFF 99999999 99999999 44444444 44C44444 44444444 44444444 
44644444 44444444 AAAAAAAA AAAAAAAA 66666666 66666666 44444444 
44444444 DDDDDDDD DD9DDDDD DDFDDDDD DDDDDDDD 

M2= 

33333333 33B33333 55555555 55155555 AAAAAAAA AAAAAAAA 77777777 
77777777 44444444 44444444 66666666 66E66666 EEEEEEEE EEEEEEEE 
11311111 11111111 CCCCCCCC CCCCCCCC FFFFFFFF FFFFFFFF 11111111 
11111111 99999999 99D99999 DDFDDDDD DDDDDDDD 

Output= 

99999991 11199999 4440C444 405C60DC 00000000 0C100010 777677F7 
73F77767 3550F597 55D57155 66666664 66666666 

 

 

 

 

 



Conclusions and Future Work 
 

• We presented the first collision attacks on round 
reduced Keccak-384 and Keccak-512 

• Some of them are practical 

• For Keccak-256 we increased the number of 
rounds that can be attacked from 4 to 5 

• We are still very far from attacking the full 24 rounds 

• An interesting future work item is to find better 
internal differential characteristics for Keccak or 
to prove that they do not exist 



 

 

 

Thank you for your attention!  
 

 

 

 

 

 


