## Collision Attacks on Up to 5 Rounds of SHA-3 Using Generalized Internal Differentials

Itai Dinur<sup>1</sup>, Orr Dunkelman<sup>1,2</sup> and Adi Shamir<sup>1</sup>

<sup>1</sup>The Weizmann Institute, Israel <sup>2</sup>University of Haifa, Israel

#### Keccak

(Bertoni, Daemen, Peeters and Van Assche)

- The **winner** of the SHA-3 competition
  - Officially supports hash sizes n of 224,256,384 and 512 bits
- Uses the sponge construction



#### Keccak (Bertoni, Daemen, Peeters and Van Assche)

- f is a permutation that operates on a 1600-bit state
- c=2n and r=1600-2n



#### Keccak The Inner State

- Can be viewed as a 5x5x64-bit cube
- Or as a 5x5 matrix, where each cell is a 64-bit lane in
  - the direction of the
  - z axis



#### Keccak The function f

- f is a **24-round** permutation on the 1600-bit state
- Each round consists of 5 mappings R=ι°χ°π°ρ°Θ
- We denote L= π°ρ°Θ and refer to L as a "half-round", where ι°χ make up the other half

#### Keccak The function f

- χ is the only **non-linear** mapping of Keccak
- Sbox layer applying the same 5 bits to 5 bits
  Sbox to the 320 rows independently



#### Keccak The function f

- Ladds a low Hamming-weight round constant to the state
- The state is initialized to zero before the XOR with the first message block

#### Keccak

Collision Attacks on Round-Reduced Keccak

- "Practical analysis of reduced-round Keccak" by Naya-Plasencia, Röck and Meier (Indocrypt 2011)
  - Collisions in 2 rounds of Keccak-224 and Keccak-256
- "New attacks on Keccak-224 and Keccak-256" by Dinur, Dunkelman and Shamir (FSE 2012)
  - Collisions in 4 rounds of Keccak-224 and Keccak-256
- No published collision attack on Keccak-384 and Keccak-512

#### Keccak Our New Results

- Keccak-512: A 3-round practical collision attack
- Keccak-384: A 3-round practical collision attack

A 4-round collision attack (faster

than the birthday bound by 245)

• Keccak-256: A 5-round collision attack (faster

than the birthday bound by 2<sup>13</sup>)

|          | Keccak-224    | Keccak-256            | Keccak-384                                         | Keccak-512    |
|----------|---------------|-----------------------|----------------------------------------------------|---------------|
| Previous | 4 (practical) | 4 (practical)         | -                                                  | -             |
| New      | -             | 5 (2 <sup>115</sup> ) | 3 (practical)<br>4 ( <mark>2<sup>147</sup>)</mark> | 3 (practical) |

### Keccak

The Translation-Invariance Property

- Defined in the Keccak submission document
- 4 out of the 5 internal mappings (all but ι) are translation invariant in the direction of the z axis (of length 64)

#### Keccak

The Translation-Invariance Property

 If one state is the rotation of the other with respect to the z-axis, then applying to them any of the Θ,ρ,π,χ operations, maintains this property



### Symmetric States

- A state which is rotation-invariant in the direction of the z axis by some rotation index i is called a symmetric state
- i can attain non-trivial values that divide the lane size 64 (ie{1,2,4,8,16,32})

#### Consecutive Slice Sets An example

For i=16 we split the state into 4 consecutive slice sets (CSS)

| a <sub>1</sub> | b <sub>1</sub> | <b>C</b> <sub>1</sub> | d1             | e <sub>1</sub> |
|----------------|----------------|-----------------------|----------------|----------------|
| f <sub>1</sub> | g <sub>1</sub> | h <sub>1</sub>        | i <sub>1</sub> | j <sub>1</sub> |
| k <sub>1</sub> | I <sub>1</sub> | m <sub>1</sub>        | n <sub>1</sub> | 0 <sub>1</sub> |
| p <sub>1</sub> | q <sub>1</sub> | r <sub>1</sub>        | S <sub>1</sub> | t <sub>1</sub> |
| u <sub>1</sub> | v <sub>1</sub> | w <sub>1</sub>        | x <sub>1</sub> | У <sub>1</sub> |

| a <sub>2</sub> | b <sub>2</sub> | C <sub>2</sub> | d <sub>2</sub> | e <sub>2</sub> |
|----------------|----------------|----------------|----------------|----------------|
| f <sub>2</sub> | g <sub>2</sub> | h <sub>2</sub> | i <sub>2</sub> | j <sub>2</sub> |
| k <sub>2</sub> | I <sub>2</sub> | m <sub>2</sub> | n <sub>2</sub> | 02             |
| p <sub>2</sub> | q <sub>2</sub> | r <sub>2</sub> | S <sub>2</sub> | t <sub>2</sub> |
| u <sub>2</sub> | V <sub>2</sub> | w <sub>2</sub> | x <sub>2</sub> | У <sub>2</sub> |

#### Symmetric States An Example

- In symmetric states all CSS's are equal
- In a symmetric state with i=16, each 64-bit lane is composed of a 4-repetition of a 16-bit value

| <b>a</b> <sub>1</sub> | <b>a</b> <sub>1</sub> | <b>a</b> <sub>1</sub> | <b>a</b> <sub>1</sub> | <b>b</b> <sub>1</sub> | b <sub>1</sub>        | <b>b</b> <sub>1</sub> | <b>b</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | d <sub>1</sub>        | <b>d</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| f <sub>1</sub>        | $f_1$                 | $f_1$                 | $f_1$                 | g <sub>1</sub>        | <b>g</b> <sub>1</sub> | g <sub>1</sub>        | g <sub>1</sub>        | h <sub>1</sub>        | h <sub>1</sub>        | h <sub>1</sub>        | h <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        |
| k <sub>1</sub>        | k <sub>1</sub>        | k <sub>1</sub>        | k <sub>1</sub>        | $I_1$                 | $I_1$                 | $I_1$                 | $I_1$                 | m <sub>1</sub>        | $m_1$                 | $m_1$                 | m <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | 0 <sub>1</sub>        | 0 <sub>1</sub>        | 01                    | 01                    |
| p <sub>1</sub>        | p <sub>1</sub>        | p <sub>1</sub>        | p <sub>1</sub>        | q <sub>1</sub>        | q <sub>1</sub>        | q <sub>1</sub>        | q <sub>1</sub>        | r <sub>1</sub>        | r <sub>1</sub>        | r <sub>1</sub>        | r <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        |
| u <sub>1</sub>        | u <sub>1</sub>        | u <sub>1</sub>        | u <sub>1</sub>        | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | У <sub>1</sub>        | У <sub>1</sub>        | <b>y</b> <sub>1</sub> | <b>y</b> <sub>1</sub> |

# Symmetric states remain symmetric after applying the $\Theta$ , $\rho$ , $\pi$ , $\chi$ operations

| a <sub>1</sub> | <b>a</b> <sub>1</sub> | a <sub>1</sub>        | a <sub>1</sub> | b <sub>1</sub>        | <b>b</b> <sub>1</sub> | <b>b</b> <sub>1</sub> | <b>b</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>c</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>d</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> | <b>e</b> <sub>1</sub> |
|----------------|-----------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| f <sub>1</sub> | f <sub>1</sub>        | f <sub>1</sub>        | f <sub>1</sub> | g <sub>1</sub>        | <b>g</b> <sub>1</sub> | $g_1$                 | <b>g</b> <sub>1</sub> | h <sub>1</sub>        | h <sub>1</sub>        | h <sub>1</sub>        | h <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | i <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        | j <sub>1</sub>        |
| k <sub>1</sub> | k <sub>1</sub>        | k <sub>1</sub>        | k <sub>1</sub> | $I_1$                 | $I_1$                 | $I_1$                 | $I_1$                 | m <sub>1</sub>        | $m_1$                 | m <sub>1</sub>        | m <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | n <sub>1</sub>        | 0 <sub>1</sub>        | <b>0</b> <sub>1</sub> | <b>0</b> <sub>1</sub> | 0 <sub>1</sub>        |
| p <sub>1</sub> | <b>p</b> <sub>1</sub> | <b>p</b> <sub>1</sub> | p <sub>1</sub> | q <sub>1</sub>        | <b>q</b> <sub>1</sub> | $q_1$                 | <b>q</b> <sub>1</sub> | r <sub>1</sub>        | r <sub>1</sub>        | r <sub>1</sub>        | r <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | S <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        | t <sub>1</sub>        |
| u <sub>1</sub> | u <sub>1</sub>        | u <sub>1</sub>        | u <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>v</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | <b>w</b> <sub>1</sub> | $W_1$                 | $W_1$                 | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | <b>x</b> <sub>1</sub> | y <sub>1</sub>        | <b>Y</b> <sub>1</sub> | <b>Y</b> <sub>1</sub> | <b>y</b> <sub>1</sub> |
|                |                       |                       |                |                       |                       |                       |                       |                       |                       | , <del>Ο</del> ,      | ρ,π                   | .,χ                   |                       |                       |                       |                       |                       |                       |                       |
| a              | a                     | a.                    | a.             | b.                    | b.                    | h.                    | b.                    | C                     | C                     | C                     | C                     | d.                    | d.                    | d                     | d.                    | e.                    | ρ.                    | ρ.                    | ρ.                    |

| a <sub>2</sub> | a <sub>2</sub> | a <sub>2</sub> | a <sub>2</sub> | <b>b</b> <sub>2</sub> | <b>b</b> <sub>2</sub> | <b>b</b> <sub>2</sub> | <b>b</b> <sub>2</sub> | <b>c</b> <sub>2</sub> | <b>c</b> <sub>2</sub> | <b>c</b> <sub>2</sub> | <b>c</b> <sub>2</sub> | <b>d</b> <sub>2</sub> | <b>d</b> <sub>2</sub> | <b>d</b> <sub>2</sub> | <b>d</b> <sub>2</sub> | <b>e</b> <sub>2</sub> | <b>e</b> <sub>2</sub> | <b>e</b> <sub>2</sub> | <b>e</b> <sub>2</sub> |
|----------------|----------------|----------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| f <sub>2</sub> | f <sub>2</sub> | f <sub>2</sub> | f <sub>2</sub> | <b>g</b> <sub>2</sub> | <b>g</b> <sub>2</sub> | <b>g</b> <sub>2</sub> | <b>g</b> <sub>2</sub> | h <sub>2</sub>        | h <sub>2</sub>        | h <sub>2</sub>        | h <sub>2</sub>        | i <sub>2</sub>        | i <sub>2</sub>        | i <sub>2</sub>        | i <sub>2</sub>        | j <sub>2</sub>        | j <sub>2</sub>        | j <sub>2</sub>        | j <sub>2</sub>        |
| k <sub>2</sub> | k <sub>2</sub> | k <sub>2</sub> | k <sub>2</sub> | 1 <sub>2</sub>        | ۱ <sub>2</sub>        | ۱ <sub>2</sub>        | 1 <sub>2</sub>        | m <sub>2</sub>        | m <sub>2</sub>        | m <sub>2</sub>        | m <sub>2</sub>        | n <sub>2</sub>        | n <sub>2</sub>        | n <sub>2</sub>        | n <sub>2</sub>        | 02                    | 02                    | 02                    | 02                    |
| p <sub>2</sub> | p <sub>2</sub> | p <sub>2</sub> | p <sub>2</sub> | q <sub>2</sub>        | q <sub>2</sub>        | q <sub>2</sub>        | q <sub>2</sub>        | r <sub>2</sub>        | r <sub>2</sub>        | r <sub>2</sub>        | r <sub>2</sub>        | S <sub>2</sub>        | S <sub>2</sub>        | s <sub>2</sub>        | s <sub>2</sub>        | t <sub>2</sub>        | t <sub>2</sub>        | t <sub>2</sub>        | t <sub>2</sub>        |
| u <sub>2</sub> | u <sub>2</sub> | U <sub>2</sub> | u <sub>2</sub> | V <sub>2</sub>        | V <sub>2</sub>        | V <sub>2</sub>        | V <sub>2</sub>        | w <sub>2</sub>        | w <sub>2</sub>        | <b>w</b> <sub>2</sub> | <b>w</b> <sub>2</sub> | x <sub>2</sub>        | <b>x</b> <sub>2</sub> | <b>x</b> <sub>2</sub> | x <sub>2</sub>        | <b>y</b> <sub>2</sub> | <b>y</b> <sub>2</sub> | У <sub>2</sub>        | <b>У</b> <sub>2</sub> |

### The Fifth Mapping

 L destroys the perfect symmetry of the state by adding a non-symmetric round constant

### An Overview of the Basic Attack

- Pick a single-block message such that the initial state is symmetric
- The state remains symmetric after the first 4 mappings
- The symmetry is slightly perturbed by the ι mapping since the constants added are of low Hamming-weight (between 1 and 5)
- The diffusion is sufficiently slow such that the state remains "close" to symmetric for the first few rounds

#### An Overview of the Basic Attack The Squeeze Attack

- The effective output size for symmetric messages is reduced
- We use a natural attack (called the squeeze attack) that exploits this property
- We force a larger than expected number of inputs to squeeze into a small subset of possible outputs in which collisions are more likely

#### An Overview of the Basic Attack The Squeeze Attack



- A member of the input set is mapped with probability p to the output set of size D
- The time complexity of the attack is  $1/p \cdot \sqrt{D}$

### Subset Cryptanalysis

- In order to devise and analyze the attack we use a very common cryptanalysis framework which we call subset cryptanalysis
- Uses subset characteristics to track the evolution of subsets through the internal state of the cryptosystem
  - Associate a triplet (input subset, output subset, transition probability) to each internal operation

### Internal Differential Cryptanalysis

- Introduced by Thomas Peyrin (Crypto 2010) in the analysis of Grostl
- Standard differential cryptanalysis:



Internal differential cryptanalysis:



### Generalized Internal Differential Cryptanalysis

- We generalize and extend it:
  - Shown to be applicable only to hash functions built using separate data-paths, whereas Keccak has only one data-path
  - The differences considered were between 2 parts of the state, whereas we consider more complex differential relations between multiple parts of the state

#### Internal Differences Definitions

- In symmetric states all CSS's are equal
- In states which are almost symmetric the **differences** between the **first** CSS and the other **3** CSS's ( $\Delta_1, \Delta_2, \Delta_3$ ) are of **low Hamming weight**
- We group all states with a **fixed**  $(\Delta_1, \Delta_2, \Delta_3)$  into an **internal difference set**

#### Internal Differences Definitions

• Given a state *u*, the set

{v | v=u+w and w is symmetric} is an internal difference set

- The differences between the CSS's is specified by
  *u* which is a representative state
- A state v of a lowest Hamming weight defines the weight of the internal difference
- The **zero internal difference** contains the symmetric states and has a weight of **0**

#### **Internal Differential Characteristics**

- We describe how to track the evolution of internal differences through the Keccak's permutation
  - For example, any symmetric state chosen from the zero self-difference remains symmetric after applying Θ,ρ,π,χ
- We develop tools that allow us to construct internal differential characteristics for the first few Keccak rounds

#### Internal Differential Characteristics A 1.5-round Example



#### **Collision Attacks** Practical Attacks

A 3-round collision in Keccak-512 (with rotation index i=4)

#### M1=

#### M2=

#### Output=

56BCC94B C4445644 D7655451 5DD96555 71FA7332 3BA30B23 958408C5 64407664 41805414 11190901 6ABAA8BA A8ABAEFA 7EF8AEEE ECCE68DC 4EC8ACEC DD5D5CCC

#### **Collision Attacks** Practical Attacks

A 3-round collision in Keccak-384 (with rotation index i=4)

#### M1=

#### M2=

3333333 33B33333 5555555 5515555 AAAAAAAA AAAAAAA 7777777 7777777 4444444 4444444 66666666 66E66666 EEEEEEE EEEEEEE 11311111 1111111 CCCCCCCC CCCCCCC FFFFFFF FFFFFFF 1111111 1111111 99999999 99D99999 DDFDDDDD DDDDDDD

#### Output=

99999991 11199999 4440C444 405C60DC 0000000 0C100010 777677F7 73F77767 3550F597 55D57155 66666664 66666666

### **Conclusions and Future Work**

- We presented the first collision attacks on round reduced Keccak-384 and Keccak-512
  - Some of them are practical
- For Keccak-256 we increased the number of rounds that can be attacked from 4 to 5
  - We are still **very far** from attacking the full **24** rounds
- An interesting future work item is to find better internal differential characteristics for Keccak or to prove that they do not exist

#### Thank you for your attention!