On Symmetric Encryption with
Distinguishable Decryption Failures

Alexandra Boldyreva, Jean Paul Degabriele, Kenny Paterson,
and Martijn Stam

FSE - 12th Mar 2013

Outline

Distinguishable Decryption Failures

The Multiple-Error Setting

Conclusion

Attacks Based on Decryption Failures

Sender l Receiver

Adversary

Attacks Based on Decryption Failures

(= — 8
Y
~

Sender Receiver
M
Adversary

Attacks Based on Decryption Failures

Sender l Receiver

Adversary

@ 0

]

Attacks Based on Decryption Failures

Sender Receiver

=

b d

Adversary

Attacks Based on Decryption Failures

Sender Receiver

=

b‘“’

Adversary

\

Attacks Based on Decryption Failures

Sender l Receiver

=

‘ 666

Adversary

@ 0

Attacks Based on Decryption Failures

@ The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay'’s padding oracle attack on CBC encryption.

@ These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

Attacks Based on Decryption Failures

@ The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay'’s padding oracle attack on CBC encryption.

@ These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

@ The decryption algorithm can have multiple checks that may
cause it to fail. Knowledge of which check failed may convey
more information to the adversary.

@ Distinguishable decryption failures enabled attacks against TLS
[CHVV 03], DTLS [AP 12], and IPsec [DP 10].

Attacks Based on Decryption Failures

@ The classic examples are Bleichenbacher’s attack on RSA and
Vaudenay'’s padding oracle attack on CBC encryption.

@ These attacks motivated us to require IND-CCA security, but
does IND-CCA always guard against such attacks?

@ The decryption algorithm can have multiple checks that may
cause it to fail. Knowledge of which check failed may convey
more information to the adversary.

@ Distinguishable decryption failures enabled attacks against TLS
[CHVV 03], DTLS [AP 12], and IPsec [DP 10].

@ GAP: In IND-CCA the adversary only learns whether a ciphetext
is valid or not (distinct decryption failures always return L).

A Common Response

@ "This is a flaw in the implementation. It can be easily fixed by
ensuring that errors are not distinguishable."

@ But errors are useful for troubleshooting; moreover side-channels
due to timing or interaction with other protocols (e.g. IPsec) are

hard to prevent.

A Common Response

@ "This is a flaw in the implementation. It can be easily fixed by
ensuring that errors are not distinguishable."

@ But errors are useful for troubleshooting; moreover side-channels
due to timing or interaction with other protocols (e.g. IPsec) are
hard to prevent.

@ On the other hand it is easy to model distinguishable decryption
failures — multiple-error schemes.

D:KxC—=-MUS,

where §; = {14, 1o,..., 15}

@ How does this affect the theory of symmetric encryption?

Revisiting Classic Relations

@ The following relation is attributed to Bellare and Namprempre
[BNOO], and to Katz and Yung [KY00].

IND-CPA A INT-CTXT = IND-CCA

Revisiting Classic Relations

@ The following relation is attributed to Bellare and Namprempre
[BNOO], and to Katz and Yung [KY00].

IND-CPA A INT-CTXT = IND-CCA

@ This relation provides a simple technique for realizing IND-CCA
secure schemes in the symmetric setting.

@ Furthermore INT-CTXT + IND-CPA has become the target
security notion for authenticated encryption, since
INT-CTXT = INT-PTXT.

Revisiting Classic Relations

@ In their work on SSH, Bellare, Kohno, and Namprempre [BKN04]
extended this relation to the stateful setting.

IND-CPA A INT-sfCTXT = IND-sfCCA

@ INT-sfCTXT and IND-sfCCA are strengthened variations, which
additionally capture replay and reordering attacks.

@ Any encryption scheme which satisfies these notions must be
stateful — hence the name.

Classic Relations in the Multiple-Error Setting

Classic Relations in the Multiple-Error Setting

Theorem

If pseudorandom functions exist, then there exists a multiple-error
encryption scheme that is both IND-CPA and INT-CTXT secure, but
not IND-CCA secure.

IND-CPA A INT-CTXT # IND-CCA

Classic Relations in the Multiple-Error Setting

Theorem

If pseudorandom functions exist, then there exists a multiple-error
encryption scheme that is both IND-CPA and INT-CTXT secure, but
not IND-CCA secure.

IND-CPA A INT-CTXT # IND-CCA

@ A similar separation holds for the stateful setting:

IND-CPA A INT-sfCTXT # IND-sfCCA

@ As we shall see, it is possible to define ciphertext integrity in
two ways, both separations allow the stronger variant.

New Relations in the Multiple-Error Setting

@ Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

New Relations in the Multiple-Error Setting

@ Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

IND-CVA A INT-CTXT =- IND-CCA

New Relations in the Multiple-Error Setting

@ Given the utility of these relations, an obvious question is whether
we can obtain something similar in the multiple-error setting.

IND-CVA A INT-CTXT =- IND-CCA

@ Informally, IND-CVA is described as the IND-CPA game with
additional access to a ciphertext validity oracle which returns
decryption errors but no plaintext.

@ The stronger variant of ciphertext integrity is required.

@ Similar relations can be obtained for IND-sfCCA, IND$-CCA, and
IND$-sfCCA.

Defining Ciphertext Integrity

INT-CTXT* (weaker variant):

EXpas™*(A) Enc(m) Try*(c)
K+ K C « Ek(m) m < Dk(c)
C+ f,win<+0 c+cuc ifcZcand me M
AENC(-),Try" () return c then win < true
return win if me Mthen m<« valid
else m+«+ invalid
return m

@ Try queries reveal only whether a ciphertext is valid or not.

Defining Ciphertext Integrity

INT-CTXT (stronger variant):

EXpat™™(A) Enc(m) Try(c)

K+ K c + Ek(m) m + Dk(c)

C+ f,win<+0 c+cuc ifcZcand me M

AEne().Try () return ¢ then win + true

return win if me M then m<«+ valid
return m

@ Try queries reveal either that a ciphertext is valid or the error
that it generates.

Ciphertext Integrity

@ Obviously INT-CTXT = INT-CTXT*, but is the converse true?

@ The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof?

Ciphertext Integrity

@ Obviously INT-CTXT = INT-CTXT*, but is the converse true?

@ The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof?

@ Both questions are settled through the following non-trivial
separation.

Ciphertext Integrity

@ Obviously INT-CTXT = INT-CTXT"*, but is the converse true? NO

@ The new relations required strong ciphertext integrity, is this
necessary or is it just an artefact of the proof? NECESSARY

@ Both questions are settled through the following non-trivial
separation.

Theorem

Given a scheme with a sufficiently large message space that is both
IND-CVA and INT-CTXT*, we can construct a multiple-error scheme
that is both IND-CVA and INT-CTXT* but not IND-CCA.

IND-CVA A INT-CTXT* % IND-CCA

IND-CCAS3

@ Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCAS < IND-CPA A INT-CTXT.

IND-CCAS3

@ Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCAS < IND-CPA A INT-CTXT.

@ For all adversaries A :

Pr| A8<():Pk() — 4 } _Pr [AeK($|.|),L(.) 1] <

IND-CCAS3

@ Rogaway and Shrimpton [RS06] introduced a notion that
captures concisely the goal for authenticated encryption:

IND-CCAS < IND-CPA A INT-CTXT.

@ For all adversaries A :

Pr| A8<():Pk() — 4 } _Pr [AsK($|‘|),L(.) 1] <

@ Can we extend this notion to the multiple-error setting? What
security would it guarantee?

IND-CCAS in the Multiple-Error Setting

@ There exists a Lge S, such that for all adversaries A :

pr [AEK(-),DKO _ 1} _Pr {ASK@\-I)AO(-) =1 } <e

IND-CCAS in the Multiple-Error Setting

@ There exists a Lge S| such that for all adversaries A :

Pr [ASK(-),DKO _ 1} _Pr {ASK@\-I)AO(-) =1 } <e

@ IND-CCABS provides the following security guarantees:
IND-CCAS3 < IND-CPA A INT-CTXT* A INV-ERR.

Informally INV-ERR says that all invalid ciphertexts that an
adversary can come up with, will generate the same error.

IND-CCABS in the Multiple-Error Setting

@ There exists a Lge S| such that for all adversaries A :

Pr [ASK(-),DK(J _ 1} _Pr {ASK@\-I)#O(-) =1 } <e

@ IND-CCABS provides the following security guarantees:
IND-CCAS3 < IND-CPA A INT-CTXT* A INV-ERR.

Informally INV-ERR says that all invalid ciphertexts that an
adversary can come up with, will generate the same error.

@ It can further be shown that:
IND-CCAS3 = IND-CVA A INT-CTXT = IND-CCA.

Hence IND-CCABS still constitutes a good notion for
authenticated encryption, albeit perhaps it is too strong.

Authenticated Encryption Through Generic
Composition

@ In [BNOO] Encrypt-then-MAC emerges as the preferred generic
composition for realizing authenticated encryption.

@ Krawczyk [Kra01] however, showed that MAC-then-Encrypt is
also IND-CCA secure when encryption is instantiated with CBC
mode or CTR mode.

Authenticated Encryption Through Generic
Composition

@ In [BNOO] Encrypt-then-MAC emerges as the preferred generic
composition for realizing authenticated encryption.

@ Krawczyk [Kra01] however, showed that MAC-then-Encrypt is
also IND-CCA secure when encryption is instantiated with CBC
mode or CTR mode.

@ Hence, when encryption is instantiated with CBC mode or CTR
mode, the question as to which generic composition is better
remains open.

@ Nonetheless practical cryptosystems (using CBC and CTR)
based on EtM have proved to be less vulnerable to attack than
ones based on MtE.

Re-examining Generic Compositions

@ Re-examining generic compositions in the light of distinguishable
decryption failures, provides new formal evidence to support this
observation.

@ We consider an Encode-then-Encrypt-then-MAC (EEM)
composition — to account for the pre-processing that is common

in practical schemes.

Re-examining Generic Compositions

@ Re-examining generic compositions in the light of distinguishable
decryption failures, provides new formal evidence to support this
observation.

@ We consider an Encode-then-Encrypt-then-MAC (EEM)
composition — to account for the pre-processing that is common
in practical schemes.

Theorem

For any multiple-error encoding scheme, any IND-CPA multiple-error
encryption scheme, and any UF-CMA MAC, the EEM composition
yields an IND-CCAS3 secure scheme.

Re-examining Generic Compositions

@ This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

Re-examining Generic Compositions

@ This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

@ Attacks on SSL/TLS [CHVVO03], IPsec [DP10], and DTLS [AP12]
serve as counterexamples that similar general statements
cannot be made about MAC-then-Encode-then-Encrypt.

Re-examining Generic Compositions

@ This theorem says that EEM is a robust composition, since
security holds even when decryption failures are distinguishable,
and without assuming anything about the error behaviour of the
encoding or encryption components.

@ Attacks on SSL/TLS [CHVVO03], IPsec [DP10], and DTLS [AP12]
serve as counterexamples that similar general statements
cannot be made about MAC-then-Encode-then-Encrypt.

@ It may seem unfair that we do not consider multiple-error MACs.
This is justified as follows:

- Most MACs verify the tag by recomputing the tag and comparing —
only one test condition.

- When this is implemented badly (the keyczar library example) it
results in the MAC itself not being secure.

Conclusion

@ We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

Conclusion

@ We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

@ Preventive Approach: Assign distinct error messages to the
distinct checks made during decryption = achieve security that
is less implementation-dependent.

Conclusion

@ We propose the multiple-error setting in order to obtain security
guarantees that are more relevant to practice.

@ Preventive Approach: Assign distinct error messages to the
distinct checks made during decryption = achieve security that
is less implementation-dependent.

@ A Posteriori Analysis: Alternatively the multiple-error setting
can be used to model realizations of cryptographic protocols and
analyze the security of the implementation.

	Distinguishable Decryption Failures
	The Multiple-Error Setting
	Conclusion

