International Association for Cryptologic Research

International Association
for Cryptologic Research

CryptoDB

Paper: Computing genus 2 curves from invariants on the Hilbert moduli space

Authors:
Kristin E. Lauter
Tonghai Yang
Download:
URL: http://eprint.iacr.org/2010/294
Search ePrint
Search Google
Abstract: We give a new method for generating genus 2 curves over a finite field with a given number of points on the Jacobian of the curve. We define two new invariants for genus 2 curves as values of modular functions on the Hilbert moduli space and show how to compute them. We relate them to the usual three Igusa invariants on the Siegel moduli space and give an algorithm to construct curves using these new invariants. Our approach simplifies the complex analytic method for computing genus 2 curves for cryptography and reduces the amount of computation required.
BibTeX
@misc{eprint-2010-23195,
  title={Computing genus 2 curves from invariants on the Hilbert moduli space},
  booktitle={IACR Eprint archive},
  keywords={public-key cryptography / Hyperelliptic curve cryptography},
  url={http://eprint.iacr.org/2010/294},
  note={ klauter@microsoft.com 14746 received 17 May 2010},
  author={Kristin E. Lauter and Tonghai Yang},
  year=2010
}