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Asiacrypt (also ASIACRYPT) is an important interratiorsl conference for cryptography research. The full rame of the
conference is currently Intermational Conference on the Theorny and Application of Cnyptology and Information Se curty,
though this has waried owver tirme. Asiachypt is a conference sporeored by the Intermational Association for Cnyptologic
Research (IACR) since 2000, and is ore of its three flgship conferences. Asiacryt is now held annually in MNovember ar
Decamber st wariows locations throughout Asis and Australia.

Initially, the Asiacrpt conferences weme called AUBCRYPT, as the first one was held in Sydrey, Australia in 1990, and onby
later did the community decide that the conference should be beld in locatiors throughout Asia. The first conference to be
called " Asiacrt” was Feld in 1991 in Fujvoshids, Japan.

Conference and proceedings information by year [ edi]
e 1990 Jnuany 8-11, Sydrey, Australia, Jennifer Sekerry and  bsef Pieprzyvk, eds. (called AUSCRYPT 1990 ISBMN 3540
B3000-2]
e 1991 MNowvemnber 11-14, Fujivoshida, Japan, Hideki Irrai, Rorald Rivest, Tsutomu Matsurmoto, eds. (ISBM 3-540-573321 )

e 1992 December 13-16, Gold Coast, Queersland, Australia, Jennifer Seberry and Yuliang Zheng, eds. {called AUSCRYPT
1882; ISBN 3540572201 )



Background

Adaptively secure identity-based encryption

B From Lattices
Adaptively secure lattice IBE requires long public

parameters compared to selectively secure ones.

B From Bilinear Maps
Adaptively secure bilinear map-based IBE under
search problems require long public parameters.

Topic of This Talk
» Can we achieve more compact IBEs??




Our Results:
New Adaptively Secure IBEs

* Both based on partitioning technique with
non-linear functions

* New IBE from ideal lattices:

— Improve currently best scheme of [Yam16]:
super-poly modulus - poly modulus RLWE

— Use commutativity of Ring in an essential way

* New IBE from bilinear maps:

— First scheme with sub-linear-size mpk from search
problem rather than decisional problem

— Boneh-Boyen technique in the construction rather
than in the security proof
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Adaptive Security for IBE

Setup(1™) — (mpk, msk)

-l
ID # ID*

ﬁ skip KeyGen(msk,ID) — skip

(ID*,M) &

Pr[b =b] ~ 1/2 g&z
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Template Construction (1)

KeyGen

\ }
|

A lattice for ID

Secret key for ID:
short vector e




Template Construction

mpk =1 A, ..t
KeyGen | _

\ }
|

A lattice for ID Small errors

Encryption

. Secret key for ID:
short vector e

co=mm [I| +ag + M[q/2]
A H(ID)gd __ x

Me {0,1}

C1 =



Template for Security Proof

Partitioning Technique
We embed the problem instance into the
public parameters so that

Publicly
Computable

= - e Y - oo e

In the
simulation,
We hope

)@) 7& 0 for queried |DZ
D*) = 0 for challenge ID*

Il Il
/—-\/_—.\




Template for Security Proof

Partitioning Technique
We embed the problem instance into the
public parameters so that

Simulator’s

Publicly Trapdoor Gadtgset
Computable matrix

oo B +F(0) IS
(Needs to be “small”) —gnly known to

Simulator

In the
simulation,
We hope

)@) 7& 0 for queried |DZ
D*) = 0 for challenge ID*

Il Il
/—-\/_—.\




Hashing the Identities
Ex. [ABB10]+[Boy10]
mpk = (A, u,

..,Bk|) K:IDLength

Example) ID Length k = 6

0 1 0 01 1 ID=010011
Bi B2 B3 B4 B5 Be ENIINIEVE-N




Hashing the Identities
Ex. [ABB10]+[Boy10]
mpk = (A, u,

o) I

In Simulation

Set
EN- e
Then
:H

..,Bk|) K:IDLength




Hashing the ldentities
Ex. [ABB10]+[Boy10]
mpk = (A, u, |Bg,B1,...,Bx|) Kk:IDLength

H(ID) I : Long public key!

#matrices linear in ID length

In Simulation

Set . _ |

The

('D)



Hashing the Identities

EX. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

B, B
mpk = (A, u,|B i L )

B,1, ) By i
= B + . B« (B
(i,j)€S(ID)

B [ | Create k matrices

" from 2+/x matrices B
o - . Artificial
e emsusssssmssmmssssmnses \ K Matrices




Hashing the Identities

EX. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

B, B
mpk = (A, u,|B i L )

B,1, ) By i
= B + . 1Bl (B
(i,j)€S(ID)

In Simulation

Set
N B R B G

Then F(lD)

) — H o+ Z)”h
l




Hashing the ldentities

EX. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

B11r
mpk = (A, u,(By 321’ 1\/_ )

In Simulation

Shorter public key!
#matrices sqrt in ID length

]S e — — H

+ Vi,j €
-1 F(ID): Non-Linear Function ]- F(ID)
O - Iy




Hashing the ldentities

EX. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

-
T

In
Se

Tl

MY =

~

A Downside

For the scheme to be
secure, the modulus size

q must be super-poly Q%

JAY Rip Yo T V1,iY2,j n
lES(ID)




Agenda

.  Preliminaries

[I. Lattice Section

v'  Previous Works
v' Our Work

I1l. Bilinear Map Section

v Previous Works
v' Our Work

V. Summary



A Closer Look at [Yam16]
In Simulation W
BO_AR0+ , ”_AR,JJF

o) - I |

(Ro + Z R, ;G '(Ba;) + y1.:Ra,) 1

(i,)€S(ID) yot Y YLibe
(i,7)€S(ID)

ID

Several conditions on Rjp and y; ;’s must
hold for the security proof to hold.



Main Obstacle of [Yam16]}
F(|D): Yo|T Z Y1,iY2,5

m = (Ro+ Z R:;G™'(B2,;) 4 y1,:Ro2,;

» For the simulation to succeed y; ; must grow
proportionally with Q (#query).




Main Obstacle of [Yam16]}

F(ID) = [

+ Z Y1,iY2,;

m = (Ro+ Z R:;G7'(By;) 4 y1,,Ra,;

— Simulator’s “small” Trapdoor

» For the simu
oroportional

» For the trapd

ation to succeed y; ; must grow
vy with Q (#query).
oor Ryp to work, y; ; must be

small compared with g (modulus size).




F(ID) = [

Main Obstacle of [Yam16]}

+ Z Y1,iY2,;

m — (Ro+ Z R1:G '(Ba,;) 4 y1.:Ra,

>

>

~or the simu
oroportional

~or the trapd

ation to succeed y; ; must grow
vy with Q (#query).
oor Ryp to work, y; ; must be

small compared with g (modulus size).

vQ :poly(n)<y<q »

g needs to be
super-poly(n)!!




Initial Idea (that doesn’t quite work)

Extend the definition of y; ; € Z, to Yy ; € Zg™"
Bi,j — ARi,j T Vi l'G » Bi,j = ARi,' + Yl' l'G

Before After |
Vi j
“pack” Qin one entry “pack” Qin n? entries
> Y;j heeds to be big. » Each entry of Y; ; can be

=> Big modulus g small. => Small modulus g



Why it doesn’t work

We can’t compute the hash homomorphically!!
Since we loose commutativity of Aand Y; ; .

let B=AR+YG, B '=AR'+YG
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Why it doesn’t work

We can’t compute the hash homomorphically!!
Since we loose commutativity of Aand Y; ; .

let B=AR+YG, B '=AR'+YG

B-G1(B)=(AR +YG) -G 1(B)
= AR-G1(B') + Y(AR' + Y'G)



Why it doesn’t work

We can’t compute the hash homomorphically!!
Since we loose commutativity of Aand Y; ; .

let B=AR+YG, B '=AR'+YG

B-G '(B') = (AR +YG) - G }(B’)
= AR-G 1(B) + Y(AR' + Y'G)
= AR -G 1(B’) + YAR' + YY'G
o . GOOD!!  BAD!!  GOOD!!
an’t obtain
x H(ID) = AR + F(ID)G In general, YAR’ # AYR’




ldea (that works)

Move to the polynomial ring setting.
View elements of Zf (or a subring of Zg") as the

polynomial ring R, = Z,[X]/(X™ + 1).

a, n—1
7% 5| }@ EaiXiERq
Un-1 1=0



ldea (that works)

Move to the polynomial ring setting.
View elements of Zf (or a subring of Zg") as the

polynomial ring R, = Z,[X]/(X™ + 1).
a n—1
0 .
/AN }<:>EaiX‘ERq
An-1 1=0

Then, b=aR + yg, where

B=AR+yG =) ab,gc€RkREeRN
yEZq yERCI




Why it works

Xa,b,g € R,
R e R,y € R,

b=aR + yg

» Wheny; ; € R;, we get commutativity
with a € R for free.
» Since y; ; € R, can be viewed as vectors

in Zg, we can “pack” Q in n entries, which
allows us to use poly-sized modulus g.



Some Ignhored Problems

» R, is no longer a field, so even when
aR;, + F,(ID)g for F,(ID) # 0, the
trapdoor may not be useful in case R, is not
invertible.

» In Yam16, the “smudging” technique was
used to create the challenge ciphertext,

however, this necessarily leads to super-poly
modulus q.
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IBE from Search Problems
on Bilinear Maps
* Dual system encryption methodology

inherently requires decisional problem.
(SXDH, DLIN, Matrix-DDH,...)

e Known Solutions:

Waters IBE + Hard functi
Boneh-Boven IBE ardacore function

* Secure Under the Computational BDH assumption
e Short Ciphertexts (Waters).

* Long public parameters.




Waters IBE + Hardcore-bit Function
mpk = (GL, g, g"%,...,¢e(9,9)%)
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Waters IBE + Hardcore-bit Function
mpk = (GL, g, g"%,...,¢e(9,9)%)

GL: Goldreich-Levin hardcore bit function
H(ID): To be determined

SKp = (gang(lD),g_r)
CTip = (GL(e(g,9)**) & M, g*, g°"P))

Decryption

a rH(ID) —r SH('D))

e(g°, 9%g )-e(g ", g =e(g,9)°"



Hashing the ldentities

GL
_ 7 wo w1 W
mpk— (e(gjg)@ g g IR ¢ | D

Waters’ hash [Wat05]

H(ID) =wo + »  w;

i€S(ID)




Hashing the ldentities

G L
_ 7 wo w1 Wk
mpk— (e(g,g)o‘ g 79 7"'79 D
%

Long public key!

Waters’ | #group elements linear in ID length

H(ID) =wo + Y w;
N\ i€S(ID)

Linear Function




Initial Idea to Reduce the Key Size
(that doesn’t quite work)

GL, gwl’1 o, gPLVE

H(ID) = wq + Z w1, Wa.;
(4,7)€S(ID)
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Initial Idea to Reduce the Key Size
(that doesn’t quite work)

GL, [g™r, . . g"vr
Pk = (6(9,9)0‘ gt g VE )

H (| Non-linear terms cannot be efficiently
computed from mpk!!




Initial Idea to Reduce the Key Size
(that doesn’t quite work)

GL, [g™r, . . g"vr
Pk = (6(9,9)“ gt g VE )

H (| Non-linear terms cannot be efficiently
computed from mpk!!

)
$ )
%"j How should we compute this publicly??
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ldea (that works)
Some Random

Use Boneh-Boyen technique: Element
~~~—F

wlj'wQ,' w1’w2’ w2,t’ t.,. )
gWLit2.; (g @ 7 g2atha gt

Change of Variables: tij = E?;,j — W15 N

(Mental Experiment)
W1,iWe,5 + Wa,5t4,5

= Wiwgj + Wa it — Wi
= Wa2,jti,j \~

Linear in W1 ;, W2 ; ? (= Efficiently computable?)




ldea (that works)

Use Boneh-Boyen technique:

Some Random

Element
\/_

wlj'wQ,' w1’w2’ w2,t’ t.,. )
gWLit2.; (g @ 7 g2atha gt

Change of Variables: tij =1ij; — W1
(Mental Experiment)

W1,,W2 5 + W2 jt; j

= W1 W7 5 + W2 5t 5 — Wy -

Random Element
W2,5tij N\

Chosen by the
gwl,iw2,j ( (g’wQ,j)Ei,j’ gti,j , (gwl,i)_l )

Encryptor




Resulting Scheme
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Resulting Scheme

GL, |g¥%, ..., g¥vVvE
mpk = ol W21 Wo /k
e(9,9)" g, ..., g

//\:
H(ID) = wq + Z wy swo ; |Shorter!
(4,7)€S(ID)

SKip = (9% "™, g7 [{g"™*9 }je(mpe

longer

qg°, g*HUPIF ;e rvm tiw2.d|

GL(e(gvg)Sa) @Ma {gtj }\/
CTip = JEVE]



Comparison

-W

[Wat05] o
+ hardcore ( ) (1) assumption
Ours O(\/E) O(\/E) O(\/E) zssi?rlw_lpEtion

*We count the number of group elements.

3CBDH assumption: (ga’, gb’gc) N e(g, g)abc

3

2
3CBDHE assumption: (g%, g% , ¢%) 4 e(g,g)®
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Summary:
New Adaptively Secure IBEs

* Both based on partitioning technique with
non-linear functions

* New IBE from ideal lattices:

— Improve currently best scheme of [Yam16]:
super-poly modulus - poly modulus RLWE

— Use commutativity of Ring in an essential way

* New IBE from bilinear maps:

— First scheme with sub-linear-size mpk from search
problem rather than decisional problem

— Boneh-Boyen technique in the construction rather
than in the security proof






Comparison with (Very) Recent Works

 Comparison of adaptively secure lattice IBEs when
instantiated with ideal lattices

[ABB10] 0 (nx) 0(n) O(n) Poly RLWE

+[Boy10]

[Yam16] 0 (nx/4) 0(n) O(n)  Super-poly RLWE

[AFL16] 0(n) 0(n) O(n) Poly RLWE

[zCZ16] 0(log Q) 0(n) O(n)  Poly RWE Q-bounded
[BL16] 0 (nx) 0(n) O(n)  Super-poly RLWE Tightly secure

[Ours] 0 (nx'/9) 0(n) O(n)  Poly RLWE



