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Background

Can we achieve more compact IBEs??

 From Lattices

 From Bilinear Maps

Adaptively secure identity-based encryption 

Adaptively secure lattice IBE requires long public 
parameters compared to selectively secure ones. 

Adaptively secure bilinear map-based IBE under 
search problems require long public parameters.

Topic of This Talk



Our Results: 
New Adaptively Secure IBEs

• Both based on partitioning technique with 
non-linear functions

• New IBE from ideal lattices:
– Improve currently best scheme of [Yam16]:

super-poly modulus → poly modulus RLWE
– Use commutativity of Ring in an essential way

• New IBE from bilinear maps:
– First scheme with sub-linear-size mpk from search 

problem rather than decisional problem
– Boneh-Boyen technique in the construction rather 

than in the security proof
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Partitioning Technique
We embed the problem instance into the
public parameters so that
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simulation,
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Partitioning Technique
We embed the problem instance into the
public parameters so that

H(ID) A RID G

In the 
simulation,
We hope  

Gadget 
matrix

Template for Security Proof

Publicly 
Computable

Simulator’s
Trapdoor

(Needs to be “small”) Only Known to 
Simulator



Hashing the Identities

H(ID) BiB0

Ex. [ABB10]+[Boy10]

 

i∈S(ID)

B5B1 B2 B3 B4 B6

0     1     0     0    1     1      

S(ID)={2, 5, 6}

Example) ID Length 𝜅 = 6

ID=010011

𝜅: ID Length



Hashing the Identities

H(ID) BiB0  

i∈S(ID)

Bi A Ri G𝑦𝑖

In Simulation

A RID G𝑦0 +  
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Hashing the Identities

H(ID) BiB0  

𝑖∈𝑆(𝐼𝐷)

Bi A Ri G𝑦𝑖

In Simulation

A RID G𝑦0 +  

𝑖∈𝑆(𝐼𝐷)

𝑦𝑖

Set

Then

H(ID)

Long public key!
#matrices linear in ID length

F(ID): Linear Function

Ex. [ABB10]+[Boy10]

𝜅: ID Length



H(ID) B1,iB0

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)

 

(𝑖,𝑗)∈𝑆(𝐼𝐷)

Hashing the Identities

(𝐀, 𝐮, 𝐁0 )
𝐁1,1, ⋯ , 𝐁1, 𝜅

𝐁2,1, ⋯ , 𝐁2, 𝜅

B2,jG−1(        )

Create 𝜅 matrices 
from 2 𝜅 matrices

Artificial 
𝜿 Matrices



H(ID) B1,iB0  

(𝑖,𝑗)∈𝑆(𝐼𝐷)

Hashing the Identities

(𝐀, 𝐮, 𝐁0 )
𝐁1,1, ⋯ , 𝐁1, 𝜅

𝐁2,1, ⋯ , 𝐁2, 𝜅

B2,jG−1(        )

Bi,j A Ri,j G𝑦𝑖,𝑗

In Simulation
Set

Then

A RID 𝑦0 +  

𝑖∈𝑆(𝐼𝐷)

𝑦1,𝑖𝑦2,𝑗H(ID) G

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)



H(ID) B1,iB0  
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𝐁1,1, ⋯ , 𝐁1, 𝜅
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Shorter public key!
#matrices sqrt in ID length

F(ID): Non-Linear Function
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H(ID) B1,iB0  

(𝑖,𝑗)∈𝑆(𝐼𝐷)

Hashing the Identities

(𝐀, 𝐮, 𝐁0 )
𝐁1,1, ⋯ , 𝐁1, 𝜅

𝐁2,1, ⋯ , 𝐁2, 𝜅

B2,jG−1(        )

Bi,j A Ri,j G𝑦𝑖,𝑗

In Simulation
Set

Then

A RID 𝑦0 +  

𝑖∈𝑆(𝐼𝐷)

𝑦1,𝑖𝑦2,𝑗H(ID) G

Shorter public key!
#matrices sqrt in ID length

F(ID): Non-Linear Function

Downside

For the scheme to be 
secure, the modulus size 
𝒒 must be super-poly

Ex. [Yam16] (Currently, the most (asymptotically) compact lattice-based IBE)
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A Closer Look at [Yam16]

In Simulation

Several conditions on 𝐑ID and 𝑦𝑖,𝑗’s must 

hold for the security proof to hold.

H(ID) A RID G



 For the simulation to succeed 𝑦1,𝑗 must grow 

proportionally with Q (#query).

RID

Main Obstacle of [Yam16]



 For the simulation to succeed 𝑦1,𝑗 must grow 

proportionally with Q (#query).
 For the trapdoor 𝐑ID to work, 𝑦1,𝑖 must be 

small compared with q (modulus size).

RID

Main Obstacle of [Yam16]

Simulator’s “small” Trapdoor



 For the simulation to succeed 𝑦1,𝑗 must grow 

proportionally with Q (#query).
 For the trapdoor 𝐑ID to work, 𝑦1,𝑖 must be 

small compared with q (modulus size).

RID

Main Obstacle of [Yam16]

∀Q :poly(n) < y < q
q needs to be
super-poly(n)!!



Initial Idea (that doesn’t quite work)

Extend the definition of 𝑦𝑖,𝑗 ∈ ℤ𝑞 to 𝐘1,𝑗 ∈ ℤ𝑞
𝑛×𝑛

𝐁𝑖,𝑗 = 𝐀𝐑𝑖,𝑗 + 𝑦𝑖,𝑗𝐆 𝐁𝑖,𝑗 = 𝐀𝐑𝑖,𝑗 + 𝐘𝑖,𝑗𝐆

Before

𝑦𝑖,𝑗

“pack” Q in one entry

After

𝐘𝑖,𝑗

“pack” Q in 𝑛2 entries
 𝑦𝑖,𝑗 needs to be big. 

=> Big modulus q
 Each entry of 𝐘𝑖,𝑗 can be 

small. => Small modulus q



Why it doesn’t work

𝐁 = 𝐀𝐑 + 𝐘𝐆, 𝐁′ = 𝐀𝐑′ + 𝐘′𝐆

We can’t compute the hash homomorphically!! 
Since we loose commutativity of 𝐀 and 𝐘𝑖,𝑗 .

Let
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Why it doesn’t work

𝐁 = 𝐀𝐑 + 𝐘𝐆, 𝐁′ = 𝐀𝐑′ + 𝐘′𝐆

We can’t compute the hash homomorphically!! 
Since we loose commutativity of 𝐀 and 𝐘𝑖,𝑗 .

𝐁 ⋅ 𝐆−1 𝐁′ = 𝐀𝐑 + 𝐘𝐆 ⋅ 𝐆−1 𝐁′

= 𝐀𝐑 ⋅ 𝐆−𝟏 𝐁′ + 𝐘(𝐀𝐑′ + 𝐘′𝐆)

= 𝐀𝐑 ⋅ 𝐆−𝟏 𝐁′ + 𝐘𝐀𝐑′ + 𝐘𝐘′𝐆
GOOD!!BAD!!

In general, 𝐘𝐀𝐑′ ≠ 𝐀𝐘𝐑′

Let

Can’t obtain
H(ID) = 𝐀𝐑ID + F ID 𝐆

GOOD!!



Idea (that works)
Move to the polynomial ring setting.
View elements of ℤ𝑞

𝑛 (or a subring of ℤ𝑞
𝑛×𝑛) as the

polynomial ring 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝑛 + 1).

ℤ𝑞
𝑛 ∋

𝑎0

⋮
𝑎𝑛−1

 

𝑖=0

𝑛−1

𝑎𝑖𝑋
𝑖 ∈ 𝑅𝑞



Idea (that works)

ℤ𝑞
𝑛 ∋

𝑎0

⋮
𝑎𝑛−1

 

𝑖=0

𝑛−1

𝑎𝑖𝑋
𝑖 ∈ 𝑅𝑞

𝐁 = 𝐀𝐑 + y𝐆

𝒃 = 𝒂𝑹 + 𝑦𝒈, where
𝒂, 𝒃, 𝒈 ∈ 𝑅𝑞

𝑘 , 𝑹 ∈ 𝑅𝑞
𝑘×𝑘 ,

𝑦 ∈ 𝑅𝑞

Then, 

y ∈ ℤ𝑞

Move to the polynomial ring setting.
View elements of ℤ𝑞

𝑛 (or a subring of ℤ𝑞
𝑛×𝑛) as the

polynomial ring 𝑅𝑞 = ℤ𝑞[𝑋]/(𝑋𝑛 + 1).



Why it works

 When 𝑦𝑖,𝑗 ∈ 𝑅𝑞, we get commutativity

with 𝒂 ∈ 𝑅𝑞
𝑘 for free.

 Since 𝑦𝑖,𝑗 ∈ 𝑅𝑞 can be viewed as vectors 

in ℤ𝑞
𝑛, we can “pack” Q in n entries, which 

allows us to use poly-sized modulus q. 

𝒃 = 𝒂𝑹 + 𝑦𝒈 ※𝒂, 𝒃, 𝒈 ∈ 𝑅𝑞
𝑘 ,

𝑹 ∈ 𝑅𝑞
𝑘×𝑘 , 𝑦 ∈ 𝑅𝑞



Some Ignored Problems

 𝑅𝑞 is no longer a field, so even when  

𝒂𝑹𝐼𝐷 + F𝑦 ID 𝒈 for F𝑦 ID ≠ 0, the 

trapdoor may not be useful in case 𝑅𝑞 is not 

invertible.  
 In Yam16, the “smudging” technique was 

used to create the challenge ciphertext, 
however, this necessarily leads to super-poly 
modulus q.
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• Dual system encryption methodology 
inherently requires decisional problem. 
(SXDH, DLIN, Matrix-DDH,…)

• Known Solutions: 

• Secure Under the Computational BDH assumption
• Short Ciphertexts (Waters).
• Long public parameters.

IBE from Search Problems
on Bilinear Maps

Boneh-Boyen IBE 
+ Hardcore function Waters IBE



Waters IBE + Hardcore-bit Function
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Waters IBE + Hardcore-bit Function

GL: Goldreich-Levin hardcore bit function

Decryption

: To be determined



Hashing the Identities

Waters’ hash [Wat05]



Hashing the Identities

Waters’ hash [Wat05]
Long public key!

#group elements linear in ID length

Linear Function
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Initial Idea to Reduce the Key Size
(that doesn’t quite work)

Non-linear terms cannot be efficiently 
computed from mpk!!

How should we compute this publicly?? 
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Change of Variables:
(Mental Experiment)

Linear in                      ? (= Efficiently computable?) 



Use Boneh-Boyen technique: 

Idea (that works)
Some Random 

Element

Change of Variables:
(Mental Experiment)

Random Element 
Chosen by the 

Encryptor



Resulting Scheme



Resulting Scheme

longer



Resulting Scheme

Shorter!

longer



Comparison

Assumption

[Wat05]
+ hardcore

CBDH
assumption

Ours 3CBDHE
assumption

3CBDH assumption: 

3CBDHE assumption: 

*We count the number of group elements.
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Summary: 
New Adaptively Secure IBEs

• Both based on partitioning technique with 
non-linear functions

• New IBE from ideal lattices:
– Improve currently best scheme of [Yam16]:

super-poly modulus → poly modulus RLWE
– Use commutativity of Ring in an essential way

• New IBE from bilinear maps:
– First scheme with sub-linear-size mpk from search 

problem rather than decisional problem
– Boneh-Boyen technique in the construction rather 

than in the security proof





Comparison with (Very) Recent Works

• Comparison of adaptively secure lattice IBEs when 
instantiated with ideal lattices

|mpk| |CT| |SK_ID| Assumption Property

[ABB10]
+[Boy10]

 𝑂(𝑛κ)  𝑂(𝑛)  𝑂(𝑛) Poly RLWE

[Yam16]  𝑂(𝑛κ1/𝑑)  𝑂(𝑛)  𝑂(𝑛) Super-poly RLWE

[AFL16]  𝑂(𝑛)  𝑂(𝑛)  𝑂(𝑛) Poly RLWE

[ZCZ16]  𝑂(log𝑄)  𝑂(𝑛)  𝑂(𝑛) Poly RWE Q-bounded

[BL16]  𝑂(𝑛κ)  𝑂(𝑛)  𝑂(𝑛) Super-poly RLWE Tightly secure

[Ours]  𝑂(𝑛κ1/𝑑)  𝑂(𝑛)  𝑂(𝑛) Poly RLWE


