International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity

Authors:
Sihem Mesnager
Download:
URL: http://eprint.iacr.org/2007/117
Search ePrint
Search Google
Abstract: The recent algebraic attacks have received a lot of attention in cryptographic literature. The algebraic immunity of a Boolean function quantifies its resistance to the standard algebraic attacks of the pseudo-random generators using it as a nonlinear filtering or combining function. Very few results have been found concerning its relation with the other cryptographic parameters or with the $r$-th order nonlinearity. As recalled by Carlet at Crypto'06, many papers have illustrated the importance of the $r$th-order nonlinearity profile (which includes the first-order nonlinearity). The role of this parameter relatively to the currently known attacks has been also shown for block ciphers. Recently, two lower bounds involving the algebraic immunity on the $r$th-order nonlinearity have been shown by Carlet et \emph{al}. None of them improves upon the other one in all situations. In this paper, we prove a new lower bound on the $r$th-order nonlinearity profile of Boolean functions, given their algebraic immunity, that improves significantly upon one of these lower bounds for all orders and upon the other one for low orders.
BibTeX
@misc{eprint-2007-13399,
  title={Improving the lower bound on the higher order nonlinearity of Boolean functions with prescribed algebraic immunity},
  booktitle={IACR Eprint archive},
  keywords={foundations / stream cipher, block cipher, algebraic attack, Boolean  function, algebraic immunity, algebraic degree, higher order nonlinearity, annihilator},
  url={http://eprint.iacr.org/2007/117},
  note={ hachai@math.jussieu.fr 13728 received 30 Mar 2007, last revised 3 Aug 2007},
  author={Sihem Mesnager},
  year=2007
}