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Background

In recent years significant progress in - MPC, FHE, ZK

Communication protocol (Theory → Practice)

Many applications are being developed

Examples include
• Private set intersection, privacy preserving search
• Statistical computation on sensitive data
• Verifiable computation
• Cloud computation
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Performance of symmetric-key algorithms can improve the
efficiency of protocols
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Motivation

Our focus: Verifiable computation based on SNARK
[BSCG+13]

Recently developed application around SNARK - ZeroCash
[SCG+14]

Motivation: constriction of performance due to private-key
crypto

Our focus: constriction due to Hash function
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SNARK
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arithmetic circuit C for F, witness - w for input x

. Verifier.

check F(x) = y
without computing F
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y, short proof

Let LC = {x ∈ {0, 1}n : ∃w ∈ {0, 1}h, C(x, w) = 0}
Prover knows w, keeps it secret
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Rank-1 constraints

• An F-arithmetic circuit C : Fn × Fh → Fℓ

• The Arithmetic Circuit Satisfiability (ACS) of C is given by
relation R = {(x, a) ∈ Fn × Fh : C(x, a) = 0}

• The circuit consists of bilinear gates only
• The SNARK algorithm generates the proof for satisfiability of

a system of rank-1 quadratic constraints over the field F.
• The systems looks like

⟨Ai, w⟩ · ⟨Bi, w⟩ = ⟨Ci, w⟩

where i = 1, . . . , Nc and w ∈ FN′ .
Nc → no. of constraints; N′ → no. of variables.
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Computational model

Cost of computation - (MULT, ADD); (AND, XOR)

Cost of single XOR (or ADD) is negligible compared to single
MULT/AND

Caution: Very large number of XORs (or ADDs) influences
the cost

Similar cost model, less extreme: Masking (for side-channel
attack resilient crypto)

General idea
• Linear/Affine functions, Mult with a constant (almost free)

• Non-linear functions (expensive)
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Computation cost: symmetric-key primitives

The well-known primitives use operations over F2 or (and) F2n

Example
• SHA-256 over F2, Z232

• SHA-3 over F2
• AES over F28

• PRINCE over F24 and F2

MULT or AND - x · y

Typical examples
• Linear: XOR, ADD, Rotation
• Non-linear: S-box, modular addition, bitwise AND
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MPC/FHE/ZK friendly

Protocols usually require computations over Fp

Symmetric-key computations: Embed the circuit in Fp
- Operations over F2 are expressed over Fp
- Operations over F2n are expressed over F2 , then embedded in
Fp

- Example: XOR over F2 changes over Fp

FHE friendly - Low circuit depth

MPC friendly - Low circuit depth and Low number of
multiplications

SNARK friendly - Low number of multiplications

Recent results - FLIP [MJSC16] , LowMC [ARS+15],
Legendre symbol based PRF [GRR+16] 9



SNARK friendly design

Mixing different fields is NOT useful

Embedding PRP/PRF circuit over F2 into Fp has cost issues

Efficient design over Fp ? MiMC family

Block cipher: MiMC-n/n, MiMC-2n/n

Hash function: MiMC-Hash (uses sponge mode)
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An old design: KN cipher

• Knudsen-Nyberg cipher: Round function uses APN function
over finite field

• 64-bit block cipher using Feistel mode of operation

...

x3

...

33

.

32

.

32

• Broken with Interpolation Attack (algebraic)
• This way of design was abandoned
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MiMC block-cipher: MiMC-n/n
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Figure 1: MiMC in Even-Mansour mode

Note: n = odd so that x3 is a permutation
Random round constants
Round key

• Single k in F2n

• (k1, k2) ∈ F2
2n on alternate rounds

Number of rounds: n
log 3 or log p

log 3
Same design strategy over F2n and Fp
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MiMC-2n/n
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Figure 2: MiMC in Feistel mode

Uses x3 over F2n with Feistel mode (No linear layer)
Number of rounds: 2n

log 3 or 2 log p
log 3

Round key and round constants: same as MiMC-n/n.
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Hash function
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Figure 3: Sponge mode

Sponge mode instantiated by MiMC permutation with a fixed
key
In the SNARK setting we use MiMC-n/n
It is possible to use MiMC-2n/n for large block size
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Cryptanalysis

- Optimal differential property for - x3

- Simple differential attack is not possible for full rounds
- The degree of the polynomial P(x) representing the cipher has

full degree over F2n

- Interpolation attack requires ≈ 2n − 1 plaintexts
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Cryptanalysis

- Consider two polynomials E(K, x1)− y1 and E(K, x2)− y2 over
Fq[K]

- The GCD of these two polynomials is (K − k) where k is the
unknown secret key

- GCD attack recovers the unknown key
- Complexity is O(d log2 d)

Note: GCD attack assumes that adversary can compute the
necessary polynomial(s)
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Cryptanalysis

- Higher-order differential attack requires 2n plaintexts
- APN function provides security against linear attacks
- Invariant subfield attack: Poor choice of round constants

allows this attack
- In this attack subsequent states following the input value

belong to the same subfield
- Randomly chosen round constants thwart this attack
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MiMC in SNARK setting

- Each round can be expressed with

X + ki + Ci︸ ︷︷ ︸
α

+U = 0, U · U = Y

Y · U = Z

- The equations are combined to obtain

(X + α)(X + α + Y) = Y + Z

- These equations represent the rank-1 constraints
- Each round has one multiplication
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Experimental results

• We implemented a part of the SNARK algorithm to generate
the circuit and witness

• Compared it with SHA-256 (libsnark implementation)
• SHA-256 takes ≈ 73 ms while MiMC takes ≈ 7.8 ms
• SHA-3 takes almost the same time as SHA-256
• Also compared with the LowMC and Keccak (SHA-3)
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Comparison

MiMC LowMC Keccak-[1600, 24]
#r = 16 #r = 55
m = 196 m = 20

total time 7.8ms 90.3ms 271.2ms 75.8ms
constraint generation 6.3ms 13.5ms 9.2ms 65.2ms
witness generation 1.5ms 76.8ms 262.0ms 10.6ms

# addition 646 8420888 28894643 422400

# multiplication 1293 9408 3300 38400

# rank-1 constraint 646 4704 2200 38400

MiMC and LowMC permutations have block size 1025
Our C++ implementation is available on
https://github.com/byt3bit/mimc_snark.git 20
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Conclusion

New efficiency criteria → Resurrection of an abandoned
design strategy
MiMC also shows competitive performance in MPC setting
when used as PRF ([GRR+16])
Metric: Effect of large number XOR/ADD is clear from
experimental results but How to quantify ?
Can we use polynomial to reduce the number of
multiplications ?
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Thank you!
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Remarks

Monomial with exponent 2t + 1
Problem: Resulting polynomial becomes sparse =⇒ efficient
attack
Monomial with exponent 2t − 1
Problem: Number of multiplication increases
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